流体力学第五章5例题

合集下载

工程流体力学(水力学)闻德第五章_实际流体动力学基础课后答案教材

工程流体力学(水力学)闻德第五章_实际流体动力学基础课后答案教材

工程流体力学闻德课后习题答案 第五章 实际流体动力学基础5—1设在流场中的速度分布为u x =2ax ,u y =-2ay ,a 为实数,且a >0。

试求切应力τxy 、τyx 和附加压应力p ´x 、p ´y 以及压应力p x 、p y 。

解:0y x xy yx u u x y ττμ∂⎛⎫∂==+= ⎪∂∂⎝⎭24xxu p a x μμ∂'=-=-∂,24y y u p a yμμ∂'=-=∂, 4x x p p p p a μ'=+=-,4y y p p p p a μ'=+=+5-2 设例5-1中的下平板固定不动,上平板以速度v 沿x 轴方向作等速运动(如图所示),由于上平板运动而引起的这种流动,称柯埃梯(Couette )流动。

试求在这种流动情况下,两平板间的速度分布。

(请将d 0d px=时的这一流动与在第一章中讨论流体粘性时的流动相比较)解:将坐标系ox 轴移至下平板,则边界条件为 y =0,0X u u ==;y h =,u v =。

由例5-1中的(11)式可得2d (1)2d h y p y yu v h x h h μ=-- (1) 当d 0d p x =时,yu v h=,速度u为直线分布,这种特殊情况的流动称简单柯埃梯流动或简单剪切流动。

它只是由于平板运动,由于流体的粘滞性带动流体发生的流动。

当d 0d px≠时,即为一般的柯埃梯流动,它是由简单柯埃梯流动和泊萧叶流动叠加而成,速度分布为(1)u y y yp v h h h=-- (2) 式中2d ()2d h pp v xμ=- (3)当p >0时,沿着流动方向压强减小,速度在整个断面上的分布均为正值;当p <0时,沿流动方向压强增加,则可能在静止壁面附近产生倒流,这主要发生p <-1的情况.5-3 设明渠二维均匀(层流)流动,如图所示。

若忽略空气阻力,试用纳维—斯托克斯方程和连续性方程,证明过流断面上的速度分布为2sin (2)2x gu zh z r q m=-,单宽流量3sin 3gh q r q m=。

工程流体力学第五章自测题答案

工程流体力学第五章自测题答案

第5章 压力管路的水力计算
5-1.某水罐1液面高度位于地平面以上z 1=60m ,通过分支管把水引向高于地
平面z 2=30m 和z 3=15m 的水罐2和水罐3,假设l 1=l 2=l 3=2500m, d 1=d 2=d 3=0.5m, 各管的沿程阻力系数均为λ=0.04。

试求引入每一水罐的流量。

解:取1-1、2-2两液面列伯努利方程:
2121f f h h z z ++=
g
V d L h g
V
d L h f f 222
22222
2
1
1111
λλ==
所以,41.42221=+V V (1) 取1-1、3-3两液面列伯努利方程:
3131f f h h z z ++=
所以,94.22321=+V V (2)
又 ⎩⎨⎧==+=321
321d d d Q Q Q Ö 321V V V += (3)
得 ⎪⎩⎪
⎨⎧===s m V s m V s m V /39.0/28.1/67.13
21 Ö
⎩⎨⎧==s
m Q s
m Q /0765.0/251.03
332
5-2.
水从封闭水箱上部直径d 1=30mm 的孔口流至下部,然后经d 2=20mm 的圆柱行管嘴排向大气中,流动恒定后,水深h 1=2m ,h 2=3m ,水箱上的压力计读数为4.9MPa ,
求流量Q 和下水箱水面上的压强p 2,设为稳定流。

