初一数学期中复习知识整理

合集下载

初一数学期中考试知识要点总结

初一数学期中考试知识要点总结

初一数学期中考试知识要点总结初一数学期中考试知识总结通常涵盖该学期所学的主要数学概念、原理和解题方法。

下面是翰翰说设计为大家基于常见初一数学教学内容的总结,但请注意,具体内容可能会因学校和教学大纲的不同而有所差异。

一、数与式1.有理数:包括正数、负数、零、整数、分数和小数。

了解它们的性质和运算规则,如加法、减法、乘法和除法。

2.代数式:学习如何表示、简化和计算代数式,包括单项式、多项式以及它们的加法、减法和乘法。

二、方程与不等式1.一元一次方程:理解一元一次方程的概念,掌握求解一元一次方程的方法,如移项、合并同类项和除法。

2.不等式:理解不等式的概念,学习如何解简单的一元一次不等式。

三、函数初步1.函数的概念:理解函数的概念,知道如何确定自变量和因变量,理解函数关系。

2.函数的表示:学习如何使用表格、解析式和图像来表示函数。

四、图形与几何1.直线、角与三角形:理解直线、线段、射线的概念,知道角的度量单位(度),掌握各种角的性质(如补角、余角、对顶角等),理解三角形的性质(如三边关系、角度和等)。

2.图形的变换:了解平移、旋转和轴对称等图形变换的概念。

五、数据与概率1.数据的收集与整理:学习如何收集、整理和分析数据,包括数据的分类、频数、频率等。

2.概率初步:理解概率的基本概念,学习计算简单事件的概率。

六、应用题掌握如何利用所学的数学知识解决生活中的实际问题,如路程、速度、时间问题,工程问题,折扣问题等。

在准备期中考试时,除了对这些知识点的理解和记忆,更重要的是掌握它们的实际应用和解题方法。

通过大量的练习和复习,可以加深对知识点的理解和记忆,提高解题的熟练度和准确性。

同时,也要注意理解和掌握一些常用的数学方法和技巧,如代数法、几何法、排除法等,这些方法和技巧可以帮助你更有效地解决数学问题。

七年级上册数学期中知识点复习

七年级上册数学期中知识点复习

七年级上册数学期中知识点复习七年级上册数学期中知识点复习正数与负数正数:大于0的数叫正数。

(根据需要,有时在正数前面也加上“+”)负数:在以前学过的0以外的数前面加上负号“―”的数叫负数。

与正数具有相反意义。

!0既不是正数也不是负数。

0是正数和负数的分界,是唯一的中性数。

注意:搞清相反意义的量:南北;东西;上下;左右;上升下降;高低;增长减少等有理数1、有理数(1)整数:正整数、0、负整数统称整数;(2)分数;正分数和负分数统称分数;(3)有理数:整数和分数统称有理数。

@2、数轴(1)定义:通常用一条直线上的点表示数,这条直线叫数轴;(2)数轴三要素:原点、正方向、单位长度;(3)原点:在直线上任取一个点表示数0,这个点叫做原点;(4)数轴上的点和有理数的关系:所有的有理数都可以用数轴上的点表示出来,但数轴上的点,不都是表示有理数。

3、相反数:只有符号不同的两个数叫做互为相反数。

(例:2的相反数是-2;0的相反数是0)~4、绝对值:(1)数轴上表示数a的点与原点的距离叫做数a的绝对值,记作|a|。

从几何意义上讲,数的绝对值是两点间的距离。

(2)一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0。

两个负数,绝对值大的反而小。

有理数的加减法有理数加法法则:1、同号两数相加,取相同的符号,并把绝对值相加。

]2、绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。

互为相反数的两个数相加得0。

3、一个数同0相加,仍得这个数。

加法的交换律和结合律有理数减法法则:减去一个数,等于加这个数的相反数。

有理数的乘除法.有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘;任何数同0相乘,都得0;乘积是1的两个数互为倒数。

乘法交换律/结合律/分配律有理数除法法则:除以一个不等于0的数,等于乘这个数的倒数;&两数相除,同号得正,异号得负,并把绝对值相除;0除以任何一个不等于0的数,都得0。

