最新六年级奥数比例问题
六年级奥数题比和比1

六年级奥数题比和比1比和比例(一)11、小明和小方各走一段路程,小明走的路程比小方多,小方用的时间比小明 51多。
小明和小方的速度之比是多少? 82、东街小学六年级有学生46人,分成三个课外科技小组。
第一组与第二组人数比是2:3,第一组与第三组的人数比是3:4。
三个组各有多少人?3、一列火车3小时行驶150千米。
从A地到B地有240千米,需要行几小时?如果速度加快20%,要行多少小时?4、有一自助餐厅,规定每次每人用餐费是:先生交30元,女士交20元,儿童交10元。
某一天前来用餐的先生与女士人数之比是2:9,女士与儿童的人数之比是3:7,共收到所交的用餐费9450元。
求这一天用餐的先生、女士和儿童的人数。
125、圆A和圆B一局部重叠,重叠局部的面积是圆A的,也是圆B的,求A、B 515的面积比。
6、某高速公路收费站对于过往车辆收费标准是:大客车30元,小客车15元,小轿车10元。
某日通过该收费站的大客车和小客车数量之比是5:6,小客车与小轿车之比是4:11,收取小轿车的通行费比大客车多210元。
求这天三种车辆通过的数量。
比和比例〔二〕111、小军行走的路程比小红多,而小红行走所用的时间却比小军多,求小军 410和小红的速度比。
2、甲、乙两个正方体棱长的比是1:2,求他们的外表积的比和体积的比。
3、白玉兰学校有运发动108人,分成甲、乙、丙三个队进行训练,甲队与乙队人数之比为2:3,乙队与丙队的人数之比为3:4,求各队的人数。
14、三个运输队,A队有载重3吨的汽车8辆,B队有载重4吨的汽车5辆,C 2队有载重5吨的汽车4辆。
把运输612吨货物的任务按他们的运输能力分配给三个队,各应分配多少吨?5、甲、乙、丙三人共同种树,他们种树棵数的比是3:4:5,丙比甲多种6棵?问三人各种树多少棵?6、海水中水与盐的比是183:17。
现在要使它改变成水与盐之比为19:1,在400千克海水中应掺入多少千克清水?7、一根木材,据成四段,付锯板费8.4元,如果锯成5段,应付锯板费多少元?8、一次爬山活动,路程为18千米,分为上坡、平路和下坡三段,各段路长之比是2:1:3,而走各段路程所用的时间之比为5:4:6。
小升初典型奥数:比例问题(讲义)--2024-2025六年级数学含答案

小升初典型奥数:比例问题(讲义)--2024-2025六年级数学比例问题【知识精讲+典型例题+高频真题+答案解析】编者的话:同学们,恭喜你已经开启了奥数思维拓展的求知之旅,相信你已经正确规划了自己的学习任务,本套资料为小升初思维拓展、分班考、择校考而设计,针对小升初的高频知识点进行全面精讲,易错点逐个分解,强化练习高频易错真题,答案解析非常通俗易懂,可助你轻松掌握、理解、运用该知识点解决问题!目录导航资料说明第一部分:知识精讲:把握知识要点,掌握方法技巧,理解数学本质,提升数学思维。
第二部分:典型例题:选题典型、高频易错、考试母题,具有理解一题,掌握一类的优势。
第三部分:高频真题:精选近两年统考真题,助您学习有方向,做好题,达到事半功倍的效果。
第四部分:答案解析:重点、难点题精细化解析,犹如名师讲解,可以轻松理解。
第一部分知识精讲知识清单方法技巧b.再求出各部分量占总量的几分之几;c.求出各部分的数量.2.按比例分配问题常用解题方法的应用:(1)已知一个数量的各部分的比和其中某一部分的量,求另外几个部分量;(2)已知两个量或几个量的比和其中两个量的差,求总量.二.正、反比例1.正比例的意义:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值一定,这两种量就叫做成正比例的量,它们的关系叫做正比例关系.如果用字母x和y表示这两种相关联的量,用k表示它们的比值一定,正比例关系可以用式子表示为:y=kx.2.反比例的意义:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系叫做反比例关系.