介质中的高斯定律电位移矢量

合集下载

介质的极化和介质中的高斯定理

介质的极化和介质中的高斯定理

部电都介产质生内附部加的电总场场E强'。E
E0
E'
E0
'
'
极化电荷所产生的附加电场不足以将介质中的外电
场完全抵消,它只能削弱外电场。称为退极化场。
介质内部的总场强不为零! 在各向同性均匀电介质中: E
E0
r
r称为相对介电常数或电容率。
3
二、介质中的高斯定理 电位移矢量
1.介质中的高斯定理
d
D2S 0S D1 D2 0 , D2 0
E2
D2
0r
0 0r
11
I区:D1
0,
E1
0 0
0
II区:D2 0 ,
②.求电容C
E2
0 0r
由C q U ab
与 U ab
Ed
高 斯
C q
0S

U ab E1(d d ' ) E 2d '
d' 0
D P1 P2
r
d
质中的高斯定理求场强:先根据自由电荷的分布利用 介质中的高斯定理求出电位移矢量的分布,再根据电 位移矢量与场强的关系求出场强的分布。
7
例1:将电荷 q 放置于半径为 R 相对电容率为 r 的介
质球中心,求:I 区、II区的 D、E、 及 U。
解:在介质球内、外各作半径为 r 的
高斯球面。
SD dS q0
荷密度为 0 , 其间插有厚度为 d’ 、电容率为 r 的电介质。
求 : ①. P1 、P2点的场强E;②.电容器的电容。
解: ①. 过 P1 点作高斯柱面, 左右底面分别经过导体
和 P1 点。
D SD dS q0

静电场中的电介质-(2)

静电场中的电介质-(2)

1
S
0
S
(q0 q' )
自由电荷 束缚电荷

S
E
dS

1
0

S
q0

1
0

S
P
dS

(0E P) dS q0
S
S

电位移矢量定义: D 0E P

(0E P) dS q0
S
S

D dS edV

dS '
n P
dl
在均匀电介质内部,束缚电荷彼 nˆ
此抵消,束缚电荷仅出现在介质表面。

通常定义 nˆ 为介质外法线方向。
E'
Pn
0

P
dS
' 0, 'dS
Pn


P
0
dS

0
'

0
P
S
在非均匀电介质中,有束缚电荷的积累。

E0
根据电荷守恒得:
dS P

i
如 法

pi

[dl
dS
cos
]P
dl
dS
n


P
dl
i


P cos dSdl Pn dSdl
Pn '
表明:任选一面 dS 上束缚电荷面密
度 '等于极化强度矢量在该面法线 方向上的分量。
E E0 E'
E E0 E'
是电介质中的总电场强度。 退极化场

有电介质的高斯定理

有电介质的高斯定理

εr 1
S 2
S 2
d
V
V D1 = ε oε r E1 = ε oε r d ε oV D2 = ε o E2 = d
为什么 E1介 = E2真? 反而D1 ≠ D2了?
E1 , E2 , D1 , D2的方向均 ↓
关键: 关键: σ1 ≠ σ 2!
(2) 介质内的极化强度 P ,表面的极化电荷密度σ' 表面的极化电荷密度σ P = χ eε o E1 = ε o (ε r 1)V d σ1 S σ 2 方向: 方向: ↓ V εr 1 2 d ∵σ ′ = P cosθ
εo εo εr
(2) U = Q = 2b[ε r b (ε r 1)t ]Q ) C ε o S[2ε r b (ε r 1)t ]
问: Q左? 右 =Q
平板电容器极板面积为S间距为 接在电池上维持V 间距为d,接在电池上维持 例 . 平板电容器极板面积为 间距为 接在电池上维持 . 均匀介质ε 厚度d 均匀介质εr 厚度 ,插入电容器一半忽略边缘效应 求(1)1,2两区域的 E 和 D ;(2)介质内的极化强度 P, , 两区域的 介质内的极化强度 表面的极化电荷密度 σ ' ;(3)1,2两区域极板上自由 , 两区域极板上自由 σ 电荷面密度 σ 1 , 2. 解:(1)V = E1d = E2d ) ∴ E1 = E2 = V d
U = E1 (b t ) + E2 t = εrσ o [εrb (εr 1) t] ε
q εrεoS ∴C = = = U εrb (εr 1) t
空气隙中 D = σ E1 = σ εo
介质中 D = σ
ε 1 b r t εr
εoS b
与t的位置无关 的位置无关 t↑,C↑ ↑ ↑ εrεoS t=b C = b

