图与网络分析

合集下载

运筹学8图与网络分析

运筹学8图与网络分析

e3 。在剩下的图中,再取一个圈
定理8.7充分性的证明,提供了一个 寻找连通图支撑树的方法叫做“破圈法”。 就是从图中任取一个圈,去掉一条边。再 对剩下的图重复以上步骤,直到不含圈时 为止,这样就得到一个支撑树。
例8.4 用破圈法求出图8-11的一个支
撑树。
v2
e1
e7 e4
v1
e3 v4
e8
v5
e2
e5
v3
e6
图8-11
取一个圈(v1,v2,v3,v1),在一个圈中去掉边
3
4
初等链:链中所含的 点均不相同, 也称通 路;
5
6
为闭链或回路或圈;
简单圈:如果在一个圈中所含的边均不相同 初等圈:除起点和终点外链中所含的点 均
不相同的圈;
连通图:图中任意两点之间均
至少有一条通路,否则 v1
v4 v5 v8
称为不连通图。
v2
初等链: (v1 , v2 , v3 , v6 ,
图的连通性:
简单链:链中所含的 边均不相同;
圈:若 v0 ≠ vn 则称该链为开链,否 则称
1
2
链:由两两相邻的点及其相 关联的边构成的点边序列。 如:v0 ,e1 ,v1 ,e2 ,v2,e3 ,v3 ,…,vn1 , en , vn ; v0 ,vn 分别为链的起点和终点 。记 作( v0 ,v1 , v2, ,v3 , …, vn-1 , vn )
v5
v7
(v5
,v1v6),(v6
(v4 ,v6),(v5 ,v7)}
,v3),(v5
v6
,v4),
v2
v4
图8.5
下面介绍一些常用的名词:

第八章 图与网络分析

第八章  图与网络分析
V4
16
赋权图 网络
赋权图:设图G=(V,E),对G的每一条边(vi,vj)相应赋 予数量指标 wij , wij 称为边 (vi,vj) 的权 , 赋予权的图 G 称 为赋权图。赋权图中的权可以代表距离、费用、通 过能力(容量)等等。 网络:若G=(V,E)为一赋权图,并在其顶点集合V中 指定了起点和终点,其余的点为中间点,这样的赋 权图称为网络图(简称网络)。
v2 9 v1 20
10
v3
15 7 v4 14 6 19 25
v5
v6
子图,支撑子图
图G1={V1、E1}和图G2={V2,E2},如果有
V1 V2和E1 E2 称G1是G2的一个子图。
若有 V1=V2,E1 E2 ,则称G1是G2的一个 支撑子图。 v2
v1 e4 e3 v3 e6 e8 e6 e2
第8章 图与网络优化
8.1 8.2 8.3 8.4 8.5 8.6 图的基本概念 树 最短路问题 网络最大流 最小费用最大流问题 中国邮递员问题
图论起源——哥尼斯堡七桥问题
A C B
问题:一个散步者能否从任一 块陆地出发,走过七座桥,且 每座桥只走过一次,最后回到 出发点?
A
D
C
B 欧拉证明了上述图形一笔画 是不可能的,因为图中每一个 点都只和奇数条线相关联. 他的结论是:图形能一笔画 的充要条件是图形的奇顶点 (连接奇数条线的顶点)的个 数为零
图的基本性质:
定理1 图G=(V,E),顶点次数之和等于所有边数的2 倍。
证明:由于每条边必与两个顶点关联,在计算点的次时,每 条边均被计算了两次,所以顶点次数的总和等于边数的2倍。
定理2 任何图中,次为奇数的顶点必为偶数个。

