三自由度机械臂设计

合集下载

三自由度机械臂毕业设计

三自由度机械臂毕业设计

三自由度机械臂毕业设计摘要三自由度机械臂是一种常见的机器人结构,具有广泛的应用领域。

本文基于毕业设计的要求,对三自由度机械臂的设计与实现进行了探讨,包括机械结构设计、电控系统设计以及仿真测试等内容。

通过本文的研究,可以为相关领域的机械臂设计提供一定的参考和借鉴。

关键词:三自由度机械臂;机械结构设计;电控系统设计;仿真测试一、引言随着现代工业的发展,机械臂作为一种重要的智能装备,已经得到了广泛的应用。

特别是在自动化生产线、物流仓储系统、医疗和服务机器人等领域,机械臂可以实现高效的操作和灵活的生产。

对机械臂的设计与实现具有重要的理论和实际意义。

三自由度机械臂是一种典型的机械臂结构,在许多应用场合中都能够发挥重要作用。

本文将以三自由度机械臂为研究对象,通过对其机械结构设计、电控系统设计以及仿真测试的探讨,来完成一份关于三自由度机械臂的毕业设计。

二、机械结构设计1. 机械臂的型号确定需要确定三自由度机械臂的型号和结构设计。

在设计过程中,需考虑机械臂的负载能力、工作范围和精度等参数。

通过对市场上已有的机械臂产品进行调研和比较,选择一款适合要求的机械臂型号作为设计的基础。

2. 机械结构的参数设计在确定机械臂型号后,需要对机械结构的参数进行设计。

包括机械臂的长度、关节结构、材料选择等。

需要考虑机械臂的刚度和稳定性,以及对机械结构进行强度和刚度分析,保证机械臂能够满足设计要求。

三、电控系统设计1. 电机和传动系统的选型根据机械臂的参数设计,选择合适的电机和传动系统。

需要考虑电机的功率、转速和控制方式,以及传动系统的精度和可靠性。

2. 控制系统的设计设计机械臂的控制系统,包括控制算法、传感器选择和控制器设计等。

通过对电控系统的设计,实现机械臂的轨迹规划、位置控制和力控制等功能。

四、仿真测试通过建立机械臂的仿真模型,对机械结构设计和电控系统设计进行验证和测试。

利用仿真软件,模拟机械臂的运动和控制过程,评估机械臂的性能和稳定性。

机械臂设计论文

机械臂设计论文

简易机械臂设计原理及方案孙志峰王存安瑞摘要:探讨基于89C51单片机的简易机械臂设计原理,给出一种简单易行的设计方案,满足在三维空间手动控制抓、放物体的基本功能。

设计包括仿真和具体实现两个方面。

关键词:单片机步进电机机械臂0 前言机械臂也可以称为工业机器人,在现代的工业生产中有着巨大的作用,是衡量一个国家工业自动化的重要指标。

我国目前已安装的国产工业机器人,约占全球已安装数目的0.4%与发达国家相比有着巨大的差距。

本篇为单片机初学者提供一种应用实例—单片机控制机械臂,将从工作原理、硬件电路设计、程序编写三个方面展开论述。

1 工作原理我们利用89C51单片机研制一种三自由度机械臂,它可以在三维空间做曲线运动。

该机械臂的几何结构如图1所示,它由底座、大臂、小臂、关节、二指钳组成。

大臂绕底座在水平面上转动;小臂通过关节1控制可在大臂和小臂组成的平面内转动;二指钳通过关节2的控制抓取或放开物体;关节1和底座各包含一个步进电机,步进电机在单片机和相应的步进电机驱动程序的控制下转动,实现机械臂在三维空间中的自由转动;关节2则包含一个电磁继电器,单片机通过电磁继电器控制电路和相应的物理结构控制二指钳的抓取和放开。

2 硬件电路设计本设计的核心电路是单片机控制系统,其基本设计思路如图2所示。

通过键盘输入控制机械臂转动,抓取或放开物体的信号,单片机接收到信号后对信号进行分析处理,产生对安放在底座和关节1处的步进电机的控制信号以及关节2处电磁继电器的控制信号,控制信号进入相应的驱动电路控制机械臂的转动和对目标物体的抓取和放开。