大学物理介质中的高斯定理

大学物理介质中的高斯定理

r1
r2
18
例:球形电容器由半径为R1的球体和内半径为R3的导 体球壳构成,带电 q,其间有两层均匀电介质,
分界面的半径为R2,相对介电常数分别为r1和r2 。 求:E, D 和C。
解:
D

dS

4
r
2

D

q
S
R2
R1 r2
D1

q 4r 2
D2

q 4r 2
R3
r1
在界面上电位移线会发生折射
tan1 1
tan2
2
2 1
若 2 > 1 2 > 1 ,电位移线将折离法线
*
上海交通大学 董占海
28
证明:
E1t E2t D1n D2n
E1sin1 E2sin2
D1 cos 1 D2 cos 2
D1 1E1 D2 2 E2
39
思考:带电金属球 (R、Q),半个球处在电介质εr 中,则球正下方r > R 处的 E、D。
r
同上
上海交通大学 董占海
40
例5:一点电荷Q放在半无限大电介质为εr和真空的 界面处,求E、D。
解:空间的场强 = 两个点
电荷Q和q′产生的
故空间各点的E、为
r
点电荷的场,具有球
对称性
xd 2
2 DS 0 0 S0d
D

i
0
d
2
上海交通大学 董占海
d


r
0
Ox
23
xd 2
E

D
0r

0 x

2-4 介质中的高斯定律 电位移矢量

2-4 介质中的高斯定律 电位移矢量

求:介质中的电场强度
v E
和电位移矢量
v D

解:由定义,知:

v D v P

v
0E
1 (1
r
v P

0
v
)D
v D
r

v P Pz
Dz Dz
4

v D

r r 1
v P

4 3
v P


v E
1
v D
4 0
3.5 介质中的高斯定律 边界条件
一、介质静电场基本方程
q
在热平衡时,分子无规则运动,取向各方向均等,介质在宏观 上不显出电特性
介质的极化:在外场影响下,无极分子变为有极分子,有极分 子的取向一致,宏观上出现电偶极矩
2)极化强度矢量
用极化强度矢量
v P
表示电介质被极化的程度。

P
lim
Pi
式中:pvi 表示i个分子极矩。
V 0 V
物理意义:等于单位体积内电偶极矩矢量和。

CE dl 0
微分方程:

D
E 0


本构方程: D r 0 E E
有电介质存在时的高斯定理的应用
(1)分析自由电荷分布的对称性,选择适当的高斯面 ,求出电位移矢量。 (2)根据电位移矢量与电场的关系,求出电场。 (3)根据电极化强度与电场的关系,求出电极化强度


(

0
)
s0
sp


(
0)
s0
0 (1 )
讨论:
1.

9-6有电介质时的高斯定理 电位移

9-6有电介质时的高斯定理 电位移

∫∫ D S
S1
= D 1 S=S σ
σ σ E1 = = ε 1 ε r 1ε 0
v v v v 再利用 D 1= ε 1 E 1 , D 2= ε 2 E 2 可求得
σ σ E2 = = ε 2 ε r 2ε 0
方向都是由左指向右。 方向都是由左指向右。
有电介质时的高斯定理 电位移
负两极板A、 间的电势差为 (2)正、负两极板 、B间的电势差为 )
例题9-6 一半径为 的金属球,带有电荷 0,浸埋在均匀 一半径为R的金属球 带有电荷q 浸埋在均匀 的金属球, 例题 无限大”电介质(电容率为ε),求球外任一点P的场 ),求球外任一点 “无限大”电介质(电容率为 ),求球外任一点 的场 强及极化电荷分布。 强及极化电荷分布。 P 根据金属球是等势体, 解: 根据金属球是等势体,而 ε r 且介质又以球体球心为中心对 称分布,可知电场分布必仍具 称分布, R Q0 球对称性, 球对称性,用有电介质时的高 斯定理来。 斯定理来。 S 如图所示, 如图所示,过P点作一半 点作一半 径为r并与金属球同心的闭合 径为 并与金属球同心的闭合 球面S, 球面 ,由高斯定理知
4εr(εr 2 1) 3 ′ σ 上负下正 σ2 = ε0 (εr2 1)E2 = εr1εr 2 +εr1εr3 + 2εr 2εr3
′ σ3 = ε0 (εr3 1)E3 =
4εr(εr3 1) 2 σ εr1εr 2 + εr1εr3 + 2εr 2εr3
上负下正
有电介质时的高斯定理 电位移
r r 由 P = ε0 (εr 1)E 得电极化强度矢量的分布
P=
r r 由 σ′ = P n 得束缚电荷的分布