6.01=μ,82.02=μ。

解:经过孔口的流量Q 1
经过管嘴的流量Q 2
因为稳定流,所以Q 1=Q 2 整理得:Pa p 421034.4×=。

流体力学第五章 量纲分析和相似理论

流体力学第五章 量纲分析和相似理论

第五章 量纲分析与相似原理
5.2 量纲分析与П定理
2. П定理
提议用量纲分析的是瑞利(L.Reyleigh,1877),奠定理论基础的是美国物理
学家布金汉(E.Buckingham,1914):
Π定理
若某一物理过程包含 n 个物理量,即:
f(q1 , q 2,q 3, ……, q n )=0
其中有 m 个基本量(量纲独立,不能相互导出的物理 量),则该物理过程可由 n个物理量构成的 n-m 个无 量纲的关系表达式来描述。即:
5.1 量纲与物理方程的量纲齐次性
1. 物理量的量纲(因次):物理量的本质属性。
2. 物理量的单位:物理量的度量标准。
基本量纲和导出量纲:根据物理量之间的关系把无 任何联系且相互独立的量纲作为基本量纲,可由基本量 导出的量纲为导出量纲。
SI制中的基本量纲:
dim m = M , dim l = L , dim t = T ,dim θ=Θ
第五章 量纲分析与相似原理
5.1 量致性原则,也叫量纲齐次性原理(量纲和谐原理)
物理方程可以是单项式或多项式,甚至是微分方程等,同 一方程中各项的量纲必须相同。
用基本量纲的幂次式表示时,每个基本量纲的幂次应相等,
这就是物理方程的量纲一致性原则,也叫量纲齐次原则或量纲
1. 客观性 2. 不受运动规模的影响 3. 可以进行超越函数运算
整理课件
第五章 量纲分析与相似原理
5.1 量纲与物理方程的量纲齐次性
2. 量纲一的量(无量纲量)
基本量独立性判别条件:
设A、B、C为三个基本量,他们成立的条件是:指数行列式 不等于零。
diB m M 2L 2T 2 diA m M 1L 1T1 diC m M 3L 3T 3

流体力学第五章 管中流动-1

流体力学第五章 管中流动-1
解: (1)由表1-6(P28)查此时水的粘度为1.308×10-6
Re vd 1.0 0.1 76453 Rec 2300 6 1.308 10


管中流动为湍流。 (2) Rec vc d

vc
Rec
d
1.308 106 2300 0.03 0.1
2012年12月15日 20
5.2 圆管中的层流
本章所讨论的流体 1. 流体是不可压缩的; 2. 运动是定常的;
主要内容: • 速度分布 • 流量计算 • 切应力分布 • 沿程能量损失
2012年12月15日 21
过流截面上流速分布的两种方法
vd
我们知道当
较小,即速度和管子直径较小而粘度较大时出现层流
哈根-伯肃叶(Hagen-Poiseuille)定律, 它与精密实验的测定结果完全一致。
2012年12月15日 26
粘 度 的 测 定 方 法
利用哈根-伯肃叶(Hagen-Poiseuille)定律可以测定粘度,它是测 定粘度的依据。因为,根据公式可以导出:

pd 4
128qvl

pd 4t
4 A 4 Bh 2h 4cm S 2B vd 要使 Re H 2320 v 0.017 m / s dH

2012年12月15日 18
例题三:某段自来水管,d=100mm,v=1.0m/s,
水温10℃, (1)试判断管中水流流态? (2)若要保持层流,最大流速是多少?
(2)速度分布具有轴对称性,速度分布呈抛物线形。 (3)等径管路中,压强变化均匀。 (4)管中的质量力不影响流动性。
2012年12月15日 22
• 1.第一种方法 • 根据圆管中层流的流动特点,对N-S方程式

