基于S7-200PLC的热力公司换热站控制系统设计

合集下载

西门子S7-200SMART采暖系统说明书

西门子S7-200SMART采暖系统说明书

四平科恒智能换热器控制组使用说明书目录CONTENTS一、换热器机组系统简介 (2)1.1系统概述 (3)1.2系统基本结构 (3)1.3系统基本结构 (3)二、换热器机组主要性能指标 (4)2.1.1循环泵控制模式 (4)2.1.2循环泵工作方式 (4)2.1.3循环泵参数界面 (5)2.1.4循环泵参数说明 (6)2.2.1补水泵控制模式 (7)2.2.2补水泵工作方式 (8)2.2.3补水泵参数界面 (8)2.2.4补水泵参数说明 (10)2.3.1调节阀控制模式 (11)2.3.2调节阀界面参数 (12)2.3.3调节阀参数说明 (13)2.4.1流量计参数界面 (14)三、换热器控制组故障报警 (16)四、换热器控制组使用说明 (16)4.1菜单进入密码 (16)4.2电气操作流程 (16)注意 (17)一换热器机组系统简介1.1系统概述本产品采用进口、等和国产PLC品牌,专门为全自动换热机组进行研发和设计的,具有一定的稳定性、实用性和可靠性的全自动控制系统。

可实现循环、补水泵自动变频、温度、压力自动控制、热量、流量、电量可实现485通讯及上位机远程及手机APP控制,并实现多种变频控制模式和温度控制模式可供用户选择。

可同时控制一路温度调节阀及一路补水变频和一路循环变频。

采用S7-200西门子PLC为硬件控制核心,人工智能模糊控制软件最新算法,具有控制精度高、调节稳定、触摸屏显示人机交互界面、设定参数少、操作简单明了、参数修改密码锁定、巡站等功能。

1.2系统基本结构1.3系统特点1.通过人机界面实现全自动控制换热器机组。

2.可与流量计、热量表等进行485通讯。

3.通过PLC自动智能控制循环泵、补水泵及增压泵变频器运行及频率、电动调节阀开度、泄水阀、压力值大小、温度高低、液位、水箱根据液位自动上水等。

4.可接入4路压力传感器的电压、电流信号输入,5路温度传感器可接多种电阻温度传感器(用户若无要求,压力传感器采用电流信号,温度传感器采用PT1000)。

热力公司换热站控制系统设计【范本模板】

热力公司换热站控制系统设计【范本模板】

第一章绪论1.1 集中供暖的发展概述集中供暖是在十九世纪末期,伴随经济的发展和科学技术的进步,在集中供暖技术的基础上发展起来的,它利用热水或蒸汽作为热媒,由集中的热源向一个城市或较大区域供应热能。

集中供暖不仅为城市提供稳定、可靠的热源,改善人民生活,而且与传统的分散供热相比,能节约能源和减少污染,具有明显的经济效益和社会效益。

1.1.1 国外集中供暖发展概况集中供暖方式始于1877年,当时在美国纽约,建立了第一个区域锅炉房向附近14家用户供热。

20世纪初期,一些工业发达的国家,开始利用发电厂内汽轮机的排气,供给生产和生活用热,其后逐渐成为现代化的热电厂.在上世纪中,特别是二次世界大战以后,西方一些发达国家的城镇集中供暖事业得到迅速发展。

