白噪声

合集下载

白噪声

白噪声
白噪声
物理学概念
01 定义
03 参数 05 应用
目录
02 起源 04 通信中的
白噪声(white noise)是指功率谱密度在整个频域内是常数的噪声。所有频率具有相同能量密度的随机噪声 称为白噪声。
定义
白噪声是指在较宽的频率范围内,各等带宽的频带所含的噪声功率谱密度相等的噪声。
一般在物理上把它翻译成白噪声(white noise)。
人生充满声音和噪声干扰,如轿车鸣喇叭、汪汪狗叫、吵邻打鼾、警报器、大喊大叫.白噪声并不增加烦躁, 而是包含所有同等频率的声音.研究表明,一个稳定、平和的声音流,如白噪声、可过滤和分散噪音,可以帮助减轻 噪音分心,这也正是为什么它用来帮助人们放松、睡眠。
上市销售的白噪声机器产品有睡眠辅助器、私密性增强器以及掩饰耳鸣。
白噪声可以用于放大器或者电子滤波器的频率响应测试,有时它与响应平坦的话筒或和自动均衡器一起使用。 这个设计的思路是系统会产生白噪声,话筒接收到扬声器产生的白噪声,然后在每个频率段进行自动均衡从而得 到一个平坦的响应。这种系统用在专业级的设备、高端的家庭立体声系统或者一些高端的汽车收音机上。
白噪声也作为一些随机数字生成器的基础使用,常用于计算机科学领域。
白噪声的应用领域之一是建筑声学,为了减弱内部空间中分散人注意力并且不希望出现的噪声(如人的交谈), 使用持续的低强度噪声作为背景声音。
在电子通信中也有白噪声的应用,它被直接或者作为滤波器的输入信号以产生其它类型的噪声信号,尤其是 在信号合成中,经常用来重现有很高噪声成分信号。
白噪声也用来产生冲击响应。为了在一个演出地点保证音乐会或者其它演出的均衡效果,从P A系统发出一 个瞬间的白噪声或者粉红噪声,并且在不同的地方监测噪声信号,这样工程师就能够建筑物的声学效应能够自动 地放大或者削减某些频率,从而就可以调整总体的均衡效果以得到一个平衡的和声。

白噪声

白噪声
其中,I0(x)称为零阶修正贝塞尔函数(Bessel)
I0 ( x ) = ∫

0
1 exp ( − x cos θ ) dθ 2π
p (θ ) = ∫ p ( r,θ ) dr = ∫
0 2 2


0
( r − A cosθ )2 + ( Asin θ )2 r exp − dr 2 2 2πσ 2σ
循环平稳过程
定义
随机过程X(t)的统计平均值和自相关函数是时 间的周期函数,则称为循环平稳随机过程。
• 如:
X (t ) =
n =−∞
∑ a g ( t − nT )
n

E ( an ) = ma , E an an +k = Ra ( k )
*
循环平稳过程的统计特性
期望 E ( X ( t ) ) = m a 自相关
包络服从瑞利分布,相位服从均匀分布。
窄带平稳高斯过程(零均值)
包络 R ( t ) = nc ( t ) + ns ( t )
2 2
瑞利分布
ns ( t ) 相位 θ ( t ) = arctg nc ( t ) 均匀分布
r2 p ( r ) = 2 exp − 2 σ 2σ r
, r ≥ 0
要求:
会判断过程是否平稳 会求平稳过程的自相关、功率谱密度 会分析与高斯平稳过程相关的一些性质
1 p (θ ) = 2π
证明
因为nc(t),ns(t)是正交的均值为0,方差为 2的高斯随机变 量,因此它们独立(窄带高斯过程的性质),则
2 nc + ns2 p ( nc , ns ) = exp − 2 2 2πσ 2σ ns 令 r = n2 + n2 , θ = arctg c s nc

白噪声_高斯噪声_高斯白噪声的区别

白噪声_高斯噪声_高斯白噪声的区别

这几个概念的区别和联系:(转自:研学论坛)白噪声,就是说功率谱为一常数;也就是说,其协方差函数在delay=0时不为0,在delay不等于0时值为零;换句话说,样本点互不相关。