如果用字母x和y表示这两种相关联的量,用k表示它们的乘积一定,反比例的关系可以表示为:xy=k.三.按比例分配1.按比例分配定义:在工农业生产和日常生活中,常常需要把一个数量按照一定的比来进行分配.这种分配方法通常叫做按比例分配.2.解题方法:(1)求总份数(2)想各部分占总数量的几分之几(3)用分数乘法求出各部分是多少.四.按比例分配应用题把一个数按一定的比(或连比)分成若干部分,叫做按比例分配.解答这类题的方法是:把一个总数A分成几部分,使顺次与几个已知数的连比成正比例关系,只要求出总份数,然后,把A分别乘以各部分量所占总量的几分之几,或者求出总份数后,再求平均每份是多少,然后,按照各个量所占的份数,求出几份是多少.第二部分典型例题例题1:笑笑家6月份水费和电费的比是4:13,这个月妈妈交了48元水费,则她们家这个月缴纳的电费是多少元?【答案】见试题解答内容【分析】这个月妈妈交了48元水费,相当于4份,用48除以4求出一份的钱数,再乘13即可.【解答】解:48÷4×13=12×13=156(元)答:她们家这个月缴纳的电费是156元.【点评】本题考查了按比例分配应用题,解答本题关键是求出每份的钱数.例题2:柱兴村、雷家村和杨家岭村计划合修一条公路,三个村所需修公路长度的比是2:5:7,按照所需修长度的比派遣劳动力。
小学六年级奥数九大问题之比例问题

六年级奥数“九大问题“”四比例问题(二)对应训练1.客货车同时从甲站开往乙站,客车6小时到站,货车速度比客车速度快15,问:货车到站需要多少时间?2.师徒两人各加工480个零件,完成时所用的时间比是2:3,已知师傅比徒弟每小时多加工20个,师傅加工这批零件需要多少小时?3.客车与货车同时从AB 两地相对开出,客车每小时行60千米,货车每小时行全程的115,相遇时客车所行的路程是货车的54,AB 两地的距离是多少千米?4.甲乙两人同时加工一批零件,已知甲乙工作效率的比是4:5,完成任务时,乙比甲多加工了120个零件。
这批零件共有多少?5.客车和货车同时从甲乙两地相向而行,相遇时客货两车所行的路程比是6:5,相遇后,货车比相遇前每小时多走22千米,客车仍按原速前进,结果两车同时到达对方的出发站,已知客车一共行了16小时,甲乙两地相距多少千米?变式训练6.一批零件,甲乙两人单独完成,所需时间比是3:5,现两人合作,完成任务时甲比乙多加工30个,这批零件共有多少个?7.甲乙两车同时从AB 两城相对开出,经过8小时相遇,相遇后甲车继续开到B 城还要4小时,已知甲车每小时比乙车快35千米,AB 两地相距多远?8.货车速度与客车速度的比是3:4,两车同时从甲乙两站相对行驶,在离中点6千米处相遇。
甲乙两地相距多少千米?9.甲乙合作一批零件6小时完成,已知甲乙工作的效率比是7:6。
乙单独做需要多少小时完成?10.师徒二人共加工零件168个,师傅加工一个零件用5分钟,徒弟加工一个零件用9分钟,完成任务时,两人各加工零件多少个?拔高训练11.甲乙丙三人共植树697棵,已知甲植树棵树的12 等于乙植树棵树的25 ,甲植树棵树的13等于丙植树棵树的27,问:甲乙丙三人各植树多少棵?12.小军行走的路程比小红多114 ,而小红行走的时间比小军多116,求小军与小红的速度比。
奥数按比例分配(课件)六年级下册数学人教版

3.用总数量乘部分量占总数量的几分之几得到各个部分的数量。
【小结与提示】要求每个书店分多少本,必须知道与之对应的总数量。
实践与应用
化“整”为“零”,注意比例。
【例2】 某校六年级三个班的人数如表:
班级
六(1)班 六(2)班 六(3)班
人数
45
【小结与提示】行Biblioteka 全程所用的时间可以通过上坡所用时间以及行各段路所用时间之比求出。
实践与应用
【练习5】 P88 某实验小学六年级学生分三组参加植树活动。第一组和第二组的人数比为
5:4,第二组和第三组的人数比为3:2。已知第一组的人数比第二、第三组的 人数和少15人。六年级参加植树活动的共有多少人?