高等数学中的图论与网络分析

高等数学中的图论与网络分析

高等数学作为大学数学教育的核心课程之一,包含了许多重要的数学概念和方法。

其中,图论与网络分析是高等数学中的一个重要分支,涉及了图的定义、图的性质以及与网络相关的问题的解决方法。

首先,让我们来了解一下什么是图。

在数学中,图是由若干个节点和连接这些节点的边组成的结构。

节点可以表示各种实体,如人、城市等,而边则表示节点之间的关系。

图可以分为有向图和无向图两种类型。

在有向图中,边具有方向,表示节点之间的单向关系;而在无向图中,边没有方向,表示节点之间的双向关系。

我们可以通过绘制节点之间的边来可视化地表示图的结构。

在高等数学中,我们主要研究的是无向图。

通过图的分析,我们可以更好地理解各种实体之间的相互关系。

例如,在社交网络中,可以用图来表示人与人之间的关系;在物流领域中,可以用图来表示商品与配送中心之间的联系。

通过对图的分析,可以帮助我们揭示隐藏在复杂关系中的规律,并为解决实际问题提供指导。

而图论是研究图的性质和图中问题的解决方法的一门学科。

通过图的性质分析,可以推断出图中节点之间的关系,比如节点的连通性、路径的存在性等。

图论中的常用概念包括度、连通图、路径等。

节点的度表示与该节点相连的边的数量,连通图指的是任意两个节点之间都存在路径的图,而路径则是指从一个节点到另一个节点所经过的边的序列。

借助这些概念,我们可以计算图的直径(即最长路径的长度)、聚类系数(表示节点之间的紧密联系程度)等指标,从而更好地了解图的结构。

在网络分析中,我们关注的是如何在真实世界中获得图的数据并对其进行分析。

近年来,随着互联网的发展,大量的网络数据被生成和存储。

通过网络分析,可以从这些数据中挖掘出有价值的信息。

例如,在社交网络中,可以通过分析用户之间的连接模式,了解人们的兴趣爱好和行为习惯;在生物学中,可以分析蛋白质相互作用网络,推断出未知蛋白质的功能等。

网络分析的方法包括社区发现、中心性分析、网络模型等。

这些方法可以帮助我们揭示网络结构中的规律和特征,并为决策者提供支持。

运筹学第八章--图与网络分析-胡运权

运筹学第八章--图与网络分析-胡运权
运筹学
赵明霞山西大学经济与管理学院
2
第八章 图与网络分析
图与网络的基本概念 树 最短路问题 最大流问题 最小费用最大流问题
3
柯尼斯堡七桥问题
欧拉回路:经过每边且仅一次 厄尼斯堡七桥问题、邮路问题哈密尔顿回路:经过每点且仅一次 货郎担问题、快递送货问题
例8-9
28
基本步骤标号T(j)→P(j)

29
2017/10/26
30
最长路问题例8-10(7-9)设某台新设备的年效益及年均维修费、更新净费用如表。试确定今后5年内的更新策略,使总收益最大。
役龄项目
0
1
2
3
4
5
效益vk(t)
5
4.5
4
3.75
3
2.5
14
15
柯尼斯堡七桥问题
欧拉回路:经过每边且仅一次 厄尼斯堡七桥问题、邮路问题 充要条件:无向图中无奇点,有向图每个顶点出次等于入次
16
第二节 树
树是图论中的重要概念,所谓树就是一个无圈的连通图。
图8-4中,(a)就是一个树,而(b)因为图中有圈所以就不是树, (c)因为不连通所以也不是树。
7
G=(V,E)关联边(m):ei端(顶)点(n):vi, vj点相邻(同一条边): v1, v3边相邻(同一个端点):e2, e3环:e1多重边: e4, e5
8
简单图:无环无多重边
多重图:多重边
9
完全图:每一对顶点间都有边(弧)相连的简单图
10
次(d):结点的关联边数目d(v3)=4,偶点d(v2)=3,奇点d(v1)=4d(v4)=1,悬挂点e6, 悬挂边d(v5)=0,孤立点
(一)线性(整数)规划法