(条件:零均值。

)所以,“白”与“不白”是和分布没有关系的。

当随机的从高斯分布中获取采样值时,采样点所组成的随机过程就是“高斯白噪声”;同理,当随机的从均匀分布中获取采样值时,采样点所组成的随机过程就是“均匀白噪声”。

那么,是否有“非白的高斯”噪声呢?答案是肯定的,这就是”高斯色噪声“。

这种噪声其分布是高斯的,但是它的频谱不是一个常数,或者说,对高斯信号采样的时候不是随机采样的,而是按照某种规律来采样的。

仿真时经常采用高斯白噪声是因为实际系统(包括雷达和通信系统等大多数电子系统)中的主要噪声来源是热噪声,而热噪声是典型的高斯白噪声,高斯噪声下的理想系统都是线性系统。

相关讨论:1、白噪声是指功率谱在整个频域内为常数的噪声,其付氏反变换是单位冲击函数的n倍(n取决于功率谱的大小),说明噪声自相关函数在t=0时不为零,其他时刻都为0,自相关性最强。

高斯噪声是一种随机噪声,其幅度的统计规律服从高斯分布。

高斯白噪声是幅度统计规律服从高斯分布而功率谱为常数的噪声如果在系统通带内功率谱为常数,成为带限白噪声“高斯”与“白”没有直接关系,有时人们还会提出高斯型噪声,这指的是噪声功率谱呈高斯分布函数的形状而已。

2、有一个问题我想提出来:连续白噪声和离散白噪声序列的关系是什么?它们之间不应该是简单的采样关系。

因为连续白噪声的功率谱在整个频率轴上为常数,按照随机信号采样定理,对这样的信号采样,采样后的序列的功率谱必然发生混叠,而且混叠过后的功率谱是什么?应该是在整个频率轴上都为无穷大。

这显然不满足离散白噪声序列的定义。

那离散白噪声序列跟连续白噪声有何关系?我觉得是对带限的连续白噪声进行采样后得到的,这个带限的连续白噪声信号的带宽刚好满足Nyquist抽样定理。

白噪声

白噪声
0.2188 0.3359 -0.9531 -0.7188 0.6875 -0.8359
-0.0156 0.9219 0.5703 0.4531 -0.2500 -0.4844
0.1016 -0.3672 0.8047 -0.1328 0.2188 0.3359
-0.9531 -0.7188 0.6875 -0.8359
0.0234 0.1406 0.8438 0.0820 0.4922 0.9609
0.7852 0.7266 0.3750 0.2578 0.5508 0.3164
0.9023 0.4336 0.6094 0.6680 0.0234 0.1406
0.8438 0.0820 0.4922 0.9609 0.7852 0.7266
0.0234 0.1406 0.8438 0.0820

1编程如下:
A=6;x0=1;M=255;f=2; N=100;%初始化;
x0=1;M=255;
fork=1:N %乘同余法递推100次;
x2=A*x0;%分别用x2和x0表示xi+1和xi-1;
x1=mod (x2,M);%取x2存储器的数除以M的余数放x1(xi)中;
白噪声
如果一个零均值、平稳随机过程的谱密度为常数,我们称之为白噪声(由白色光联想∞,τ=0
0,τ≠0
3 ,其中, 为Dirac函数,即 =

4 无记忆性,即t时刻的数值与t时刻以前的过去值无关,也不影响t时刻以后的将来值。从另一意义上说,即不同时刻的随机信号互不相关。
Columns 31 through 40
-1 1 -1 1 1 1 1 -1 -1 -1
Columns 41 through 50

