完全集成经验模态分解

合集下载

融合经验模态分解与线性Transformer的高频金融时间序列预测

融合经验模态分解与线性Transformer的高频金融时间序列预测

融合经验模态分解与线性Transformer的高频金融时间序列
预测
文馨贤
【期刊名称】《现代电子技术》
【年(卷),期】2022(45)23
【摘要】随着深度学习的发展,神经网络模型已被广泛应用于期货等金融资产价格序列预测研究工作中。

当前的研究以低频数据为主,针对非线性、非平稳、高噪声的高频数据的预测准确率还有待提升。

因此,提出CEEMDAN_Linformer模型,通过引入“分解⁃重构”方法,使用自适应噪声完全集成经验模态分解(CEEMDAN)方法对高频交易数据进行去噪预处理;通过引入时间戳进行特征融合,为输入编码提供了全局特征;使用线性Transformer提升模型的预测准确率,同时降低原始Transformer的复杂度,使其更适用于在当前的期货高频数据预测任务上。

以贵金属期货品种——黄金期货、白银期货的5 min、1 h价格序列为例,实现了多步价格序列预测。

实验对比了LSTM、CONVLSTM、TCN、Transformer四个基准模型,提出的模型在三个评价指标上均优于以上基准模型,取得了较好的预测效果。

【总页数】6页(P121-126)
【作者】文馨贤
【作者单位】昆明理工大学信息工程与自动化学院
【正文语种】中文
【中图分类】TN711-34;TP3
【相关文献】
1.基于经验模态分解的水文时间序列预测研究
2.一种基于经验模态分解的时间序列预测方法
3.基于经验模态分解生成对抗网络的金融时间序列预测
4.基于经验模态分解的时间序列预测方法
5.基于经验模态分解的时间序列预测方法
因版权原因,仅展示原文概要,查看原文内容请购买。

融合经验模态分解与深度时序模型的股价预测

融合经验模态分解与深度时序模型的股价预测

融合经验模态分解与深度时序模型的股价预测融合经验模态分解与深度时序模型的股价预测1. 引言股价预测一直以来都是金融领域的热门研究课题之一。

准确的股价预测对于投资者和金融机构来说具有重要意义。

然而,股价受到众多因素的影响,如企业基本面、市场需求、宏观经济等。

因此,准确地预测股价是一项具有挑战性的任务。

随着大数据和深度学习的发展,利用机器学习算法进行股价预测逐渐成为一种新的趋势。

在这篇文章中,我们将探讨将经验模态分解(EMD)与深度时序模型相结合的股价预测方法,并通过实验证明其有效性。

2. 经验模态分解(EMD)经验模态分解是一种基于数据自身本质进行分解的方法。

它将非平稳序列分解为一组本质模态函数(IMFs)和一个细节项。

IMFs可以看做是原始序列从低频到高频的内在振动模式。

IMFs具有自适应性和局部特性,因此可以更好地捕捉数据的非线性和非平稳性特征。

在股价预测中,我们将股价序列进行EMD分解,得到一组IMFs和一个细节项。

每个IMF都代表了具有不同时间尺度和振幅的股价波动模式。

通过分析每个IMF的特征,我们可以获得关于股价未来走势的一些信息。

3. 深度时序模型深度时序模型是一类具有记忆性的神经网络模型,可以捕捉序列中的长期依赖关系。

在股价预测中,我们可以使用循环神经网络(RNN)或长短期记忆网络(LSTM)等深度时序模型对IMFs进行建模和预测。

深度时序模型通过对历史股价数据进行训练,学习序列的模式和规律。

然后,使用学习到的模型对未来的股价进行预测。

这种基于序列的建模方法可以更好地反映股价的历史演变和未来趋势。

4. 融合EMD与深度时序模型的方法在本文中,我们将融合经验模态分解与深度时序模型的方法应用于股价预测。

具体步骤如下:(1) 对股价序列进行EMD分解,得到一组IMFs和一个细节项。

(2) 使用每个IMF和细节项作为输入,构建深度时序模型,如LSTM。

(3) 对每个IMF和细节项分别进行训练和预测。

结合自适应噪声完备集合经验模态分解的深度学习模型在电离层闪烁预报中的研究

结合自适应噪声完备集合经验模态分解的深度学习模型在电离层闪烁预报中的研究

结合自适应噪声完备集合经验模态分解的深度学习模型在电离层闪烁预报中的研究尹逊哲;岳东杰;翟长治;陈雨田;程晓云【期刊名称】《甘肃科学学报》【年(卷),期】2024(36)1【摘要】电离层闪烁可能导致通信系统误码率增加和GNSS定位精度下降。