原苏联和东欧国家的集中供暖事业长期以来是实行以积极发展热电厂为主的发展政策。

原苏联集中供暖规模,居世界首位。

地处寒冷气候的北欧国家,如瑞典、丹麦、芬兰等国家,在第二次世界大战以后集中供暖事业发展迅速,城市集中供暖普及率都较高。

据1982年资料,如瑞典首都斯德哥尔摩市,集中供暖普及率为35%;丹麦集中供暖系统遍及全国城镇,向全国1/3以上的居民供暖和热水供应。

第二次世界大战后德国在废墟中进行重建工作,为发展集中供暖提供了有力的条件。

目前除柏林、汉堡、慕尼黑等城市已有规模较大的集中供暖系统外,在鲁尔地区和莱茵河下游,还建立了联结几个城市的城际供暖系统。

在一些工业发达较早的国家中,如美、英、法等国家,早期多以锅炉房供暖来发展集中供暖事业,锅炉房供暖占较大比例。

不过这些国家已非常重视发展热电联产的集中供暖方式。

1.1。

2 国内集中供暖发展概况我国城市集中供暖真正起步是在50年代开始的,党的十一届三中全会以后,特别是国务院1986年下发《关于加强城市集中供热管理工作的报告》,对我国的集中供暖事业的发展起到了极大的推动作用。

虽然我国这些年来集中供暖事业取得了迅速发展,但是和国外相比,我国目前采暖系统相当落后,具体体现在供暖质量差,即室温冷热不均,系统效率低下,不仅多耗成倍能量,而且用户不能自行调节室温。

参考论文-基于西门子S7-200PLC的温度控制系统设计毕业论文

参考论文-基于西门子S7-200PLC的温度控制系统设计毕业论文

基于西门子S7-200 PLC的温度控制系统设计毕业论文第一章前言1.1 课题研究背景温度是工业生产中常见的工艺参数之一,任何物理变化和化学反应过程都与温度密切相关。

在科学研究和生产实践的诸多领域中, 温度控制占有着极为重要的地位, 特别是在冶金、化工、建材、食品、机械、石油等工业中,具有举足轻重的作用。

对于不同生产情况和工艺要求下的温度控制,所采用的加热方式,燃料,控制方案也有所不同。

例如冶金、机械、食品、化工等各类工业生产中广泛使用的各种加热炉、热处理炉、反应炉等;燃料有煤气、天然气、油、电等[1]。

温度控制系统的工艺过程复杂多变,具有不确定性,因此对系统要求更为先进的控制技术和控制理论。

可编程控制器(PLC)可编程控制器是一种工业控制计算机,是继承计算机、自动控制技术和通信技术为一体的新型自动装置。

它具有抗干扰能力强,价格便宜,可靠性强,编程简单,易学易用等特点,在工业领域中深受工程操作人员的喜欢,因此PLC已在工业控制的各个领域中被广泛地使用[2]。

目前在控制领域中,虽然逐步采用了电子计算机这个先进技术工具,特别是石油化工企业普遍采用了分散控制系统(DCS)。

但就其控制策略而言,占统治地位的仍然是常规的PID控制。

PID结构简单、稳定性好、工作可靠、使用中不必弄清系统的数学模型[3]。

PID的使用已经有60多年了,有人称赞它是控制领域的常青树。

组态软件是指一些数据采集与过程控制的专用软件,它们是在自动控制系统监控层一级的软件平台和开发环境,使用灵活的组态方式,为用户提供快速构建工业自动控制系统监控功能的、通用层次的软件工具。

在组态概念出现之前,要实现某一任务,都是通过编写程序来实现的。

编写程序不但工作量大、周期长,而且容易犯错误,不能保证工期。

组态软件的出现,解决了这个问题。

对于过去需要几个月的工作,通过组态几天就可以完成.组态王是国内一家较有影响力的组态软件开发公司开发的,组态王具有流程画面,过程数据记录,趋势曲线,报警窗口,生产报表等功能,已经在多个领域被应用[4]。