人教版七年级上册数学期中复习知识要点

人教版七年级上册数学期中复习知识要点
∴x=1 或 x 1 。 3
(点评:|a|=|b| a=b 或 a+b=0)
三、有理数的运算
1.加法 (1)两个正数相加,结果为正,直接按小学加法即可。如(+3)+(+2)=5。 (2)两个负数相加,结果为负,先将绝对值相加,再添负号,如:
(-3)+(-2)=-(3+2)=-5。 (3)一正一负相加,用欠少得多还是欠多得少理解,再定符号。
如:(-3)+(+1)=-2 (+3)+(-1)=2 欠:- 得:+
3
如:
1 2
2 1
1 1
点评:符号是核心
习惯:(1)观察有无相反数
(2)利用符号口诀去掉多余的括号与符号
(3)化带分数为假分数
(4)正负归堆各自运算
(5)大碰撞
注意:灵活处理,如整对整,分对分,适当心算
2.减法
(1)大-小:结果为正,类比小学减法即可,如(+3)-(+1)=3-1=2。
3.相反数: (1)定义:只有符号不同的两个数,任何数都有相反数,规定 0 的相反数是 0。
1°如:3 与-3,π与-π, 2 1 与 2 1 ,-4 与 4……,它们对应的点在原点两侧,
2
2
折叠可重合,称之为关于原点对称。
2°由-3+3=0,-π+π=0, 2 1 + 2 1 =0,……故如果 a+b=0,那么 a,b 互为相反 22
另:分配律:a(b+c)=ab+a.c. “分配”就是每个均要分到,不能漏。
正用、反用。
如:
6
2 3
1 2
= 6 2 6 1 32

七年级第二学期数学期中考试知识点总结

七年级第二学期数学期中考试知识点总结

七年级第二学期数学期中考试知识点总结七年级第二学期数学期中考试知识点总结总结是事后对某一阶段的学习、工作或其完成情况加以回顾和分析的一种书面材料,它可以使我们更有效率,因此十分有必须要写一份总结哦。

总结怎么写才是正确的呢?下面是小编为大家整理的七年级第二学期数学期中考试知识点总结,仅供参考,欢迎大家阅读。

七年级第二学期数学期中考试知识点总结1第一章实数考点一、实数的概念及分类(3分)1、实数的分类正有理数有理数零有限小数和无限循环小数实数负有理数正无理数无理数无限不循环小数负无理数整数包括正整数、零、负整数。

正整数又叫自然数。

正整数、零、负整数、正分数、负分数统称为有理数。

2、无理数在理解无理数时,要抓住“无限不循环”这一时之,归纳起来有四类:(1)开方开不尽的数,如7,32等;(2)有特定意义的数,如圆周率π,或化简后含有π的数,如(3)有特定结构的数,如0.1010010001等;(4)某些三角函数,如sin60o等考点二、实数的倒数、相反数和绝对值(3分)1、相反数实数与它的相反数时一对数(只有符号不同的两个数叫做互为相反数,零的相反数是零),从数轴上看,互为相反数的两个数所对应的点关于原点对称,如果a与b互为相反数,则有a+b=0,a=b,反之亦成立。