第六章图与网络分析

第六章图与网络分析

e3
v3
若链中所有的顶点也互不相同,这样的链称为路.
e4
v4
起点和终点重合的链称为圈. 起点和终点重合的路称为回路.
若图中的每一对顶点之间至少存在一条链, 称这 样的图为连通图, 否则称该图是不连通的. 第10页
完全图,偶图
任意两点之间均有边相连的简单图, 称为完全图. K n
K2
K3
K4
2 | E | Cn
第20页
6.2树图和图的最小部分树问题 Minimal tree problem 6.2.1树的概念
若图中的每一对顶点之间至少存在一条链, 称这样的图 为连通图. 树图(简称树Tree): 无圈的连通的图,记作T(V, E)
组织机构、家谱、学科分支、因特网络、通讯网络及高压线路 网络等都能表达成一个树图 。
第13页
有向图 G : (V,E),记为 G=(V,E)
G 的点集合: V {v1 , v2 ,...,vn } G 的弧集合: E {eij } 且 eij 是一个有序二元组 (vi , v j ) ,记
为 eij (vi , v j ) 。下图就是一个有向图,简记 G 。 若 eij (vi , v j ) ,则称 eij 从 v i 连向 v j ,点 v i 称为 eij 的尾,v j 称为 eij 的头。 v i 称为 v j 的前继, v j 称为 v i 的后继。 基本图:去掉有向图的每条弧上的方向所得到的无向图。
有向图 G (V , E ) 的关联矩阵:一个 | V | | E | 阶矩阵
B (bik ) ,
1, 当 弧ek以 点i为 尾 其中 bik 1, 当 弧ek以 点i为 头 0, 否 则

图与网络分析

图与网络分析

end;
例 1 中 1 到 7 点的最短路是 1-2-5-7
查伴随矩阵 E 的第一行
1234567
10020255 19
hw
小结
• 最短路有广泛的应用 (P176案例) • 最短路的多种形式:无向图,有向图无循环圈,有向
图,混合图,无负边权,有负边权,有负回路,k-最 短路等 • 当存在负权值边时,Floyd算法比Dijkstra算法效率高, 且程序极简单。但Dijkstra算法灵活 • 若图是前向的,则Dijkstra算法也可以求两点间最长路 • 一般情况下,两点间最长路是 NP-complete,但最短 路是 P算法 • 两点间k-最短路:分为边不相交的和边相交的 求边不相交的k-最短路非常容易:先求最短路,将该 最短路中的边从网路删去,再用Dijkstra算法可求次最 短路,以此类推
hw
6.1.4 链,圈,路径,回路,连通图
• 走过图中所有边且每条边仅走一次的闭行走称为欧拉 回路
定理 2:偶图一定存在欧拉回路(一笔画定理) 6.1.4 连通图,子图,成分
• 设有两个图 G1(V1, E1), G2(V2, E2), 若V2 V1, E2 E1, 则 G2 是 G1 的子图
• 无向图中,若任意两点间至少存在一条路径,则称为 连通图(connected graph),否则为非连通图( disconnected graph);非连通图中的每个连通子图称为成分 (component)
线表示实体间的关联
A
A D
C
C
D
B
B
2
hw
6.1 图与网络的基本概念
6.1.1图与网络 • 节点 (Vertex)
– 物理实体、事物、概念 – 一般用 vi 表示

运筹学6(图与网络分析)

运筹学6(图与网络分析)

定义7:子图、生成子图(支撑子图)
图G1={V1、E1}和图G2={V2,E2}如果 V1 V2和E1 E2 称G1是G2的一个子图。
若有 V1=V2,E1 E2 则称 G1是G2的一 个支撑子图(部分图)。
图8-2(a)是图 6-1的一个子图,图8-2 (b)是图 8-1的支撑子图,注意支撑子图 也是子图,子图不一定是支撑子图。 e1
v2 ▲如果链中所有的顶点v0,v1,…,vk也不相
e1 e2 e4 v1 e3
v3 e5
同,这样的链称初等链(或路)。
e6
▲如果链中各边e1,e2…,ek互不相同称为简单链。
e7
e8
▲当v0与vk重合时称为回路(或圈),如果边不 v4
v5
重复称为简单回路,如果边不重复点也不重复
则称为初等回路。
图8-1中, μ1={v5,e8,v3,e3,v1,e2,v2,e4,v3,e7,v5}是一条链,μ1中因顶 点v3重复出现,不能称作路。
e1
e2 e4 v1 e3
v2
v3
e5
e6
e7
e8
v4
v5
定理1 任何图中,顶点次数的总和等于边数的2倍。
v1
v3
v2
定理2 任何图中,次为奇数的顶点必为偶数个。
e1
e2 e4 v1 e3
v2
v3
e5
e6
e7
e8
v4
v5
定义4 有向图: 如果图的每条边都有一个方向则称为有向图
定义5 混合图: 如何图G中部分边有方向则称为混合图 ② ⑤ ④
定理4 有向连通图G是欧拉图,当且仅当G中每个顶点的出 次等于入次。
② 15
9 10