解题步骤: 1.先求出按比例分配的总数量。 2.再找出分配的比,并求各个部分占总数量的几分之几。 3.用总数量乘部分量占总数量的几分之几得到各个部分的数量。
【例题1】 甲数是乙数的2/3,乙数是丙数的4/5,甲、乙、丙三数的比是( ): ( ):( )。
【思路导航】 甲、乙两数的比 2:3 乙、丙两数的比 4:5
【练习3】 P86 某农场把61600平方米的耕地规划为粮出和田以及其他作物,粮田
和棉田之间的面积比是7:2,棉田与其他作物面积的比是6:1,每种作物 的面积各是多少?
【例4】 甲、乙两个玩具厂一个月内生产玩具的数量比是5:4,两厂玩具的单价的比为7:8, 已知两个厂这个月总产值为134万元,两厂的产值各是多少万元? 【分析与解答】 先求出两厂的产值比,再根据“产值=单价×数量”,求出甲、乙两厂的产值比。 甲厂产值:乙厂产值=(5×7):(4×8)=35:32
54
48
小学六年级奥数比和比例问题、发车问题练习题

1.小学六年级奥数比和比例问题练习题篇一(1)用同样的砖铺地,铺36平方米要用1236块,铺90平方米要用多少块砖?这道题里的O是一定的。
A、总面积B、每块砖的面积C、砖的。
总块数(2)下面两种量成正比例的是OoA、分数值一定,分数的分子和分母B、利息一定,利率和本金C、长方体的体积一定,底面积和高(3)在一定的时间里,做一个零件所用的时间与所做零件的个数OoA、成正比例B、成反比例C、不成比例(4)平行四边形的底一定,高和面积OoA、成正比例B、成反比例C、不成比例(5)王强看一本故事书,每天看的页数和所用的天数OoA、成正比例B、成反比例C、不成比例一、选择正确答案的序号填在括号内。
1.下面第()组的两个比不能组成比例。
①8:7和14:16②0.6:0.2和3:1③19:110和10:92、在钟面上,分针和时针旋转速度的比是()。
①60:1②360:1③12:13、因为3a=4b,所以()。
①a:b=3:4②a:4=3:b③b:3=a:4④3:a=4:b二、应用题:1、合唱组男女生人数的比是5:7,其中有女生25人,这个合唱组男生多少人?1、一辆客车和一辆小汽车的速度比是1:2,如果小汽车的速度是120千米,那么客车的速度是多少千米?2、花园小区1号楼的实际高度是45米,它的高度与模型高度的比是500:1。
模型的高度是多少厘米?3、用某洗洁精洗水果以1:1000稀释,现在有3000毫升的水,要加入多少毫升的洗洁精?3.小学六年级奥数发车问题练习题篇三1、小红在环形公路上行走,每隔6分钟就可以看见一辆公共汽车迎面开来,每隔9分钟就有一辆公共汽车从背后超过她。
如果小红步行的速度和公共汽车的速度各自都保持一定,而汽车站每隔相等的时间向相反的方向各发一辆公共汽车,那么汽车站发车的间隔时间是多少?2、小明从东城到西城去,一共用了24分钟。
两城之间同时并且每隔相等的时间对发一辆公共汽车。
他出发时恰好有一辆公共汽车从东城发出,之后他每隔4分钟看见一辆公共汽车迎面开来,每隔6分钟有一辆公共汽车从背后超过。
六年级奥数题比和比例【三篇】

【导语】天⾼鸟飞,海阔鱼跃,学习这舞台,秀出你独特的精彩⽤好分秒时间,积累点滴知识,解决疑难问题,学会举⼀反三。
以下是为⼤家整理的《六年级奥数题⽐和⽐例【三篇】》供您查阅。
【第⼀篇】
习题:
政府为建设新农村修了新路,这条路全长有60千⽶,分成上坡、平路、下坡三段,各段路程长的⽐例是1:2:3,⼩刚回家⾛各段路程所⽤时间之⽐是4:5:6,已知他上坡的速度是每⼩时3千⽶,问⼩刚⾛完全程⽤了多少时间?