2、绝对值一个数的绝对值就是表示这个数的点与原点的距离,|a|≥0。

零的绝对值时它本身,也可看成它的相反数,若|a|=a,则a≥0;若|a|=-a,则a≤0。

正数大于零,负数小于零,正数大于一切负数,两个负数,绝对值大的反而小。

3、倒数如果a与b互为倒数,则有ab=1,反之亦成立。

倒数等于本身的数是1和-1。

零没有倒数。

考点三、平方根、算数平方根和立方根(310分)1、平方根如果一个数的平方等于a,那么这个数就叫做a的平方根(或二次方跟)。

一个数有两个平方根,他们互为相反数;零的平方根是零;负数没有平方根。

正数a的平方根记做“。

a”π+8等;2、算术平方根正数a的正的平方根叫做a的算术平方根,记作“a”。

七年级上册数学期中复习知识点提纲

七年级上册数学期中复习知识点提纲

七年级上册数学期中复习知识点提纲
整数与运算
- 整数的特点和基本性质
- 整数的加法和减法运算规律
- 整数的乘法和除法运算规律
- 整数的绝对值和相反数
- 整数的大小比较和排序
分数与运算
- 分数的概念和性质
- 分数的加法和减法运算
- 分数的乘法和除法运算
- 分数与整数的加减乘除运算
- 分数的化简和约分
方程与不等式
- 方程的概念和解方程
- 一元一次方程的解
- 一元一次方程的实际应用
- 不等式的概念和解不等式- 一元一次不等式的解
- 一元一次不等式的实际应用
平面图形的认识
- 点、线、线段、射线的认识- 角的概念与分类
- 三角形的分类与性质
- 四边形的分类与性质
- 圆的认识与特性
数据的整理与统计
- 数据调查和收集
- 数据的整理和分类
- 数据的统计和表示
- 数据的分析和应用
三维几何与轴对称
- 空间几何图形的认识
- 立体图形的展开和折叠
- 点、线、面、体的认识
- 轴对称图形的认识和性质
乘法与因式分解
- 乘法的定义和性质
- 乘法表的认识和应用
- 整式的乘法和同底数幂的乘法- 因式分解的概念和方法
分式与运算
- 分式的概念和性质
- 分式的加法和减法
- 分式的乘法和除法
- 分式与整式的运算
已知条件判断与证明
- 基于已知条件作判断
- 基于已知条件进行证明
测量与单位换算
- 长度、面积、体积的认识和计算- 常用的长度、面积、体积单位换算
數和量
- 數形结脉的发生,原因和条件
- 归纳和偏见,基本部分概念的形成。

七年级数学期中复习及考前模拟沪科版知识精讲

七年级数学期中复习及考前模拟沪科版知识精讲

初一数学期中复习及考前模拟沪科版
一、内容梳理
则和运算规律相同规律与有理数的运算法实数的运算法则和运算一对应的实数与数轴上的点是一
的倒数为的相反数为
)()()(的意义
绝对值、相反数、倒数负数
正数按性质分无限不循环小数无理数
数有限小数或无限循环小分数整数
有理数
按定义分分类
实数个立方根,是负数
负数有的立方根是
个立方根,是正数
正数有立方根算术平方根负数没有平方根
的平方根是
们互为相反数
正数有两个平方根,它
平方根实数)4()3(0
a a 1
a a a 0a a 0a
0a
a a )2(0
)1(.31001.200.1式等不次一元一





应用解法
解集
概念
一元一次不等式组应用解不等式解集概念一元一次不等式三个基本性质概念不等式
)4()3()2()1(.3)4()3()2()1(.2)2()1(.1。

初一数学上册期中知识点(精选11篇)

初一数学上册期中知识点(精选11篇)

初一数学上册期中知识点(精选11篇)初一数学上册期中知识点1整式的加减一、代数式1、用运算符号把数或表示数的字母连结而成的式子,叫做代数式。

单独的一个数或字母也是代数式。

2、用数值代替代数式里的字母,按照代数式里的运算关系计算得出的结果,叫做代数式的值。

二、整式1、单项式:(1)由数和字母的乘积组成的代数式叫做单项式。

(2)单项式中的数字因数叫做这个单项式的系数。

(3)一个单项式中,所有字母的指数的和叫做这个单项式的次数。

2、多项式(1)几个单项式的和,叫做多项式。

(2)每个单项式叫做多项式的项。

(3)不含字母的项叫做常数项。

3、升幂排列与降幂排列(1)把多项式按x的指数从大到小的顺序排列,叫做降幂排列。

(2)把多项式按x的指数从小到大的顺序排列,叫做升幂排列。

三、整式的加减1、整式加减的理论根据是:去括号法则,合并同类项法则,以及乘法分配率。

去括号法则:如果括号前是“十”号,把括号和它前面的.“+”号去掉,括号里各项都不变符号;如果括号前是“一”号,把括号和它前面的“一”号去掉,括号里各项都改变符号。