下面就具体的电路进行设计。

2.1 按键输入电路按键输入电路如图3所示,该电路原理简单,没有信号输入时输出为高,有信号输入时为低电平,即低电平有效。

由于按键的结构为机械弹性开关,在按下和断开操作时,触点在闭合和断开的瞬间会接触不稳定产生抖动。

按键的抖动时间一般为5—1Oms,会引起CPU对一次键操作进行多次处理,所以要用硬件或软件方法进行消抖,为了节省开支,这里采用了软件消抖的方法。

三自由度机械臂毕业设计

三自由度机械臂毕业设计

三自由度机械臂毕业设计三自由度机械臂是机器人领域中常见的一种机械结构,它通常由三根旋转自由度的关节组成,能够在三维空间内完成灵活的运动和操作。

毕业设计是大学生在毕业前完成的重要学术项目,通过设计、研究和实践,提升学生的综合能力和创新意识。

本文将结合三自由度机械臂的特点,探讨其毕业设计的内容和要点,帮助读者更好地完成相关的学术项目。

一、研究背景与意义三自由度机械臂是工业自动化和机器人领域的核心组成部分,具有重要的应用价值和研究意义。

其在装配作业、物料搬运、焊接加工等方面有着广泛的应用,可以提高生产效率、降低生产成本、改善工作环境等。

对三自由度机械臂的设计、控制、优化等方面的研究具有重要的理论和实际意义。

二、毕业设计的内容和要点1. 三自由度机械臂的结构设计毕业设计的第一要点是对三自由度机械臂的结构进行设计。

包括机械臂的关节形式、长度比例、连接方式等方面的设计,需要考虑机械结构的稳定性、承载能力、运动灵活性等因素,确保机械臂能够满足特定的工作要求。

2. 机械臂运动学分析与建模运动学分析是机械臂设计的重要环节,通过对机械臂的结构和运动特性进行分析,建立数学模型描述机械臂的运动规律。

还需要进行正解和逆解的研究,分析机械臂末端执行器的位置和姿态与关节变量之间的关系,为后续的控制设计奠定基础。

3. 机械臂运动控制系统设计毕业设计的另一个重要内容是机械臂的运动控制系统设计。

包括运动控制算法的选择、控制器硬件的选型、传感器系统的构建等方面,需要考虑控制精度、动态响应性能、抗干扰能力等指标,并将其应用到具体的机械臂应用场景中。

4. 机械臂的性能测试与分析毕业设计的最后一个要点是对设计的三自由度机械臂进行性能测试与分析。

通过实验验证机械臂的运动性能、控制精度以及系统的稳定性,进而对设计方案进行总结和改进,为未来的实际应用提供参考依据。

三、结语三自由度机械臂毕业设计旨在培养学生的实际动手能力和工程实践能力,通过对机械臂设计、控制的研究,提升学生的科研能力和工程实践水平。

三自由度_精品文档

三自由度_精品文档

三自由度简介在机械设计中,自由度是一个重要的概念。

它指的是物体在空间中能够自由运动的程度。

三自由度(3DOF)是指一个物体在三维空间中的自由度。

在本文中,我们将介绍三自由度的定义、应用以及在机械设计中的重要性。

定义三自由度是指一个物体在三维空间中可以沿着三个独立的方向进行运动的能力。

这三个方向通常被称为“平移自由度”和“旋转自由度”。

平移自由度指物体沿着三个不同的轴向移动的能力,而旋转自由度指物体绕三个不同的轴旋转的能力。

一般来说,三自由度可以表示为(x, y, z, α, β, γ),其中x、y、z表示物体的平移位置,α、β、γ表示物体的旋转角度。

应用三自由度的概念在机械设计中具有广泛的应用。

无论是在工业机器人、航天器、汽车还是其他机械设备中,都需要考虑物体的自由度。

在工业机器人中,三自由度通常被用来描述机械臂的运动范围。

机械臂的平移自由度使其能够在三维空间内移动到不同的位置,而旋转自由度则使其能够改变姿态。

在航天器中,三自由度的概念被用来确定航天器在太空中的运动范围。

航天器可以在太空中自由地移动和旋转,通过操控其三自由度来实现不同的任务,如定位、推进、调整姿态等。

在汽车设计中,三自由度的概念被应用于底盘的设计。

底盘具有平移自由度,使汽车能够在三维空间中自由移动。

此外,汽车的转向也使用了旋转自由度的概念,使得汽车可以改变方向。

重要性三自由度在机械设计中具有重要的意义。

它决定了物体在空间中的运动和姿态变化。

了解和掌握三自由度的概念对于设计高效、稳定和精确的机械系统至关重要。

在机器人设计中,通过合理配置和控制机器人的三自由度,可以使机器人能够执行复杂的任务。

例如,一个具有足够的自由度的机械臂可以实现多个不同方向的精确定位,从而提高工作效率。

在航天器设计中,三自由度决定了航天器在太空中的机动性。

通过灵活地控制三自由度,可以实现航天器的定位和姿态调整。

在汽车设计中,三自由度的合理利用可以提高汽车的行驶稳定性和操控性。

三自由度机械臂毕业设计

三自由度机械臂毕业设计

三自由度机械臂毕业设计毕业设计题目:三自由度机械臂设计与控制一、设计背景三自由度机械臂是工业机器人中常见的一种结构,通常由三个关节驱动器构成,可以实现在三个方向上的运动。

该设计旨在研究三自由度机械臂的结构设计和控制算法,提高其运动精度和稳定性,以满足工业生产中对机器人精准操作的需求。

二、设计内容1.机械结构设计:根据机械臂的工作范围和负载要求,设计合适的机械结构,包括三个关节的连杆长度、角度范围等,确保机械臂能够在工作空间内自由灵活地运动,并能承受所需的负载。