解析:
分析:要求⼩刚⾛完全程⽤了多少时间,必须先求出他⾛上坡路⽤了多少时间,必须知道⾛上坡路的速度和上坡路的路程,已知全程60千⽶,⼜知道上坡、平破、下坡三段路程⽐是1:2:3,就可以求出上坡路的路程。
【第⼆篇】
习题:
⽔果店⾥西⽠个数与⽩兰⽠个数的⽐为7:5。
如果每天卖⽩兰⽠40个,西⽠50个,若⼲天后,⽩兰⽠正好卖完,西⽠还剩36个。
⽔果店⾥原有西⽠多少个?
解析:
设各运来7X和5X个
(7X-36)/50=5X/40
4(7X-36)=5*5X
28X-156=25X
3X=156
X=52
西⽠:52*7=364个
【第三篇】
习题:
有两袋⼤⽶共重440千克,甲袋⽶吃了三分之⼀,⼄袋⽶吃了⼆分之⼀,这时甲袋⽶与⼄袋⽶重量之⽐为8:5,甲袋⽶与⼄袋⽶各重多少千克?
解析:
设甲袋⽶重X千克,⼄袋⽶重Y千克,就可以列出X+Y=440,[(2/3)X]/[(1/2)Y]=8/5,可以解出X=240千克,Y=200千克。
2024年六年级奥数题

2024年六年级奥数题一、工程问题。
1. 一项工程,甲单独做需要10天完成,乙单独做需要15天完成。
两人合作4天后,剩下的工程由乙单独做,还需要几天完成?解析:把这项工程的工作量看作单位“1”。
甲的工作效率为1÷10=(1)/(10),乙的工作效率为1÷15=(1)/(15)。
两人合作4天完成的工作量为((1)/(10)+(1)/(15))×4先计算括号内(1)/(10)+(1)/(15)=(3 + 2)/(30)=(1)/(6)。
那么((1)/(10)+(1)/(15))×4=(1)/(6)×4=(2)/(3)。
剩下的工作量为1-(2)/(3)=(1)/(3)。
乙单独做剩下工程需要的时间为(1)/(3)÷(1)/(15)=(1)/(3)×15 = 5天。
2. 有一个水池,装有甲、乙、丙三根水管,单开甲管6小时可将空池注满,单开乙管8小时可将空池注满,单开丙管12小时可将满池水放完。
如果三管齐开,多少小时可将空池注满?解析:把水池的容积看作单位“1”。
甲管的注水效率为1÷6=(1)/(6),乙管的注水效率为1÷8=(1)/(8),丙管的放水效率为1÷12=(1)/(12)。
三管齐开的注水效率为(1)/(6)+(1)/(8)-(1)/(12)先通分,(4 + 3-2)/(24)=(5)/(24)。
注满空池需要的时间为1÷(5)/(24)=1×(24)/(5)=4.8小时。
二、分数应用题。
3. 某班有学生50人,男生占全班人数的(3)/(5),后来又转来几名男生,这时男生占全班人数的(5)/(7),转来几名男生?解析:原来男生人数为50×(3)/(5)=30人,女生人数为50 30=20人。
转来男生后,女生人数不变,此时女生占全班人数的1-(5)/(7)=(2)/(7)。
完整版六年级奥数题比和比例一

比例问题填空题1.4:( )= 20=()10=( )%2. 在3:5里,如果前项加上6,要使比值不变,后项应加 _.3.12:1的图纸上,精密零件的长度为6厘米,它的实际长度是____ 毫米.4. 某生产队有一块正方形菜地,边长120米,在总面积中种植西红柿、南瓜、茄子面积的比是25:1:丄,三种蔬菜各种了亩.25. 买甲、乙两种铅笔共210支,甲种铅笔每支价值3分,乙种铅笔每支价值4分,两种铅笔用去的钱相同,甲种铅笔买了____ 支.6. 