有介质时的高斯定理

有介质时的高斯定理
(1)分子中的正电荷等效中心 与负电荷等效中心 重合的称为无极分子(如H2、 CH4、CO2)
无极分子在电场中, 正负电荷中心会被
拉开一段距离,产生 感应电偶极矩,这
称为位移极化。
无极分子
l
q q
p ql
感应电偶极矩
(2)分子中的正电荷等效中心 与负电荷等效中心 不重合的称为有极分子(如 HCl、H2O、NH3 )
例如左图的左右表面 上就有极化电荷。
正是这些极化电荷 的电场削弱了电介 质中的电场。
电介质的击穿
当外电场很强时,电介质的正负电中心 有可能进一步被拉开,出现可以自由移动的 电荷,电介质就变为导体了,这称为击穿。
电介质能承受的最大 电场强度称为该电介质 的击穿场强, 或介电强度。
例如. 空气的击穿场强 约 3 kV/mm.
介质中的高斯定理又写为: sD dS q内
… 的高斯定理
即通过任意封闭面的电位移的通量等于 该封闭面所包围的自由电荷的代数和。
说明: 1.它比真空中的E 的高斯定律更普遍,当没有电介质
时, 即r=1, 就过渡到真空中的高斯定律了。
2.如果电场有一定的对称性,我们就可以先从 D 的高
斯定理求出 D 来;然后再求出 来。
实验:插入电介质后,电压变小
U U0
r
Q Q Q Q
r>1……介质的
相对介电常数 (相对电容率)
r 随介质种类和

U
为什么插入电介质 会使电场减弱?
1电介质的极化
电介质这类物质中,没有自由电子, 不导电, 但可以极化。 电介质分子可分为有极和无极两类:
有极分子在电场中, 固有电偶极矩会转向 电场的方向,这称为 转向极化。

电位移矢量

电位移矢量

4 极化电荷 Polarization charge or bound charge 在外电场中,均匀介质内部各处仍呈电中性,但在 介质表面要出现电荷,这种电荷不能离开电介质到 其它带电体,也不能在电介质内部自由移动。我们 称它为束缚电荷或极化电荷。它不象导体中的自由 电荷能用传导方法将其引走。 在外电场中,出现束缚电荷的现象叫做电介质的极化。
由于热运动这种取向只能是部分的,遵守统计规律。 取向极化
E0
在外电场中的电介质分子
E0
l
E0
无外场下,所具有的电偶极矩称为固有电偶极矩。
在外电场中产生感应电偶极矩(约是前者的10-5)。
无极分子只有位移极化,感生电矩的方向沿外场方向。
有极分子有上述两种极化机制。 在高频下只有位移极化。
或介电常量dielectric constant。
0 称为电容率permittivity
例一:一个金属球半径为R,带电量q0,放在均匀的 介电常数为 电介质中。求任一点场强及界面处 ' ? 解:导体内场强为零。 高斯面 q0均匀地分布在球表面上, 球外的场具有球对称性 q D dS q0 D 0 r ˆ rR
垂直于此曲线的横截面ds组成一个小圆柱体因而该体元具有电偶极矩根据定义它可视为两端具有电荷的偶极矩dsdldsdldlds10如果在电介质内任选一面的法线于极化强度矢量在该面法线方向上的分量dsdsdldsdldldsds11ds在非均匀电介质中有束缚电荷的积累
目录
第三章 静电场中的电介质
3.1 电介质对电场的影响 3.2 电介质的极化 一、电介质 电介质的极化 二、极化强度 极化电荷与极化强度的关系: 三、电介质的极化规律 退极化场
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2)极化强度矢量
用极化强度矢量 P 表示电介质被极化的程度。
P lim
V 0
Pi V
式中: pi 表示i个分子极矩。
物理意义:等于单位体积内电偶极矩矢量和。 说明:对于线性媒质,介质的极化强度和外加电场成正比关系,即
P e 0 E e : 媒质极化系数 二、极化电荷(束缚电荷)
S
p P
PdV
V
2)面极化电荷
在介质表面上,极化电荷面密度为
psp
S
sp dS P dS
S

sp P n
n
式中: P 为媒质极化强度 n 为媒质表面外法向单位矢量 讨论:若分界面两边均为媒质,则
媒质被极化后,在媒质体内和分界面上会 出现电荷分布,这种电荷被称为极化电荷。 由于相对于自由电子而言,极化电荷不能自 由运动,故也称束缚电荷。
体内出现的极化电荷成为体极化电荷,表 面上出现的极化电荷称为面极化电荷。
1)体极化电荷
介质被极化后,分子可视作一个电偶极子 设分子的电偶极矩 p=ql 。取如图所示体积 元,其高度 l 等于分子极矩长度。 则负电荷处于体积中的电偶极子的正电荷必定穿过面元 dS
介质1
sp n (P 1 P 2)
真空、金属
P0