由于电离层闪烁的偶发性,闪烁预报非常困难。

为了提高对电离层闪烁的预测精度,提出了一种综合多种方法的混合预测模型,利用电离层闪烁标签值(S4label)进行辅助,结合“分解-集成”思想的深度学习模型进行预测。

首先采用CEEMDAN算法将原始数据分解为多个子信号,并基于样本熵指标,使用K-Means算法将这些子信号重构为高频、低频和趋势3种信号。

后利用VMD法对高频信号进行二次分解,借助自注意力LSTM模型实现对高低频信号的逐步预测。

实验结果表明,与传统的LSTM 模型相比,混合模型预测精度明显提高。

在地磁平静期,该模型的预测效果得到显著改善,R^(2)、RMSE、MAE、MAPE代表的精度分别提升了32.2%、58.7%、51.2%、44.7%。

因此,该模型能更准确地预测电离层闪烁现象的发生,对电离层闪烁的预测研究具有很好的参考价值。

【总页数】8页(P117-124)【作者】尹逊哲;岳东杰;翟长治;陈雨田;程晓云【作者单位】河海大学地球科学与工程学院【正文语种】中文【中图分类】P352.4【相关文献】1.改进的自适应噪声总体集合经验模态分解在光谱信号去噪中的应用2.一种结合自适应噪声完备经验模态分解和盲反卷积去除脑电中眼电伪迹的新方法3.基于序关系分析法和自适应噪声完备集合经验模态分解法的直升机飞行培训安全风险评估指标权重分析4.基于自适应噪声完备集合经验模态分解与独立分量分析的故障选线法5.基于完全自适应噪声集合经验模态分解与小波变换相结合的GPS/BDS-3多路径误差削弱研究因版权原因,仅展示原文概要,查看原文内容请购买。

matlab 集合经验模态分解

matlab 集合经验模态分解

matlab 集合经验模态分解经验模态分解(Empirical Mode Decomposition,简称EMD)是一种信号处理和数据分析方法,经常被用于非平稳信号的特征提取和模式识别。

它可以将一个复杂的非线性和非平稳信号分解成一组局部特征,每个特征都具有特定的频率和幅度。

而MATLAB作为一种强大的科学计算软件,提供了丰富的工具和函数来实现EMD算法的应用。

我们需要了解什么是经验模态分解。

经验模态分解是由黄、吴等人于1998年提出的一种数据分解方法。

它的基本思想是将非平稳信号分解成一组本征模态函数(Intrinsic Mode Functions,简称IMF),IMF是一种具有局部特性的函数,它在时域上表现为振荡或衰减,且其频率随着时间变化。

经验模态分解的核心是通过求解信号的局部极值点和对数均方差最小化的方法,逐步提取出信号中的各个IMF,并最终得到一个残差项。

在MATLAB中,我们可以使用emd函数来实现经验模态分解。

该函数的基本语法为:[imf, residue] = emd(signal)其中,signal是待分解的信号,imf是分解得到的IMF组成的矩阵,residue是分解得到的残差项。

使用emd函数后,我们可以得到信号的IMF和残差项,从而实现对信号的分解。

接下来,我们可以对分解得到的IMF进行进一步的分析和处理。

例如,我们可以计算每个IMF的能量、频率和振幅等特征参数,以了解信号的局部特性。

同时,我们也可以对IMF进行滤波、重构等操作,以实现对信号的预处理和后续分析。

MATLAB还提供了一些辅助函数和工具箱,可以帮助我们更好地理解和应用经验模态分解。

例如,我们可以使用plot函数来绘制分解得到的IMF和残差项的时域波形图,以直观地观察信号的局部特征。

同时,我们也可以使用spectrogram函数来绘制IMF的时频谱图,以进一步分析信号的频率变化。

除了基本的经验模态分解方法,MATLAB还提供了一些改进和扩展的算法,以满足不同的应用需求。

集成经验模态分解方法

集成经验模态分解方法

集成经验模态分解方法在当今数据分析与信号处理领域,经验模态分解(Empirical Mode Decomposition,EMD)已成为一种重要的时间序列分析技术。