2.关节驱动器选择:选择合适的关节驱动器,比如伺服电机、步进电机等,确保驱动器能够提供足够的转矩和精确的控制,以实现机械臂的精准运动。

3.控制系统设计:设计相应的控制系统,包括运动规划、轨迹跟踪、碰撞检测等算法,实现机械臂在各种工作场景下的自动化操作。

同时,考虑到三自由度机械臂的运动学模型,设计合理的控制策略,提高机械臂的运动精度和稳定性。

4.系统集成和调试:将机械结构、关节驱动器和控制系统进行集成,通过实验验证机械臂的性能和稳定性,调试控制算法,不断优化设计方案,使机械臂达到预期的工作效果。

三、设计目标1.实现三自由度机械臂在三维空间内的高精度运动,能够完成各种复杂的工作任务。

2.提高机械臂的运动速度和稳定性,减少运动过程中的振动和误差,提高工作效率。

3.实现机械臂与外部环境的智能交互,通过传感器实时监测工作环境,避免碰撞和危险情况的发生。

4.设计简洁高效的控制系统,具有良好的实时性和可靠性,便于操作和维护。

四、预期成果通过以上设计内容和目标,预期能够完成一台具有高精度运动和稳定性的三自由度机械臂原型机,并实现其在工业生产中的应用。

同时,可以得到相关的技术研究成果,为工业机器人领域的发展贡献一份力量。

五、结语三自由度机械臂的设计与控制是一个具有挑战性和重要性的课题,需要多方面的知识和技能综合运用。

希望通过本次毕业设计,能够全面学习和掌握机械臂设计与控制的相关知识,提升自己在工程领域的实践能力和创新能力,为未来的科研和工作打下坚实的基础。

三自由度机械臂 几何解法

三自由度机械臂 几何解法

三自由度机械臂几何解法三自由度机械臂是一种具有三个旋转自由度的机械臂系统,它由三个旋转关节连接而成,每个关节可以绕不同的轴线旋转。

在工业自动化领域,三自由度机械臂广泛应用于装配、焊接、搬运等任务中,它能够完成复杂的三维空间运动。

三自由度机械臂的几何解法是通过解析几何的方法确定机械臂末端执行器的位置和姿态。

具体而言,它包括机械臂的正运动学和逆运动学求解。

1.机械臂的正运动学求解:正运动学求解是指已知机械臂的关节角度,求解机械臂末端执行器的位置和姿态。

在三自由度机械臂中,可以使用联合旋转矩阵(旋转矩阵乘积),将机械臂的三个关节旋转矩阵相乘,得到整体的旋转矩阵。

然后,将这个旋转矩阵与机械臂的长度矩阵相乘,得到末端执行器的位置和姿态。

具体的计算步骤如下:(1)设第i个关节的旋转矩阵为R_i,长度矩阵为D_i。

(2)根据关节角度计算每个关节的旋转矩阵R_1, R_2和R_3。

(3)计算整体的旋转矩阵R = R_1 * R_2 * R_3。

(4)计算末端执行器的位置矩阵p = R * D_3 + R_1 * D_2 + D_1。

通过上述计算,可以得到机械臂末端执行器的位置和姿态。

2.机械臂的逆运动学求解:逆运动学求解是指已知机械臂末端执行器的位置和姿态,求解机械臂的关节角度。

在三自由度机械臂中,可以通过解几何的方法求解关节角度。