基于PLC的换热站远程测控系统的研制

基于PLC的换热站远程测控系统的研制

式中:tn-室内温度;tW-室 外 温度 ;t'n-室 内设 计 温度 ;t'W-室 外设


度 ;t'g-二 次

计供

温度
;t'h-二 次

水设

温度
;G2=
G G'
,二
次网管实际流量 G 与设计流量 G' 的比值;B-散热器散热系数。
该换热站的监控要求如下:
2.1 运行参数
在换热站的工作过程中会有大量的参数需要进行实时监控,例
10KB,有 2 个 RS-485 通 讯接 口 ,支持 的 通讯 协 议 为 PPI、MPI、自 由 计算表在经济流速范围内确定其管径大小。 在选择整个系统的压力
口、 Profibus DP。 该 PLC 满足本换热站测控系统的要求。 上位机和 点时 ,一般 选 在循 环 泵的 入 口处 ,这 样可 以 保 证 系 统 运 行 时 的 稳 定
线数据传输设备进行无线通信。 其系统结构图如下所示。
图 1 系统结构图 3.2 系统软件的设计 西门 子 公 司 的 Win cc 是 第 一 个 使 用 32 位 技 术 的 过 程 监 控 系 统,具有良好的开放性和灵活性。 通用的应用程序,适合所有工业领
换热站通过改变调节阀的口径通量来改变蒸汽的供给量,从而改变 域的解决方案,内置所有操作和管理功能,可简单、有效地进行组
3 系统的构成
用中断的方式实现通信。 上位机采用西门子 Win cc 建立组态界面,
3.1 硬件系统的组成
下位机采用 PLC 梯形图进行编程。 PLC 中无需用户编写通讯程序,
该换热站采用典型的两级监控方式。 电脑作为上位机,采用软 PLC 编程主要解决的是现场的启停、模拟量和数字量的数据输入输

西门子PLC在换热站远程测控系统中的应用

西门子PLC在换热站远程测控系统中的应用

西门子PLC在换热站远程测控系统中的应用摘要:在现代的供热系统控制中,换热站的远程监控已经是不可缺少的一部分。

本文主要讲述了S7-200PLC在无人职守换热站远程测控系统中的应用,人机交互界面功能主要靠触摸屏和对应的上位机组态软件WINCC来实现。

通过GPRS DTU无线数据传输单元配合移动GPRS无线网络将数据无线传输到中控室,实现远程监测与控制。

关键词:换热站;PLC;GPRS DTU;远程监控0 引言在城市集中供热系统中,换热站作为热网系统面对热用户最后一级调节单元,换热站的控制效果直接决定热用户的采暖效果。

无人职守换热站远程测控系统是面向热力企业推出的融合暖通与计算机、网络、通讯技术的新一代网络化、信息化换热站远程监控系统。

该系统结构坚固紧凑,不但可直接应用于现场,实现就地监控、显示,而且由于具备强大灵活的软件功能和通讯功能,可方便地实现远程监控和远程设备的网络化管理[1]。

1 换热站自控系统设计换热站和热水管网是连接热源和热用户的重要环节,在整个供热系统中起着举足轻重的作用。

热水管网又分为一次网与二次网,一次网是指连接于城市管网与换热站之间的管网。

二次网是指连接于换热站与热用户之间的管网。

换热站是指连接于一次网与二次网并装有与用户连接的相关设备、仪表和控制设备的机房。

其硬件设备构成图如图1所示图1 换热站构成原理图换热站的工作原理为:热源提供的高温水由一次热网送至各换热站,在换热站中,一次热网高温水通过换热器与循环水相混合,进行热量交换,将热能传递给二次网循环水,再由二次网经供热管道输送到用户,冷却的回水返回二次网回水管,一次网回水降温后回到热源。