2、同类项:所含字母相同,并且相同字母的指数也相同的项叫做同类项。

合并同类项:(1)合并同类项的概念:把多项式中的同类项合并成一项叫做合并同类项。

(2)合并同类项的法则:同类项的系数相加,所得结果作为系数,字母和字母的指数不变。

(3)合并同类项步骤:a.准确的找出同类项。

b.逆用分配律,把同类项的系数加在一起(用小括号),字母和字母的指数不变。

c.写出合并后的结果。

(4)在掌握合并同类项时注意:a.如果两个同类项的系数互为相反数,合并同类项后,结果为0.b.不要漏掉不能合并的项。

c.只要不再有同类项,就是结果(可能是单项式,也可能是多项式)。

说明:合并同类项的关键是正确判断同类项。

3、几个整式相加减的一般步骤:(1)列出代数式:用括号把每个整式括起来,再用加减号连接。

(2)按去括号法则去括号。

(3)合并同类项。

初一数学期中考试知识点

初一数学期中考试知识点

初一数学期中考试知识点初一数学期中考试知识点1.有理数:(1)凡能写成形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a不一定是负数,+a也不一定是正数;π不是有理数;(2)注意:有理数中,1、0、-1是三个特殊的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性;2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;(2)注意:a-b+c的相反数是-a+b-c;a-b的相反数是b-a;a+b 的相反数是-a-b;4.绝对值:(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;(2)绝对值可表示为:绝对值的问题经常分类讨论;(3)a|是重要的非负数,即|a|≥0;注意:|a|?|b|=|a?b|,5.有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数-小数>0,小数-大数<0初一数学期中考试知识点大全1 过两点有且只有一条直线2 两点之间线段最短3 同角或等角的补角相等4 同角或等角的余角相等5 过一点有且只有一条直线和已知直线垂直6 直线外一点与直线上各点连接的所有线段中,垂线段最短7 平行公理经过直线外一点,有且只有一条直线与这条直线平行8 如果两条直线都和第三条直线平行,这两条直线也互相平行9 同位角相等,两直线平行10 内错角相等,两直线平行11 同旁内角互补,两直线平行12两直线平行,同位角相等13 两直线平行,内错角相等14 两直线平行,同旁内角互补15 定理三角形两边的和大于第三边16 推论三角形两边的差小于第三边17 三角形内角和定理三角形三个内角的和等于18018 推论1 直角三角形的两个锐角互余19 推论2 三角形的一个外角等于和它不相邻的两个内角的和20 推论3 三角形的一个外角大于任何一个和它不相邻的内角21 全等三角形的对应边、对应角相等22边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等23 角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等24 推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等25 边边边公理(SSS) 有三边对应相等的两个三角形全等26 斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等27 定理1 在角的平分线上的点到这个角的两边的距离相等28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上29 角的平分线是到角的两边距离相等的所有点的集合30 等腰三角形的性质定理等腰三角形的两个底角相等 (即等边对等角)31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边32 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合33 推论3 等边三角形的各角都相等,并且每一个角都等于6034 等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)35 推论1 三个角都相等的三角形是等边三角形36 推论 2 有一个角等于60的等腰三角形是等边三角形37 在直角三角形中,如果一个锐角等于30那么它所对的直角边等于斜边的一半38 直角三角形斜边上的中线等于斜边上的一半39 定理线段垂直平分线上的点和这条线段两个端点的距离相等 ?40 逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上41 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合42 定理1 关于某条直线对称的两个图形是全等形43 定理 2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线44定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上初一数学知识点正数和负数⒈、正数和负数的概念负数:比0小的数正数:比0大的数0既不是正数,也不是负数注意:①字母a可以表示任意数,当a表示正数时,—a是负数;当a表示负数时,—a是正数;当a表示0时,—a仍是0。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