具体而言,首先计算机械臂末端执行器的位置矩阵p,然后根据关节角度的限制条件,通过三角函数和反三角函数的计算,求解机械臂的关节角度。

具体的计算步骤如下:(1)设第i个关节的旋转矩阵为R_i,长度矩阵为D_i。

(2)已知末端执行器的位置矩阵p,计算关节3的角度θ3。

(3)已知关节3的角度θ3,通过关节2的位置矩阵计算关节2的角度θ2。

(4)已知关节2的角度θ2和关节3的角度θ3,通过关节1的位置矩阵计算关节1的角度θ1。

通过上述计算,可以得到机械臂的关节角度。

需要注意的是,在实际应用中,机械臂的逆运动学求解通常存在多解或无解的情况。

三自由度机械臂设计

三自由度机械臂设计

三自由度机械臂设计1. 引言机械臂是一种能够模拟人类手臂运动的机械装置,广泛应用于工业自动化、医疗手术、空间探索等领域。

本文将介绍三自由度机械臂的设计原理、结构和控制方法。

2. 三自由度机械臂的定义三自由度机械臂是指具有三个独立运动自由度的机械臂。

它通常由底座、臂1、臂2和末端执行器组成。

臂1和臂2之间通过转动关节连接,末端执行器可以在三维空间内执行各种任务。

3. 三自由度机械臂的结构三自由度机械臂的结构通常采用串联结构,即每个关节依次连接在一起。

关节通常采用旋转关节或者滑动关节,以实现臂的运动。

三自由度机械臂的底座是固定不动的,通过第一个关节与臂1连接。

臂1和臂2之间通过第二个关节连接,第二个关节使得臂2能够绕臂1旋转。

第三个关节连接在臂2的末端,用于连接末端执行器。

4. 三自由度机械臂的运动学分析三自由度机械臂的运动学分析是研究机械臂末端位置和姿态的方法。

通过运动学分析,可以确定机械臂各关节的运动范围和工作空间。

三自由度机械臂的运动学方程可以通过解析方法或者数值方法求解。

解析方法通常基于几何关系和三角函数的运算,可以得到精确的解析解。

数值方法通常通过迭代计算,可以得到近似解。

5. 三自由度机械臂的动力学分析三自由度机械臂的动力学分析是研究机械臂受力和运动响应的方法。

通过动力学分析,可以确定机械臂的运动惯性、关节力矩和末端执行器的力矩。

三自由度机械臂的动力学方程可以通过拉格朗日方程或牛顿-欧拉方程求解。

这些方程描述了机械臂的运动学和动力学关系,可以用于控制机械臂的运动。

6. 三自由度机械臂的控制方法三自由度机械臂的控制方法包括位置控制、速度控制和力控制。

位置控制是控制机械臂末端位置的方法,速度控制是控制机械臂关节速度的方法,力控制是控制机械臂末端力的方法。

位置控制通常采用PID控制器或者模糊控制器。

PID控制器通过比较实际位置和期望位置的差异,调整关节角度以使机械臂末端达到期望位置。

模糊控制器通过模糊逻辑和规则库,根据实际位置和期望位置的差异调整关节角度。

多自由度机械臂设计及其应用

多自由度机械臂设计及其应用

多自由度机械臂设计及其应用多自由度机械臂是指具有多个自由度的机械臂,可以在不同的空间方向上进行运动和操作。

在现代工业生产中,多自由度机械臂已经成为了不可或缺的工艺装备。

本文将深入探讨多自由度机械臂的设计和应用。