在换热站自控系统中,一次网流量控制回路主要通过调节一次回水调节阀来实现。

二次网的调节回路则是通过调节二次网循环泵及补水泵转速来实现。

一次网的控制指令主要由热网调度中心根据全网平衡算法下发,而二次网循环泵及补水泵变频器转速则由站内PLC系统依据各热力站所带热网的实际情况计算得出[2]。

基于PLC的换热站控制系统的研究毕业论文

基于PLC的换热站控制系统的研究毕业论文
3.4.1补水定压的作用33
3.4.2补水定压方法33
3.5变频调速恒压供水35
3.5.1变频调速恒压供水节能分析35
3.5.2供水控制系统36
3.5.2压力信号检测37
3.5.3补水泵变频调节硬件设计37
3.5.4补水泵变频调节软件设计38
3.6本章小结40
第4章上位机监控设计41
4.1上位机系统介绍41
在集中供热系统中,热网与热用户的连接方式分为直接和间接连接两种。在大型供热系统中,供热区域面积大,供热调节滞后现象严重;采用热网与热用户直接连接的方式往往难以实现对某一供热区域的局部调节;供热系统的控制难度增大,容易形成“近热远冷”的状况及水力与热力工况的失调:供热品质及效果难以得到保证,不利于供热系统的节能运行[2]。间接连接,在供热管网与热用户间建立换热站,将供热管网输送的热媒加以调节、转换,根据用户的需要分配给各个热用户。这种方式有利于对供热区域实现局部调节,满足热用户的用热需求,使得供热系统经济、节能、安全可靠运行成为可能。
其六:设备故障率低。由于集中供热可选用供热专用设备,其设备质量高于一般的工业设备,故运行安全可靠,故障率低[3]。
所以,城市集中供热是节能、环保的重要途径,是城市现代化的主要基础设施之一,也是经济发展,改善人民群众物质生活的重要标志之一。
1.2
1.
集中供热在欧美国家已经有一百多年的历史,美国从1877年、俄罗斯从1903年开始就有了集中供热工程13J。欧洲特别是挪威、瑞典和丹麦的供热技术非常具有特色,它们利用海水、湖水、地下水等作为热源,通过热泵装置获取热水作为冬季供热之用。在瑞典,容量最大的热泵站位于斯德哥尔摩,利用海水作为热源,供热能力达到160MW。丹麦的集中供热尤其著名,在从1985到2005年的20年中丹麦的集中供热占整个热力市场份额从30%增加到了60%[4]。

基于S7—200PLC的热力公司换热站控制系统设计

基于S7—200PLC的热力公司换热站控制系统设计

基于S7—200PLC的热力公司换热站控制系统设计随着社会经济的发展和天气气候的变化,人们对供暖的要求越来越高,特别是在寒冷的地区,这关乎到老百姓的生活质量,甚至是生存。

在以往的常规模式供热中,为了实现较好的工作状态和工作质量,大多数热力公司换热站采取人工调配和人工控制的方式进行作业。

这种工作模式下,需要大量的人力资源,同时需要人为地感知和调节温度,工作效率较差。

近些年,为了优化换热站的工作效率和服务质量,开发能充分适应热负荷不断变化的细调节运行方式,设计热力公司换热站控制系统已经成为目前研究的重要课题之一。

随着科学技术的进步,逐步实现热力公司换热站控制系统的网络化、自动化和智能化已经成为当前和未来发展的一种必然要求。

标签:S7-200PLC;热力公司;换热站;控制系统;智能化热力公司换热站的出现不是一蹴而就的,而是一个系统化的工程。

它产生于19世纪末期,是随着科学技术的进步和人们的生活需要而产生的。

这种方法主要采用热水或蒸汽作为热媒,由集中的热源向一个城市或较大区域供应热能。

以这种方式供暖不但提升了人们的生活质量,还提高了供暖的安全性和环保性。

1.换热站概述及发展现状在较早的供热中,锅炉是一种较为常见的供热方式。

换热站与锅炉房的供热有着明显的本质性区别,无论是在工作效能上还是供暖质量上都存在较大差异,主要是因为以往的锅炉房供热采取的是燃料把水(或其他介质)加热到具有一定参数的地方;而目前的换热站是为了把锅炉房生产的高温热水转换成能够直接给用户供热的热水。