图与网络分析(GraphTheoryandNetworkAnalysis)

图与网络分析(GraphTheoryandNetworkAnalysis)

e9
e5 {v1 , v3 } e6 {v3 , v5 }
e7 {v3 , v5 } e8 {v5 , v6 }
e9 {v6 , v6 } e10 {v1 , v6 }
e1
e2
v2
e5 e3 e4 v4
e8
e6
v5 e7 v3
图1
2、如果一个图是由点和边所构成的,则称其为无向图,记作
X={1}, w1=0
p1=0
2
6
1
2
3
1
10
p4=1
5
9
3
4
7
5
6
5
2
3
4
6
7
4
8 8
min {c12,c14,c16}=min {0+2,0+1,0+3}=min {2,1,3}=1 X={1,4}, p4=1
(9) T (v6 ) min[ T (v6 ), P(v5 ) l56 ] min[ , 5 2] 7 (10) P(v6 ) 7
反向追踪得v1到v6的最短路为:v1 v2 v5 v6
求从1到8的最短路径
2
6
1
2
3
1
10
5
9
3
4
7
5
6
5
2
3
4
6
7
4
8 8
v2
v5
v2
v4
v3
v4
v3
一个图G 有生成树的充要条件是G 是连通图。
用破圈法求出下图的一个生成树。
v2
e1 v1
e4 e7 e3 v4 e8
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3
v6 3 0 3 0 3 0
v1 v2 v3 v4 v5 v6
矩阵表示 A 邻接矩阵 B 关联矩阵
子图
子生 图成
子 图
顶点数p 边数q

重 合
端点
简单图
G=(V,E)
边e=[u,v] 多重边
平行边

点的次
0 1 奇数 偶数
孤悬 奇 偶 立挂 点 点 点点
多重图 点边关系 各种链的概念
欧拉图与中国邮路问题
e5 V1
e1 V2
V5 e6 e7
e4 V4
e3
e2
V3
例2 某单位储存八种化学药品,其中某些 药品是不能存放在同一个库房里的。为了反映
这个情况可以用点V1,V2,……V8分别代表这八 种药品,若药品Vi和药品Vj是不能存放在同 一个库房的,则在Vi和Vj之间连一条线。