一、多自由度机械臂的基本结构多自由度机械臂由以下几个基本部分组成:基座、臂杆、关节、执行器和传感器等。

1. 基座:机械臂的基座是机械臂整体的支撑结构,固定于地面或其他结构体上。

2. 臂杆:臂杆是机械臂的主要结构部分,由多个相互连接的臂段组成,通过关节连接。

3. 关节:关节是机械臂中的运动部件,在机械臂的运动中发挥重要作用。

一般分为旋转关节和直线关节两大类。

4. 执行器:指机械臂用来控制物体的工具部分,可根据不同的应用需要而设计成不同型式的工具头。

5. 传感器:传感器是用来检测机械臂运动状态、控制机械臂运动方向、判断机械臂工作状态的传感器。

二、多自由度机械臂的设计多自由度机械臂的设计涉及到多学科的知识,如机械设计、电子设计、控制工程、材料学等。

设计合理的机械臂需要满足以下几个条件:1. 稳定性:机械臂应具有良好的稳定性,可以在高速运动时不失稳。

2. 载荷能力:机械臂应具有良好的承载能力,可以承受不同重量的物体。

3. 灵活性:机械臂应具有良好的灵活性,可以在不同的空间方向上进行运动。

4. 精度:机械臂应具有良好的定位精度和姿态精度,以保证对物体的正确把握。

5. 控制能力:机械臂应具有良好的控制能力,可以通过电子控制系统实现与物体的精确定位。

三、多自由度机械臂的应用多自由度机械臂在现代工业生产中应用广泛,可以用于各种物体的搬运、装配、焊接、喷涂、打磨、拆卸和测试等工作。

以下是多自由度机械臂的具体应用:1. 自动化生产线:多自由度机械臂可以在生产线上完成自动化操作,如搬运和装配。

2. 车间操作:多自由度机械臂可以完成车间内的一些操作,如焊接和打磨。

3. 医疗保健:多自由度机械臂可以在医疗方面发挥重要作用,如手术和康复等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三自由度机械手臂设计
姓名:苏文杰班级:机自4班
学号:24121901188 序号:24
2015年6月3日
三自由度机械手臂设计
用途:在当今大规模制造业中,企业为提高生产效率,保障产品质量,普遍重视生产过程的自动化程度,工业机器人作为自动化生产线上的重要成员,逐渐被企业所认同并采用。

工业机器人的技术水平和应用程度在一定程度上反映了一个国家工业自动化的水平,目前,工业机器人主要承担着焊接、喷涂、搬运以及堆垛等重复性并且劳动强度极大的工作,工作方式一般采取示教再现的方式。

本文将设计一台四自由度的工业机器人,用于给冲压设备运送物料。

首先,本文将设计机器人的底座、大臂、小臂和机械手的结构,然后选择合适的传动方式、驱动方式,搭建机器人的结构平台;在此基础上,本文将设计该机器人的控制系统,包括数据采集卡和伺服放大器的选择、反馈方式和反馈元件的选择、端子板电路的设计以及控制软件的设计,重点加强控制软件的可靠性和机器人运行过程的安全性,最终实现的目标包括:关节的伺服控制和制动问题、实时监测机器人的各个关节的运动情况、机器人的示教编程和在线修改程序、设置参考点和回参考点。