严格意义上来说,换热站只是一个中转站而已。

在笔者的调查来看,换热站采取的供暖方式主要有换热板、混水等。

其实简单来说,换热站就是一个媒介,一个较大的过水热,它不是供热供暖设施的全部,只是其中的一个有机组成部分。

现在的换热站内部设备较为简单清晰,主要分为两大块,其中一块是采暖系统,另一块是民用生活系统。

就我国而言,换热站基本上没有民用热水设施。

在国内,很多换热站虽然近些年取得了非常大的发展和进步,但是还没有完全实现智能化和自动化作业,还需要一定的人,并且造成了一定的环境污染。

换热站自动控制系统使用说明书

换热站自动控制系统使用说明书

换热站自动控制系统使用说明一、概述本换热站自动控制系统,包括受柜、循环泵变频器柜、补水泵变频器柜和控制柜组成,对换热机组进行全面的自动控制。

控制系统使用西门子S7-200系列PLC作为控制器,通过模拟量扩展模块读取现场变送器采集到的现场数据,用于内部控制和送至触摸屏进行显示。

现场操作使用EView触摸屏,简单直观。

本系统触摸屏主要包括一下画面初始画面参数显示参数总览参数设定控制设定巡检画面电流显示报警一览报警设定下面对这些画面作简单说明初始画面为系统上电时屏幕显示的画面,点击手型按钮进入操作各画面。

进入操作画面后不再显示此画面。

参数显示在这个画面显示系统的基本参数,包括高温侧和低温侧压力、温度、流量。

还包括电机温度数据。

参数总览将参数显示在换热系统的示意图上,包括高温侧和低温侧压力、温度、流量及流量累积。

参数设定设定控制参数,包括一次网供水流量设定,二次网捕水压力设定、泻压压力设定。

进入报警设置的密码输入也在这个页面上。

控制设定在这个画面设定控制模式及输入手动时的输出值。

可设定补水泵、泻压阀和电动阀的状态,手动开启补水泵和泻压阀,设定补水泵和电动阀在手动时的输出值。

巡检画面用于上传巡检信息。

电流显示显示循环泵的三相电流大小,并显示一次网和二次网的热量及热量积算。

报警一览显示当前的报警信息报警设定设定报警限。

本画面只有在输入安全密码后才可以进入。

二、操作使用说明1、基本操作说明控制系统使用触摸屏作为人机界面。

触摸屏通过通讯电缆与PLC进行通讯交换数据。

可以通过点击触摸屏上的开关来切换开关的状态。

如果要输入数据,可以用手指点击要输入的数据,将会弹出一个数字小键盘,可以用手指点击相应的数字输入你想要的数值,然后点击小键盘上的ENT确认,便可以输入数据了,如下图所示画面切换可以通过点击画面底部的两个箭头实现。

2、自动补水设定使用自动补水需要按以下规程操作A、将变频补水柜面板上的转换开关调整至1#自动或2#自动状态。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

理工类大学本科毕业设计论文电气工程学院综合课程设计成绩评定表设计题目热力公司换热站控制系统设计姓名班级暂答辩小组成员(职称):说明书主要内容:(小摘要)热力公司换热站利用热水或蒸汽作为热媒,由集中的热源向一个城市或较大区域供应热能。

为了改变这一情况,多年以来供热行业一直在探讨开发能充分适应热负荷不断变化的细调节运行方式,以适应热负荷变化较大、调节频率较高对系统平衡能力的需求,满足热用户的合理需求,达到经济运行目的。

PLC控制换热站从技术上满足了这种需求,其原理是通过变送器远程采集系统运行数据,经有线或者无线方式将信号传递到控制中心进行中央监控,同时将控制信号以组态模式实时反馈,控制电控执行机构进行系统调节,实现对二次供、回水温度的合理控制和处理突发事故。

本课题来源于换热站的控制与技术,如何随时了解换热站的工作情况和有关信息,并根据这些信息和室外温度对换热站进行及时调控,使供暖系统始终在一个最佳工况下运行,从而获得良好的经济效益和社会效益,这就是本课题的研究目的所在。