V• 2 • V1
•· V8
bi j
wi j 0
(vi , v j ) E (vi , v j ) E
例6.4 下图所表示的图可以构造权矩阵B如下:
v1 4
v2
36
72
v6 4
3
3
v3
5
2
v5
v4
v1 0 4 0 6 4 3 v2 4 0 2 7 0 0
B
v3
0
2
0
5
0
3
v4 6 7 5 0 2 0
v5
4
0
0
2
0
e6
e7
e8
点称作偶点,次为1的点称为悬挂点,
次为0的点称作孤立点。
v4
v5
图的次: 一个图的次等于各点的次之和。
定理1 任何图中,顶点次数之和等于所有边数的2倍。
证明:由于每条边必与两个顶点关联,在计算点的次时,每条边 均被计算了两次,所以顶点次数的总和等于边数的2倍。
定理2 任何图中,次为奇数的顶点必为偶数个。
V1 V2和E1 E2称G1是G2的一个子图。 v2
v3
若有 V1=V2,E1 E2 ,则称G1是G2的一
e5
个部分图(支撑子图)。
e4
v1 e2 e4 e3
e6
e7
e8
v2
v3 v2
e5
v3 v4
v5
(G图)
e6
e8
e6
e7
e8
v4
(a)
v5
v4
(b)
v5
网络(赋权图)
赋权图):权可以代表距离、费用、通过能力(容量)等等。 无向网络:端点无序的赋权图称为. 有向网络:端点有序的赋权图称为。
{v0 , e1 , v1 ,, ek , vk }
起点与终点重合的链称作圈。如 果每一对顶点之间至少存在一条 链,称这样的图为连通图,否则 称图不连通。
e1
e2
e4 v1e3
v2
v3
e5
e6
e7
e8
v4
v5
子图,部分图(支撑子图)
e1
图G1={V1、E1}和图G2={V2,E2}如果有
e2
e4 v1e3
欧拉图
哥尼斯堡七桥问题
哥尼斯堡(现名加里宁格勒)是欧洲一个城市, Pregei河把该城分成两部分,河中有两个小岛,十八世纪 时,河两边及小岛之间共有七座桥,当时人们提出这样 的问题:有没有办法从某处(如A)出发,经过各桥一次 且仅一次最后回到原地呢?
哥尼斯堡七桥问题
a
C
d
b
a
c
d
b (b)
定义1. 在连通无向图G中,若存在经过每条边恰好一次的一个
证明:设V1和V2分别为图G中奇点与偶点的集合。由定理1可得:
d(v) d(v) d(v) 2m
vV1
vV2
vV
2m为偶数,且偶点的次之和 d(v) 也为偶数,所以 d(v) 必为偶
数,即奇数点的个数必为偶数vV。2
vV1
链,圈,连通图
图中某些点和边的交替序列,若其 中各边互不相同,且对任意vi,t-1和 vit均相邻称为链。用μ表示:
e1
若有边e可表示为e=[vi,vj],称vi和vj
是边e的端点,反之称边e为点vi或vj 的关联边。若点vi、vj与同一条边关
v2
e2
e4 v1e3
v3
e5
联,称点vi和vj相邻;若边ei和ej具 有公共的端点,称边ei和ej相邻。
e6
e7
e8
v4
v5
环, 多重边, 简单图
e1
如果边e的两个端点相重,称该边为 环。如右图中边e1为环。如果两个点 v2 之间多于一条,称为多重边,如右图
第一节 图的基本概念与模型
近代图论的历史可追溯到18世纪的七桥问题—穿过 Königsberg城的七座桥,要求每座桥通过一次且仅通过一次。 这就是著名的“哥尼斯堡 7 桥”难题。Euler1736年证明了不 可能存在这样的路线。
Königsberg桥对应的图
一、图基本概念
例1、有甲、乙、丙、丁、戊五个球队, 它们之间比赛的情况也可以用图表示出来。
v1 4
v2
36
v6 4
3 2
v5
72 3
5
v4
v1 v2 v3 v4 v5 v6
v3
v1 0 1 0 1 1 1
v2 1 0 1 1 0 0
A66
v3 v4
0 1
1 1
0 1
1 0
0 1
1 0
v5
1
0
0
1
0
1
v6 1 0 1 0 1 0
2. 权矩阵
对于赋权图G=(V,E), 其中边 (vi , v j )有权 wi j , 构造矩阵B=(bij) nn 其中:

15
9
7 ④ 14


10
6
19
20


25
图的矩阵描述: 邻接矩阵、关联矩阵、权矩阵等。
1. 邻接矩阵 对于图G=(V,E),| V |=n, | E |=m,有nn阶方矩阵
A=(aij) nn,其中
1
aij
0



档v
i
与v

j






其它
图的基本概念与模型
例6.2 下图所表示的图可以构造邻接矩阵A如下
图的表示方法:
G {V , E}
运筹学中研究的图具有下列特征:
强调点与点之间的关联关系,不讲究图的比例大 小与形状; 每条边上赋有一个权; 建立网络模型,求最大值或最小值。
下图可以提出很多极值问题
2 1
7 2
4
6
8
6
3
7
3
3
1
6
1
3
6
4
5
6 7
二、关于图的另外一些名称和术语:
端点,关联边,相邻
•V3 • V4
• V5
• V6 • V7
一般地,当用图论研究一个实际问题时, 常以顶点(Vertex)表示要研究的对象,以 它们之间的连线,表示某种关系,这种连线 称为边(Edge),目的是为了解决某个极值 问题。图中的点用v表示,边用e表示。对每 条边可用它所连接的点表示, 记作:e1=[v1,v1]; e2=[v1,v2];
e2
e4 v1e3
v3
e5
中的e4和e5,对无环、无多重边的图
e6
e7
e8
称作简单图。
v4
v5
次,奇点,偶点,孤立点
e1
与某一个点vi相关联的边的数目称为
e2
e4 v1e3
点vi的次(也叫做度),记作d(vi)。 v2
v3
右图中d(v1)=4,d(v3)=5,d(v5)=1。次
e5
为奇数的点称作奇点,次为偶数的
相关文档
最新文档