车库中停放若干辆双轮摩托车和四轮小卧车,车的辆数与车的轮子数的比是2:5.问:摩托车的辆数与小卧车的辆数的比是 _—7. 自然数A、B满足- 丄 -,且A:B=7:13.那么,A+B=.A B 1828. 光明小学有三个年级,一年级学生占全校学生人数的25%二年级与三年级学生人数的比是3:4,已知一年级比三年级学生少40人,一年级有学生______________ 人.9. 水泥、石子、黄砂各有5吨,用水泥、石子、黄砂按5:3:2拌制某种混凝土,若用完石子,水泥缺____ 吨.黄砂多 _____ 吨.10. 甲、乙两人步行的速度比是13:11.如果甲、乙分别由A、B两地同时出发相向而行,0.5小时后相遇,如果它们同向而行,那么甲追上乙需要_____ 小时.11. 已知甲、乙两数的比为5:3,并且它们最大公约数与最小公倍数的和是1040,那么甲数是多少,乙数是多少.12. 有一块铜锌合金,其中铜与锌的比是2:3.现在加入锌6克,共得新合金36克, 求在新合金内铜与锌的比.13. 一段路程分成上坡、平路、下坡三段,各段路程长之比依次是1:2:3.某人走各段路所用时间之比依次是4:5:6.已知他上坡时速度为每小时3千米.路程全长50 千米•问:此人走完全程用了多少时间?14. 一个圆柱体的容器中,放有一个长方形铁块.现在打开一个水龙头往容器中注水,3分钟时,水恰好没过长方体的顶面,又过了18分钟,水灌满容器.已知容器的高度是50厘米.长方体的高度是20厘米,那么长方体底面积:容器底面面积等于多少?练习题1有一个长方体,长与宽的比是2:1,宽与高的比是3:2,已知这个长方体的全部棱长之和是220cm求这个长方体的体积。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
六年级奥数比例问题
1.甲乙两人在河边钓鱼,甲钓了三条,乙钓了两条,正准备吃,六年级奥数比例问题吃,于是三人将五条鱼平分了,为了表示感谢,过路人留下10元,甲、乙怎么分?
答案:甲收8元,乙收2元.
2.六年级奥数比例问题了10分之1,但仍保持原售价,因此,每份利润下降了5分之2,那么,今年这种商品的成本占售价的几分之几?
答案22/25
3.甲乙两车分别从A.B两地出发,相向而行,出发时,甲.乙的速度比是5:4,相遇后,甲的速度减少20%,乙的速度增加20%,这样,当甲到达B地时,乙离A地还有10千米,那么A.B两地相距多少千米?
4.一个圆柱的底面周长减少25%,要使体积增加1/3,现在的高和原来的高度比是多少?
5.某市场运来香蕉、苹果、橘子和梨四种水果其中橘子、苹果共30吨香蕉、橘子和梨共45吨.橘子正好占总数的13分之2.一共运来水果多少吨?
6.甲、乙两个建筑队原有水泥重量的比是4:3,当甲队给乙队54吨水泥后,甲、乙两队水泥的重量比变为3:4,原来甲队有水泥多少吨?
7. 张明比王红的存款少40元.已知张明存款的5分之2和王红存款数的35%相等,问两人各有
存款多少元?
8. 王欣读一本书,已读和未读的页数之比是1:5,如果再读30页,则已读与未读的页数比是3:5,这本书共有多少页?
9. 有一座闹钟,每小时慢3分钟,早上8点整对准了标准时间,当闹钟是中午12点时,标准时间是多少?
10. 甲、乙两个工地上原来水泥袋数的比是2:1,甲地用去125袋后,甲、乙两工地水泥袋数的比为3:4,甲、乙两工地原有水泥多少袋?
1 / 1。