评定成绩:答辩小组组长:年月日目录目录引言 (1)第一章绪论 (2)1.1 换热站的发展概述 (2)1.1.1 国外换热站发展概况 (2)1.1.2 国内换热站发展概况 (2)1.2 换热站的简介及运行现状 (3)1.3 课题的来源及意义 (3)第二章换热站的构成和总体设计方案 (5)2.1换热站的简介 (5)2.2换热站控制系统的构成 (5)2.3 换热站控制系统的硬件 (6)2.3.1换热器 (6)2.3.2 循环水泵 (7)2.3.3 阀门 (7)2.3.4 温度计、阀门 (8)2.3.5 PLC S7-200 (8)2.4 换热站工作原理 (11)2.5 系统总体方案设计思路 (12)2.6 该方案要实现的控制功能 (13)第三章控制系统实施方案 (15)3.1 换热站与热用户的连接方式 (15)3.2 温度的控制调节 (15)3.3 循环水流量的调节控制 (16)3.4 压力的调节控制 (17)3.5 换热站总体控制系统方案 (18)3.5.1 换热站控制系统设计 (18)3.5.2 控制系统硬件总体框架图 (18)3.5.3 换热站控制系统电气图 (18)参考文献 (20)理工类大学本科毕业设计论文引言温度控制系统在国内各行各业的应用虽然应用很广泛,但从国内生产的温度控制器来讲,总体发展水平仍然不高,同日本、美国、德国等先进国家相比仍然有着较大的差距。

目前,我国在这方面总体水平处于20世纪80年代中后期的水平,成熟产品主要以“点位”控制及常规的PID控制器为主,它只能适用于一般的温度系统的控制,难以控制滞后、复杂、时变温度系统控制。

能适应于较高的控制场合的智能化、自适应控制仪表,国内还不十分成熟。

随着国民经济的不断发展,人们对供暖质量的需求也在逐步提高。

在传统供热模式下,为满足供热需求,换热站内设备运行参数多为人工调节,随着室外温度及热负荷的不断改变,不断的人工调节二次供水温度以保证用户室内能够维持恒定的温度。

在这种情况下,人工手动调节必然存在着较大偏差,只能够根据经验达到粗调节,不能够居民对室内温度恒定。

为了改变这一情况,多年以来供热行业一直在探讨开发能充分适应热负荷不断变化的细调节运行方式,以适应热负荷变化较大、调节频率较高对系统平衡能力的需求,满足热用户的合理需求,达到经济运行目的。

随着科学技术的不断发展,人们对温度控制系统的要求越来越高,因此,高精度、智能化、人性化的温度控制系统是国内外必然发展的趋势。

第一章绪论1.1换热站的发展概述热力公司换热站是在十九世纪末期,伴随经济的发展和科学技术的进步,在集中供暖技术的基础上发展起来的,它利用热水或蒸汽作为热媒,由集中的热源向一个城市或较大区域供应热能。