白噪声积分,并计算方差和均值

白噪声积分,并计算方差和均值

白噪声积分,并计算方差和均值
白噪声积分是指对白噪声进行积分得到的过程。

白噪声是一种
具有平坦功率谱密度的随机信号,其在不同频率上具有相等的能量。

对白噪声进行积分可以得到随机过程,通常称为随机游走过程或布
朗运动。

在数学上,对白噪声进行积分可以用随机过程的角度来理解,即在每个时间点上,随机游走的位置是前一时刻位置的累积和,因此可以看作是一个连续的累积过程。

要计算白噪声积分的方差和均值,首先需要明确白噪声的性质。

白噪声的方差是无穷大,因为其功率谱密度在所有频率上都是常数,所以方差是无穷大。

但是对于白噪声的积分,情况会有所不同。


体计算白噪声积分的方差需要考虑积分的时间范围,通常情况下,
对于有限时间范围内的积分,可以计算其方差。

假设我们对白噪声进行积分得到随机过程X(t),则X(t)的均值
可以表示为E[X(t)],方差可以表示为Var[X(t)]。

在这种情况下,
我们需要使用随机过程的性质和积分的定义来计算均值和方差。


体的计算方法会涉及到随机过程的理论和积分的性质,需要进行一
定的数学推导和计算。

总的来说,白噪声积分的方差和均值的计算涉及到随机过程的
性质和积分的定义,需要根据具体的情况进行计算。

在实际应用中,可以通过数值模拟或者利用随机过程的性质进行估计。

希望这个回
答能够帮助你理解白噪声积分的方差和均值的计算方法。

白噪声序列检验结果

白噪声序列检验结果

白噪声序列检验结果
白噪声序列检验结果主要用于判断一个时间序列是否为白噪声序列。

白噪声序列是一种特殊的随机序列,其均值为0,方差为常数,且任意两个不同时间点的随机变量都是不相关的。

如果一个时间序列经过检验被判定为白噪声序列,那么该序列就是一个纯随机序列,即该序列中的各个观测值之间没有任何相关性,过去的行为对未来没有任何影响。

白噪声序列检验通常可以通过观察自相关图和偏自相关图来进行初步判断。

如果自相关图和偏自相关图中的所有点都几乎在蓝色的虚线以内,即序列的自相关系数和偏自相关系数都在置信区间内,那么可以初步认为该序列是白噪声序列。

这种初步判断可能并不准确,因此需要进行更严格的统计检验。

常用的白噪声检验方法包括Box-Pierce检验、Ljung-Box检验等。

这些方法的基本思想是利用序列的自相关系数来构造统计量,并判断该统计量是否显著异于0。

如果统计量不显著异于0,则可以认为该序列是白噪声序列;否则,可以认为该序列不是白噪声序列。

需要注意的是,白噪声序列检验的结果可能受到样本量、序列长度等因素的影响。

在进行白噪声序列检验时,应该根据具体情况选择合适的检验方法,并结合其他统计分析和实际情况进行综合判断。

白噪声序列检验结果可以用于判断一个时间序列是否为纯随机
序列,从而帮助我们更好地理解和分析该序列的性质和特点。

如果序列被判定为白噪声序列,那么我们可以认为该序列中的各个观测值之间没有任何相关性,过去的行为对未来没有任何影响。

白噪声的自相关函数

白噪声的自相关函数

白噪声的自相关函数白噪声是一种未经处理的不受任何控制的噪音,它的概率密度函数是完全相同的,而且不依赖于时间和空间的变化。

白噪声的自相关函数(ACF)是统计学中在描述白噪声特性时所使用的重要参数,表明了一个系统的噪声和差异的变化情况。

自相关函数的定义是某一时刻的噪声与另一时刻的噪声之间的相关性。

首先,定义白噪声的自相关函数。

白噪声自相关函数指示了白噪声信号在两个不同时刻之间的相关性,它可以被表示为:ρ(τ)=E (X(t)X(t+τ)),其中,E表示期望值。

上式中X(t)与X(t+τ)是同一时刻及其延时τ后的噪声。

白噪声的自相关函数可以通过以下方程来计算:ρ(τ)=E(X (t)X(t+τ))=CX(0),其中CX(0)为任意时刻的噪声的均值。

由此可知,白噪声的自相关函数对延迟τ时刻的值是完全相同的,也就是说,不管两个时刻的延迟是多长,白噪声的自相关函数的值都是一样的。

白噪声的自相关函数也可以用来表示其他形式的信号噪声。

如果在某一时刻,信号有一定的非定型噪声,那么这一特性将体现在白噪声自相关函数中。

相反,如果信号是完全一致的,那么白噪声的自相关函数将为0,因为它不存在相关性。

另外,白噪声的自相关函数也可以用来大致推断一个系统的差异,只要比较不同时刻的噪声,就能够找到系统中实际发生的变化情况。

因此,白噪声的自相关函数在研究噪声特性方面显得尤为重要。

尽管白噪声的自相关函数是一种简单的函数,但它有着巨大的应用价值。