七年级数学期中复习资料整理
第一章 有理数
一. 知识框架
二.知识概念
1.有理数:
(1)凡能写成)0p q ,p (p
q ≠为整数且形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a 不一定是负数,+a 也不一定是正数;π不是有理数;
(2) 有理数的分类: ① ⎪⎪⎩
⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数 ② ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数
2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.
3.相反数:
(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;
(2)相反数的和为0 ⇔ a+b=0 ⇔ a 、b 互为相反数.
4.绝对值:
(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点到原点的距离;
(2) 绝对值可表示为:⎪⎩⎪⎨⎧<-=>=)
0a (a )0a (0)0a (a a 或⎩⎨⎧<-≥=)0a (a )0a (a a ;绝对值的问题经常分类讨论; 5.有理数比大小:(1)正数的绝对值越大,这个数越大;
(2)正数永远比0大,负数永远比0小;
(3)正数大于一切负数;
(4)两个负数比大小,绝对值大的反而小;
(5)数轴上的两个数,右边的数总比左边的数大;
(6)大数-小数 > 0,小数-大数 < 0.
6.互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若 a ≠0,那么a 的倒数是a 1;若ab=1⇔ a 、b 互为倒数;若ab=-1⇔ a 、b 互为负倒数.
7. 有理数加法法则:
(1)同号两数相加,取相同的符号,并把绝对值相加;
(2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;
(3)一个数与0相加,仍得这个数.
8.有理数加法的运算律:
(1)加法的交换律:a+b=b+a ;
(2)加法的结合律:(a+b )+c=a+(b+c ).
9.有理数减法法则:减去一个数,等于加上这个数的相反数;即a -b=a+(-b ). 10 有理数乘法法则:
(1)两数相乘,同号为正,异号为负,并把绝对值相乘;
(2)任何数同零相乘都得零;
(3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定.
11 有理数乘法的运算律:
(1)乘法的交换律:ab=ba ;(2)乘法的结合律:(ab )c=a (bc );
(3)乘法的分配律:a (b+c )=ab+ac .
12.有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数,无意义即0
a .
13.有理数乘方的法则:
(1)正数的任何次幂都是正数;
(2)负数的奇次幂是负数;负数的偶次幂是正数;注意:当n 为正奇数时: (-a)n =-a n 或(a -b)n =-(b -a)n , 当n 为正偶数时: (-a)n =a n 或 (a -b)n =(b -a)n .
14.乘方的定义:
(1)求相同因式积的运算,叫做乘方;
(2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂;
15.科学记数法:把一个大于10的数记成a ×10n 的形式,其中a 是整数数位只有一位的数,这种记数法叫科学记数法.
16.近似数的精确位:一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位.
17.有效数字:从左边第一个不为零的数字起,到精确的位数止,所有数字,都叫这个近似数的有效数字.
18.混合运算法则:先乘方,后乘除,最后加减.
第二章 整式的加减
一.知识框架
二.知识概念
1.单项式:在代数式中,若只含有乘法(包括乘方)运算。

注意:分母不能是字母且决不能出现加减符号。

2.单项式的系数与次数:
次数:所求字母的指数和。

元数:字母的种类个数。

系数:字母前面的数字部分 。

3.多项式:几个单项式的和叫多项式.
4.多项式的项数与次数:
多项式的项:每个单项式。

项数:单项式的个数。

最高次项:次数最高的单项式。

次数:次数最高项的次数。

常数项:不含字母的项。

元数:字母种类的个数
5. 整式的化简与求值(先化简,再求值)
化简:去括号,合并同类项。

(一定要细心)
求值:分为字母值已知和字母值可求(利用非负性,和前面学的系数,次数联系在一起等等)
在这部分还有些特殊的方法:1直接代入法:当代数式中的字母不能或不容易求出具体的值时,可考虑将条件看成一个整体,直接带入求值。

2 构造法:首先要观察所求代数式与已知条件之间的内在联系,有时需要对所求代数式或已知条件做适当的变形,使变形后可以实施整体带入。

列如:已知的值求xy y x xy y xy x 22.3,542222++=-=+
学习目标:
1. 理解并掌握单项式、多项式、整式等概念,弄清它们之间的区别与联系。

2. 理解同类项概念,掌握合并同类项的方法,掌握去括号时符号的变化规律,能正确地进行同类项的合并和去括号。

在准确判断、正确合并同类项的基础上,进行整式的加减运算。

3. 理解整式中的字母表示数,整式的加减运算建立在数的运算基础上;理解合并同类项、去
括号的依据是分配律;理解数的运算律和运算性质在整式的加减运算中仍然成立。

4.能够分析实际问题中的数量关系,并用还有字母的式子表示出来。

相关文档
最新文档