集成经验模态分解方法(Ensemble Empirical Mode Decomposition,EEMD)作为EMD 的改进算法,通过引入白噪声辅助分析,提高了分解的稳定性和准确性。

本文将详细介绍集成经验模态分解方法的基本原理及其在信号处理中的应用。

一、集成经验模态分解方法简介集成经验模态分解方法(EEMD)是在经验模态分解(EMD)的基础上发展起来的。

EMD是一种基于数据本身的时间尺度分析方法,它将时间序列信号分解为多个固有模态函数(Intrinsic Mode Functions,IMFs)和一个残差项。

然而,传统的EMD存在端点效应和模态混叠等问题。

为了克服这些问题,EEMD通过在原始信号中引入白噪声序列,提高分解的稳定性和可靠性。

二、集成经验模态分解方法原理1.加入白噪声序列:将原始时间序列信号与不同频率和幅值的白噪声序列相加,形成多个含噪信号。

2.EMD分解:对每个含噪信号进行EMD分解,得到一系列IMFs和残差项。

3.集成平均:将所有含噪信号分解得到的IMFs进行平均处理,得到最终的IMFs。

4.残差项处理:对所有含噪信号的残差项进行平均,得到最终的残差项。

5.信号重构:将得到的IMFs和残差项相加,得到重构的原始信号。

三、集成经验模态分解方法应用1.信号去噪:EEMD具有良好的去噪性能,可应用于通信信号、生物医学信号等领域。

2.非线性时间序列分析:EEMD能够有效地提取时间序列的非线性特征,为非线性动力学研究提供有力支持。

3.故障诊断:EEMD在机械故障诊断领域具有广泛的应用前景,可提高故障诊断的准确性和可靠性。

4.气象预测:EEMD在气象数据分析中具有重要作用,有助于提高气象预测的准确性。

四、总结集成经验模态分解方法(EEMD)作为一种改进的时频分析方法,通过引入白噪声序列,提高了分解的稳定性和准确性。

关于EMD、EEMD的总结

关于EMD、EEMD的总结

关于EMD、EEMD的总结
EMD经验模态分解(Empirical Mode Decomposition,EMD),可以将⼀组时间序列数据X(t)变换成n个本征模函数和⼀个单调的差值序列之和。

那么对于X(t)的预测,可以分解为对这n个本征模函数的预测和这个单调的差值序列的预测。

EMD的主要缺陷是:如果时间序列不符合完全⽩噪⾳的定义,那么产⽣模式混叠现象。

产⽣混叠显现的主要原因是原序列的不连续性。

为了解决这个问题,采⽤新的噪⾳辅助数据处理技术,即集合经验模态分解(EEMD)。

纳⼊⽩噪声⼲扰项的操作有利于在时间序列中获得实际的信息,该技术即EEMD,它是噪声辅助数据处理技术之⼀。

综合运⽤EMD、EEMD以及其他预测⽅法,为更加准确的数据预测开创了新的途径。

可以在搜索下载EMD及EEMD的matlab程序。

EMD

EMD

算法概述
• EMD方法基于信号本身的局部特征时间尺度,把原始信号进行平稳化处理,将 复杂的信号分解成有限个具有不同特征尺度的数据序列,每一个序列即为一个 本征模态函数(Intrinsic Mode Function)分量,IMF反映了原始信号的本质和真实 信息。信号经EMD分解之后,其瞬时频率也具有了物理意义,因此,EMD算 法是一种非常适用于非平稳、非线性数据序列的复杂信号处理方法。
数学基础,如:正交性、收敛性、完备性、唯一性等EMD特性,试验方法求证一 些特性,而不能进行数学上的证明,甚至于至今为止都无法很好的解释“什么信 号能进行EMD分析,什么信号不能进行EMD分析”。然而对于本征模态函数, 也仅仅只能通过窄带信号的过零点与过极值点的关系以及非常有限的可用例子的 经验中获得IMF定义,其效果很难令人满意。尽管大部分的例子都表明了EMD结 果的直观合理性,但是其理论框尚待改善。
式子:
n
x (t ) c i rn
i 1
残差 r n是信号 x(t) 的集中趋势,IMFs(c1,,cn )分别包含了信号不同时间特征尺度大小的
成分,其尺度依次由小到大,因此,各分量也就相应地包含了从高到低的不同频率段的
成分。每个频率段包含的频率成分是不同的,它们随 x(t)的变化而变化。
• EMD只需要根据信号的时间特征尺度自适应的对信号进行分解。信号经EMD分解所得到的本 征模态函数均代表着信号不同尺度的特征。因为对于每个本征模态函数,连续两个极值点之间 定义了信号局部波动特征,这就反映了信号在不同尺度的特性。
本征模态函数(Intrinsic Mode Function)
一般认为,一个本征模函数IMF必须满足以下两个条件: (1)在整个信号上,极值点的个数和过零点的个数相等或至多相差一个; (2)在任意时刻,由局部极大值点和局部极小值点分别形成的上、下包络线的均值为零,也即是 说,上、下包络线相对于时间轴是局部对称的。 通常情况下,实际信号都是复杂信号,并不满足上述条件,因此,Huang进行了以下假设: (1)任何信号都是由若干本征模态函数组成的; (2)各个本征模态函数既可是线性的,也可是非线性的,各本征模态函数的局部极值点和零点相 同,同时上、下包络关于时间轴局部对称; (3)在任何时候一个信号都可以包含若干个本征模态函数,若各模态函数之间相互混叠,就组成 了复合信号。