它可以帮助人们研究噪声和信号的关系,找出系统中可能存在的差异,从而有助于人们更好地掌握它,并从中获得有用的信息。

总之,白噪声的自相关函数可以帮助人们更好地理解噪声的变化,从而更好地控制和管理它们。

它可以应用于各种研究领域,如声学科学、电子学、信号处理和信息论等,有助于更好地掌握噪声及其差异变化情况,从而改善信息传输效率。

白噪声序列模型形式

白噪声序列模型形式

白噪声序列模型形式1.引言1.1 概述白噪声是一种随机信号,其在不同频率下具有均匀分布的能量,即在整个频谱范围内的每个频率上都具有相同的能量。

与其他信号相比,白噪声在时间和频率上都是均匀分布的,不受前后相关性的影响。

白噪声在许多领域都有应用,特别是在信号处理、通信系统和物理实验中。

因为它具有唯一的特性,即与其他信号不相关,因此可以用作信号处理算法和系统的基准。

此外,由于白噪声被认为是一种理想的随机信号,它也常常用作模型中的一个基本组成部分。

本文将重点介绍白噪声序列的模型形式。

为了更好地理解白噪声序列的特点和应用,首先将给出白噪声序列的定义和特点。

然后,将详细讨论白噪声序列的模型形式,包括常见的数学表达和统计特性。

通过深入研究白噪声序列的模型形式,可以更好地理解其在实际应用中的作用和意义。

在接下来的章节中,我们将探索白噪声序列的模型形式,并探讨其在信号处理和通信系统中的应用。

我们将重点关注白噪声序列的生成和分析方法,以及如何利用它们来模拟真实世界中的随机过程。

通过深入研究白噪声序列的模型形式,我们可以更好地理解其在现实世界中的应用,并为相关领域的研究和开发提供有益的指导。

本文的最后一部分将总结我们对白噪声序列模型形式的探讨,并展望未来的研究方向。

在总结部分,我们将回顾本文的主要观点和结论,并对我们对白噪声序列模型形式的理解进行总结。

在展望部分,我们将提出一些可能的研究方向和未来的发展趋势,以进一步深入研究白噪声序列的模型形式和应用。

通过本文的研究,我们期望能够增加对白噪声序列模型形式的理解,并为相关领域的研究和开发提供有益的指导。

同时,我们也希望能够促进对白噪声序列在实际应用中的运用,推动相关领域的发展和进步。

1.2文章结构文章结构部分的内容如下:1.2 文章结构本文按照以下结构组织和阐述白噪声序列模型形式的相关内容:引言部分将通过概述问题的背景和意义引入白噪声序列的定义和特点,为读者提供一个整体的认识。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

4.3 理想白噪声、带限白噪声比较分析
1、实验原理
若一个具有零均值的平稳随机过程,其功率谱密度在某一个有限频率范围内均匀分布,而在此范围外为零,则称这个过程为带限白噪声。

带限白噪声分为低通型和带通型。

白噪声详细描述可参考马文平、李兵兵等编著.随机信号分析与应用.科学出版社,2006出版的书第2章节。

朱华、黄辉宁、李永庆、梅文博.随机信号分析.北京理工大学出版社,2000出版的书第4章节。

以及与随机信号分析相关的参考书籍。

2、实验任务与要求
⑴通过实验掌握白噪声的特性以及带限白噪声的意义,重点在于系统测试与分析。

算法选用matlab或c/c++语言之一编写和仿真程序。

系统框图如图2-8所示:
低通
带通
x(t)
y1(t)
y2(t)
图2-8带通滤波器系统框图
⑵输入信号x(t):x(t)分别为高斯白噪声信号和均匀白噪声信号,高斯白噪声如图2-9所示:
图2-9 高斯白噪声的时域、频域图
要求测试白噪声的均值、均方值、方差,自相关函数、概率密度、频谱及功率谱密度并绘图。

分析实验结果,搞清楚均值、均方值、方差,自相关函数、频谱及功率谱密度的物理意义。

例:均值除了表示信号的平均值,它还表示信号中有了什么成分。

相关函数当τ=0时为什么会有一个冲击,表示什么,它又等于什么。

信号的时域波形有哪些特征,频域又有哪些特征。

频谱及功率谱密度有什么差异,什么噪声是白噪声,这个噪声符合白噪声的定义吗等等。

⑶设计一个低通滤波器和一个带通滤波器。

要求白噪声分别通过低通滤波器和带通滤波器后的信号能够表现出带限白噪声的特点。

测试低通滤波器和一个带通滤波器的时频特性和频域特性以验证其正确性。

⑷分别计算高斯白噪声、均匀白噪声经低通滤波、带通滤波器后的均值、均方值、方差、概率密度、自相关函数、频谱及功率谱密度,并加以分析。

⑸所有结果均用图示法来表示。

⑹白噪声在什么情况下为带限白噪声?
⑺按要求写实验报告。

相关文档
最新文档