流体力学B5-new

流体力学B5-new

M0 L 0 T0 = ( M L –3) a ( L T–2 ) b L c ( L3 T –1 )
p ( ,V , d , , , l )
2.选择基本量:ρ、V、d 3.列П表达式求解П数 ① П1=ρa V bd cΔp M 0 L 0 T 0 = (M L – 3 ) a (L T – 1 )b L c (M L –1 T – 2 )
[例B5.2.2]
粗糙管中粘性流动的压降:量纲分析一般步骤
密度,重度 力,力矩
dim Q L3T 1
dim ML3
dim F MLT 2
dim L ML2T 2
压强,压力,弹性模量
粘度系数 其他量 角速度,角加速度 应变率
dim p dim dim K ML1T 2
dim ML1T 1
dim v L2T 1
解得 a1 = -1 , b1 = -2 , c1= -2
Π1 FD
V d
2
2
CD
0
(CD 称为阻力系数)
-3 a 2 -1 b2 c2
2 a2 V b2 d c2
M L T = (ML ) (LT ) L (ML -1T -1 )
0 0
B5
量纲分析与П定理
B5.2.2
量纲分析法
M:a2 1 0 L: 3a2 b2 c2 1 0 T : b 1 0 2
解得: a 2 = -1, b 2 = -1, c 2 = -1
2
Vd

1 Re
(Re为雷诺数)
第5步、用П数组成新的方程。 П1 = f (П2 )
CD FD

(完整word版)流体力学习题及答案-第五章

(完整word版)流体力学习题及答案-第五章

第五章 势流理论5-1流速为u 0=10m/s 沿正向的均匀流与位于原点的点涡叠加。

已知驻点位于(0,-5),试求: (1)点涡的强度;(2) (0,5)点的流速以及通过驻点的流线方程。

答:(1)求点涡的强度Γ:设点涡的强度为Γ,则均匀流的速度势和流函数分别为:x u 01=ϕ,y u 01=ψ;点涡的速度势和流函数为:xy arctg πϕ22Γ-=,r y x ln 2)ln(221222ππψΓ=+Γ=; 因此,流动的速度势和流函数为:θπθπϕϕϕ2cos 20021Γ-=Γ-=+=r u x y arctg x u , r y u y x y u ln 2sin )ln(202122021πθπψψψΓ+=+Γ+=+=;则速度分布为:2202y x yu y x u +⋅Γ+=∂∂=∂∂=πψϕ, 222yx x x y v +⋅Γ=∂∂-=∂∂=πψϕ; 由于)5,0(-为驻点,代入上式第一式中则得到:0)5(052220=-+-⋅Γ+πu , 整理得到:ππ100100==Γu 。

(2)求)5,0(点的速度:将π100=Γ代入到速度分布中,得到:222222050102100102y x y y x y y x y u u ++=+⋅+=+⋅Γ+=πππ,2222225021002y x x y x x y x x v +=+⋅=+⋅Γ=πππ; 将0=x 、5=y 代入上述速度分布函数,得到:201010505501022=+=+⨯+=u (m/s ),05005022=+⨯=v (m/s );(3)求通过)5,0(点的流线方程:由流函数的性质可知,流函数为常数时表示流线方程C =ψ,则流线方程为:C y x y u =+Γ+21220)ln(2π;将0=x 、5=y 代入,得到:5ln 5050)50ln(21005102122+=+⨯+⨯=ππC ;则过该点的流线方程为:5ln 5050)ln(2100102122+=++y x y ππ,整理得到:5ln 55)ln(52122+=++y x y5-2 平面势流由点源和点汇叠加而成,点源位于(-1,0),其流量为θ1=20m 3/s ,点汇位于(2,0)点,其流量为θ2=40m 3/s ,已知流体密度为ρ=1.8kg/m 3,流场中(0,0)点的压力为0,试求点(0,1)和(1,1)的流速和压力。

流体力学第五章 局部阻力与管路计算-4

流体力学第五章 局部阻力与管路计算-4

串联:
q v1 q v 2 v1 qv hf hf1 hf 2 l V1 2 l V2 2 d1 2 g d 2 2g qv 0.08 0.08 10.19 v2 2.55 2 3.14 2 3.14 2 2 d1 0.1 d2 0.2 4 4 4 4 250 10.19 2 250 2.55 2 h f 0.04 ( ) 546.3m 0.1 2 9.8 0.2 2 9.8
反之,将沿程损失折合成一个适当的局部损失,则令

l e d
沿程阻力的当量局部阻力系数
则一条管路上的总水头损失简化为:
管路的总阻力系数
管路主要是局部 损失的计算公式
l v2 v2 v2 h f ( ) ( e ) d 2g 2g 2g

例题1: 圆管突然扩大,流速由v1减至v2.若改为两次扩 大,中间流速取何值时,使管的局部阻力最小?