该设计的目的是为了设计一台物料搬运机器人,利用现有已经报废的焊接机器人,本文的中结构设计主要偏向于对原有机构的改造和机械手的设计。

动力源
采用电源
驱动方式
该机器人一共具有四个独立的转动关节,连同末端机械手的运动,共需要五个动力源。

机器人常用的驱动方式有液压驱动、气压驱动和电机驱动三种类型。

机器人驱动系统各有其优缺点,通常对机器人的驱动系统的要求有:1).驱动系统的质量尽可能要轻,单位质量的输出功率要高,效率也要高;
2).反应速度要快,即要求力矩质量比和力矩转动惯量比要大,能够进行频繁地起、制动,正、反转切换;
3).驱动尽可能灵活,位移偏差和速度偏差要小;
4).安全可靠;
5).操作和维护方便;
6).对环境无污染,噪声要小;
7).经济上合理,尤其要尽量减少占地面积。

基于上述驱动系统的特点和机器人驱动系统的设计要求,本文选用直流伺服电机驱动的方式对机器人进行驱动。

传动方式
由于一般的电机驱动系统输出的力矩较小,需要通过传动机构来增加力矩,提高带负载能力。

对机器人的传动机构的一般要求有:
(1)结构紧凑,即具有相同的传动功率和传动比时体积最小,重量最轻;
(2)传动刚度大,即由驱动器的输出轴到连杆关节的转轴在相同的
扭矩时角度变形要小,这样可以提高整机的固有频率,并大大减轻整机的低频振动;
(3)回差要小,即由正转到反转时空行程要小,这样可以得到较高的位置控制精度;
(4)寿命长、价格低。

本文所选用的电机都采用了电机和齿轮轮系一体化的设计,结构紧凑,具有很强的带负载能力,但是不能通过电机直接驱动各个连杆的运动。

为减小机构运行过程的冲击和振动,并且不降低控制精度,采用了齿形带传动。

齿形带传动是同步带的一种,用来传递平行轴间的运动或将回转运动转换成直线运动,在本文中主要用于腰关节、肩关节和肘关节的传动。

齿轮带的传动比计算公式为
21
12z z n n i ==
齿轮带的平均速度a v 为 2211n t z n t z v a ⋅⋅=⋅⋅=
制动器
制动器及其作用:
制动器是将机械运动部分的能量变为热能释放,从而使运动的机械速度降低或者停止的装置,它大致可分为机械制动器和电气制动起两类。

在机器人机构中,学要使用制动器的情况如下:
特殊情况下的瞬间停止和需要采取安全措施
停电时,防止运动部分下滑而破坏其他装置。

机械制动器:
机械制动器有螺旋式自动加载制动器、盘式制动器、闸瓦式制动器和电磁制动器等几种。

其中最典型的是电磁制动器。

在机器人的驱动系统中常使用伺服电动机,伺服电机本身的特性决定了电磁制动器是不可缺少的部件。

从原理上讲,这种制动器就是用弹簧力制动的盘式制动器,只有励磁电流通过线圈时制动器打开,这时制动器不起制动作用,而当电源断开线圈中无励磁电流时,在弹簧力的作用下处于制动状态的常闭方式。

因此
这种制动器被称为无励磁动作型电磁制动器。

又因为这种制动器常用于安全制动场合,所以也称为安全制动器。

电气制动器
电动机是将电能转换为机械能的装置,反之,他也具有将旋转机械能转换为电能的发电功能。

换言之,伺服电机是一种能量转换装置,可将电能转换为机械能,同时也能通过其反过程来达到制动的目的。

但对于直流电机、同步电机和感应电机等各种不同类型的电机,必须分别采用适当的制动电路。

本文中,该机器人实验平台未安装机械制动器,因此机器人的肩关节和轴关节在停止转动的时候,会因为重力因素而下落。

另外,由于各方面限制,不方便在原有机构上添加机械制动器,所以只能通过
软件来实现肩关节和轴关节的电气制动。

采用电气制动器,其优点在于:在不增加驱动系统质量的同时又具有制动功能,这是非常理想的情况,而在机器人上安装机械制动器会使质量有所增加,故应尽量避免。

缺点在于:这种方法不如机械制动器工作可靠,断电的时候将失去制动作用。

相关文档
最新文档