经验模态分解和希伯尔特变换进行信号的频率、幅值和相位

经验模态分解和希伯尔特变换进行信号的频率、幅值和相位

经验模态分解和希伯尔特变换进行信号的频率、幅值和相位(实用版)目录1.信号处理的需求与目的2.经验模态分解与希伯尔特变换的原理和方法3.频率、幅值和相位的提取与应用4.总结与展望正文一、信号处理的需求与目的在现代科学研究和工程技术中,信号处理是一项重要的技术手段。

信号处理主要是对信号进行分析、处理和识别,从而提取有用的信息。

信号处理的核心任务之一就是提取信号的频率、幅值和相位信息。

这些信息对于信号的识别、分析和应用具有重要的意义。

二、经验模态分解与希伯尔特变换的原理和方法1.经验模态分解(EMD)经验模态分解是一种自适应的信号处理方法,可以有效地将信号分解为不同频率的成分。

EMD 主要通过迭代过程来寻找信号中的内在频率,并将信号分解为不同频率的模态函数。

这种分解方法可以避免传统傅里叶变换中频率截断和泄漏等问题,使得信号的频率成分更加精确。

2.希伯尔特变换(Hilbert Transform)希伯尔特变换是一种广泛应用于信号处理的数学工具,可以提取信号的频率、幅值和相位信息。

希伯尔特变换的基本思想是将信号的时域表示转换为其频域表示。

通过希伯尔特变换,可以得到信号的频谱,从而提取信号的频率、幅值和相位信息。

三、频率、幅值和相位的提取与应用1.频率提取通过经验模态分解和希伯尔特变换,可以提取信号的频率信息。

这些频率信息对于信号的识别和分析具有重要意义。

例如,在机械振动信号处理中,通过提取信号的频率信息,可以判断机械的故障类型和原因。

2.幅值提取信号的幅值信息反映了信号的能量大小。

通过经验模态分解和希伯尔特变换,可以提取信号的幅值信息。

在实际应用中,幅值信息可以用于评估信号的质量和性能。

3.相位提取信号的相位信息反映了信号在不同时间点的相对位置。

通过希伯尔特变换,可以提取信号的相位信息。

在实际应用中,相位信息可以用于分析信号的传播特性和时变性。

四、总结与展望经验模态分解和希伯尔特变换为信号的频率、幅值和相位提取提供了有效的方法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

完全集成经验模态分解
完全集成经验模态分解(Complete Integrated Empirical Mode Decomposition,CEEMDAN)是一种将若干信号分解方法和深度学习技术集成的模型。

该模型主要包括带自适应噪声的CEEMDAN、样本熵(SE)、Transformer(TR)和带注意力机制的双向门控循环单元(BiGRU-Attention)。

CEEMDAN算法通过在原始信号中加入正态分布的白噪声,然后将加入白噪声的信号作为一个整体进行EMD分解,得到各个IMF分量。

这种方法可以有效地解决传统EMD算法存在的端点效应问题,提高分解的精度和可靠性。

在实际应用中,CEEMDAN算法常被用于故障检测和特征提取等领域。

例如,T. R. J. Romero等将CEEMDAN与MUSIC算法相结合,实现了基于瞬态电流和稳态电流的转子断条故障的检测。

相关文档
最新文档