例题4; 已知:两水池水位恒定,已知管径d=10cm,长 l=20m,沿程阻力系数λ =0.042,局部阻力系 数为ζ 弯=0.8, ζ 阀=0.26,通过流量为 Q=65l/s,求水池水面高度差H
应用于机械设备上的油管,车间的水管。计算时考虑沿程和局部损失两种。 例 水泵管路如图:d=150mm, l=180m, 滤水网一个(ζ=6),全开静止阀一个, 90度弯头(r/R=0.5)三个, 高程为100m,流量为qv=225,水温为20度。求水泵扬 程和输出功率:单位重量液体通过泵所获得的能量叫扬程。泵的扬程包括吸程在 内,近似为泵出口和入口压力差。扬程用H表示,单位为米(m)。泵的压力用P 表示,单位为Mpa(兆帕),H=P/ρg 解: 沿程阻力系数为(λ=0.02559),滤水网一个(ζ=6),全开静止阀一个 (ζ=3.9),90度弯头(r/R=0.5)三个(ζ=0.294),查表得入口阻力(ζ=0.5)出口 (ζ=1)

流体力学课后习题答案第五章

流体力学课后习题答案第五章

第五章 量纲分析和相似原理5-1 假设自由落体的下落距离S 与落体的质量m,重力加速度g 及下落时间t 有关,试用瑞利法导出自由落体下落距离的关系式。

解: c b a t g m S ][][][][=c b a T LT M L )()()(2-=2202:1:0:===+-==b c c b T b L aM2Kgt S = 5-3 已知文丘里流量计喉管流速v 与流量计压强差Δp 、主管直径d 1、喉管直径d 2、以及流体的密度ρ和运动粘滞系数ν有关,试用π定理确定流速关系式。

解: 0),,,,,(21=∆νρd d p v f取ρ,,2d v 为基本量11121c b a d v p ρπ∆=,222212c b a d v d ρπ=,33323c b a d v ρνπ= 111][][][][:21c b a d v p ρπ=∆111)()()(3121c b a ML L LT T ML ----=1,0,22:31:1:11111111===-=--+=-=c b a a T c b a L c Mρπ21v p ∆= 212d d =π 333][][][][:23c b a d v ρνπ= 得 011333===c b a23vd νπ=0),,(2212=∆vd d d v p f νρ),(21212νρvd d d f v p =∆)(Re,122d d p v Φ=∆ρ )(Re,12d d pv Φ∆=ρ 5-4 球形固体颗粒在流体中的自由沉降速度f u 与颗粒的直径d 、密度s ρ以及流体的密度ρ、动力黏滞系数μ,重力加速度g 有关。

试用π定理证明自由沉降速度关系式,f s f u d u f ρρρμ⎡=⎢⎣。

解: 0),,,,,(=g d u f s f μρρ取ρ,,d u f 为基本量333232111321,,c b a f c b a f s c b a f d u d u d u gρμπρρπρπ===计算有121-=d u gf π ρρπs =2 ρμπd u f =3 ),(2ρμρρd u f u dg f s f =,f s f u d u f ρρρμ⎡=⎢⎣ 5-6 用水管模拟输油管道。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

5.01、实船的模型以的速度前进,受到的运动阻力为。

求实船的运动阻力,并求模型与实船克服运动阻力所需要的功率。

解:
由重力相似,故弗劳德数相等,即:
由于模型和实物均受到地球重力场的作用,重力加速g均相同,故:

则,实船的运动阻力为:
所需功率为:
5.02、贮水箱模型内盛满水,打开水门排完要,若模型是实物的,问排完实物内的贮水需多少时间。

解:
由重力相似,故:
由于模型和实物均受到地球重力场的作用,重力加速g均相同,故:

5.03、声纳传感器的阻力可由风洞实验结果进行预报。

实物是直径
的球壳,在深水中拖曳速度是。

若模型的直径
,求在空气中模型的速度。

若在风洞试验时模型的阻力为
,试估算实物的阻力。

解:
设风洞的截面积足够大(试验证明,当时即可满足),忽略空泡及压缩性影响,则实物与模型由粘性力相似准则,有:
即:
对于水:
对于空气:
因为模型与实物是满足动力相似的,所以由牛顿相似准则,有:
即:
5.04、试用量纲和谐原理(齐次性原则)建立直角三角形量水堰(如图)的流量计算关系式。

假定流量Q与H、g之间的函数关系为一单项指数式。

解:
设,各物理量的量纲均用基本量纲[L][T][M]来表示。

根据量纲和谐原理:
即:
代入得:
式中:
5.05、有一长,直径的泄洪隧洞,洞中水流属紊流粗糙区,现需进行模型试验。

要求:
(1)说明按何种相似准则设计模型,并写出其相似准则表达式;
(2)按相似准则导出流速、流量、力比尺的表达式。

解:
(1)应按阻力相似准则设计模型。

因为水流在紊流粗糙区,只要模型与原型的相对粗糙度相等,就可采用佛汝德数相似准则设计阻力相似模型。

其表达式为:
(2)
①流速比尺:
②流量比尺:
③力的比尺:
若模型和原型液体一样,,则
5.06、溢流堰模型(见图)长度比尺。

当在模型上测得模型流量,堰前水深,水流推力,求原型溢流堰通过的流量,堰前水深,和实际水流推力。

解:
溢流问题主要受重力作用,故应受重力相似准则控制,即:
堰前水深是几何尺寸,故可直接由几何比尺求出。

又因为力的比尺可写为:

则:
5.07、汽车高,最大行速为,拟在风洞中测定其阻力。

风洞的最大风速为,问模型的最小高度为多少?若模型中测得阻力为,试求原型汽车所受的阻力。

解:
此题需要把握主要两个方面,一是确定哪个是决定性相似准则;二是分清哪些量是模型上的量,哪些量是原型上的量。

对于分析气体阻力问题,可按雷诺相似准则计算。

雷诺准则为:
又因为阻力的比尺可写成:
5-08、流线型潜没物体在不可压缩流体运动中所受阻力与物体速度,线性尺寸,流体密度,动力粘性系数有关,试推导阻力的表达式。

解:
本题用雷利法和π定律两种方法分别推导。

①采用雷利量纲分析法,设:
式中,k为实验常数;
a、b、c、d为待定指数;
由量纲齐次性原理:
可解得:
代入原式得:
所以:
或中,为雷诺数。

②用π定律推际此题,先设:
以[v,l,ρ]三个独立变量为基本量,即m=3,变量数n=5,则上述5个变量之间的关系式可由两个无量纲π数组成的方程所替代,即:
其中:
根据量纲的齐次性原理,可解出待定指数;
将方程写成量纲形式,有:
即:
解得:
代入得:同理解得:
即:
解得:
代入得:即:
则得到期同样的结果。

5.9、固体颗粒在液体中等速沉降速度与固体颗粒的直径d、密度
及液体密度、动力粘性系数、重力加速度g有关。

试用π定律建立沉降速度的关系式。

解:
设:
选择[ρ,d,g]为基本量,m=3,变量数n=6,则可组成三个π项,以代替上述6个变量之间的关系式,其中:
将方程写成量纲形式:
即:
解得:
同理有:解得:
同理有:解得:
则沉速公式的基本形式为:
又因与同量纲,又写成:
或:。

相关文档
最新文档