SP P1n P2n 介质2
(1)介质2是电介质而介质1是真空: (2)介质2是电介质而介质1是金属:
sp P2n P 0 1n sp P2n P 1n 0
对介质极化问题的讨论
3º 以上讨论对任何形状的电介质都成立。
2.环路定理
束缚电荷q束产生的电场与 自由电荷q0产生的电场相同 保守力场
E dl 0
电位移线与电场线
性质不同。
电位移线:线上每一点的切线方向和该点电位移 的方向相同,并规定在垂直于电位移线的单位面积上 通过的电位移线数目等于该点的电位移的量值. 电力线起始于正电荷终止于负电荷。包括自由 电荷和与束缚电荷。 电位移线起始于正自由电荷终止于负自由电荷。 与束缚电荷无关。
0, r 1
有介质的问题总体上说,比较复杂
但就各向同性线性介质来说,比较简单。
说明: 。 1ºD E , D与E处处对应,且方向一致

D dS q 0 与
D dS q 0
1 E dS o (q自 q束) 等价!
0
(q
S内
0
q)
自由电荷
束缚电荷
高斯
考虑关系

P d S q'
S S内
0
把静电场Gauss定理变换一下
E d S q
S 0 S内
1

1
0

1 q' q0 P d S 0 S内 S 内 S
E d S
1)极化电荷不能自由运动,也称为束缚电荷 2)由电荷守恒定律,极化电荷总量为零;
3)P=常矢量时称媒质被均匀极化,此时介质内部无极化电荷,极 化电荷只会出现在介质表面上
4)均匀介质内部一般不存在极化电荷
§2-4-2 有电介质时的高斯定理 电位移
同时考虑自由电荷和束缚电荷产生的电场 总电场

S
1 E dS
D d S q
S S内
0
D 0 E P



D的Gauss定理:有电介质存在时,通过电介质 中任意闭合曲面的电位移通量,等于闭合曲面所 包围的自由电荷的代数和,与极化电荷无关 公式中不显含P、q’、E’,可以掩盖矛盾,但没有 解决原有的困难 若q0已知,只要场分布有一定对称性,可以求出 D,但由于不知道P,仍然无法求出E

需要补充D和E的关系式,并且需要已知描述 介质极化性质的极化率e,对于各向同性线性 介质,有 介
P e 0 E
D 0 E P 0 (1 e ) E 0 r E
1 e r
真空中 一般
电 常 数
相对介电常数(与真空相对)
r 1, D 0 E
E 0
本构方程:
有电介质存在时的高斯定理的应用
(1)分析自由电荷分布的对称性,选择适当的高斯面 ,求出电位移矢量。 (2)根据电位移矢量与电场的关系,求出电场。
(3)根据电极化强度与电场的关系,求出电极化强度
(4)根据束缚电荷与电极化强度关系,求出束缚电荷。
3º 解题一般步骤:
由 q自
dQ nql dS np dS P dS 穿出整个S面的电荷量为: Q dQ P dS
S S
在空间中任取体积V,其边界为S,则经S穿出V的正电荷量为
l dS
由电荷守恒和电中性性质,S面所围电荷量为
p
q p Q P dS
S S
P
0
dS
1
0
q0
S内
S 面内包 围的自 由电荷
D 0 E P
电位移矢量
(
S
0
E P ) d S q0
S内
电位移矢量 通量
D d S q
S S内
0
D 0 E P
同时描述电场和电介质极化的复合矢量。
D d S q
+ + + + + + +


++ Nhomakorabea+
电场线
+ + + + + + +



+
+
+
电位移线
2-4-3 有电介质时的静电场的基本方程
积分方程: D dS Q
S
E dl 0
C
微分方程:
D
D r 0 E E
S S内
0
有电介质时 的高斯定理
如果把真空看作电介质的特例
P0
D 0 E
E d S q0 0
S
D d S q
S S内
0
有电介质时的高 斯定理积分形式

S
D dS DdV
V

高斯散度定理
D

有介质高斯定理微分形式
相关文档
最新文档