集中供暖不仅为城市提供稳定、可靠的热源,改善人民生活,而且与传统的分散供热相比,能节约能源和减少污染,具有明显的经济效益和社会效益。

1.1.1 国外换热站发展概况在美国纽约在1877年,建立了第一个区换热站向附近14家用户供热。

20世纪初期,一些工业发达的国家,开始利用发电厂内汽轮机的排气,供给生产和生活用热,其后逐渐成为现代化的热电厂。

在上世纪中,特别是二次世界大战以后,西方一些发达国家的城镇集中供暖事业得到迅速发展。

原苏联和东欧国家的集中供暖事业长期以来是实行以积极发展热电厂为主的发展政策。

原苏联集中供暖规模,居世界首位。

地处寒冷气候的北欧国家,如瑞典、丹麦、芬兰等国家,在第二次世界大战以后集中供暖事业发展迅速,城市集中供暖普及率都较高。

据1982年资料,如瑞典首都斯德哥尔摩市,集中供暖普及率为35%;丹麦集中供暖系统遍及全国城镇,向全国1/3以上的居民供暖和热水供应。

第二次世界大战后德国在废墟中进行重建工作,为发展集中供暖提供了有力的条件。

目前除柏林、汉堡、慕尼黑等城市已有规模较大的集中供暖系统外,在鲁尔地区和莱茵河下游,还建立了联结几个城市的城际供暖系统。

在一些工业发达较早的国家中,如美、英、法等国家,早期多以锅炉房供暖来发展集中供暖事业,锅炉房供暖占较大比例。

不过这些国家已非常重视发展热电联产的集中供暖方式。

1.1.2 国内换热站发展概况我国城市集中供暖真正起步是在50年代开始的,党的十一届三中全会以后,特别是国务院1986年下发《关于加强城市集中供热管理工作的报告》,对我国的集中供暖事业的发展起到了极大的推动作用。

虽然我国这些年来集中供暖事业取得了迅速发展,但是和国外相比,我国目前采暖系统相当落后,具体体现在供暖质量差,即室温冷热不均,系统效率低下,不仅多耗成倍能量,而且用户不能自行调节室温。

在功能上,发达国家通常室内温度保持22摄氏度,我国仅为16摄氏度,而且我国的供暖质量很差,室温冷热不均,系统热效率低下,大多数地方没有采取按户计费,用户也不能自行设定和调节室温等等。

我国城市集中供暖目前存在的能源浪费主要来源与:建筑的保暖隔热和气密性能差;采暖系统相当落后。

造成结果是:低效率,我国供暖采暖系统普遍存在低负荷、低效率运行,实际供暖面积平均只有设备能力的40%左右。

管网输送效率低,管道泄漏和偷水现象严重;缺乏控制手段:我国供暖系统只有简单的调节手段,水力水平失调、垂直失调严重:没有恒温装置,供热不足和过度时,没有有效的调节手段;缺乏计量手段:采暖系统一般不设热表,没有计量收费造成用户不会主动去节能,没有计量也造成了管理运行人员没有具体数量上的依据来运行管理。

换热站的发展为改变了之前供热系统的众多缺陷。

1.2 换热站的简介及运行现状换热站与锅炉房是根本不同的。

锅炉房是用燃料把水(或其他介质)加热到具有一定参数的地方;而换热站是为了把锅炉房生产的高温热水(高于100C)转换成能够直接给用户供热的热水(低于100C)。

锅炉房是生产地,其主要设备有:锅炉、鼓风机、引风机、循环泵、和各种辅助设备(上煤机,除渣机)等,其中锅炉是主体。

而换热站是个中转站,现在换热站的主要换热方式有:换热板、混水等。

说白了换热站就像一个大的过水热,唯一不同的是它很大.它们都属于供热系统的一部分,又各自具有不同的功能。

其工艺流程是:锅炉房——(高温热水)——换热站——(低温热水)——用户——(低温热水)——换热站——(低温热水)——锅炉房通常换热站内部设备可分为两个部分,即采暖系统和民用生活系统,目前我国换热站大部分没有民用热水设施。

今后随着国民经济的发展,人民生活水平的提高在换热站内应该普及生活热水系统,来提高集中供暖的效益。

换热站的主要设备有:离心水泵、汽-水换热器、热水储水箱、过滤器、补水泵调节阀热媒参数调节和检测仪表、防止用户热水供应装置生锈和结垢的设备等。

换热站内还安装有热量表以及调节供热量的自动调节装置。

但是目前来说大部分换热站还不能实现全自动化无人值守,大部分缺乏控制手段,耗能严重造成资源的许多不必要的浪费。

1.3 课题的来源及意义随着国民经济的不断发展,人们对供暖质量的需求也在逐步提高。

在传统供热模式下,为满足供热需求,换热站内设备运行参数多为人工调节,随着室外温度及热负荷的不断改变,不断的人工调节二次供水温度以保证用户室内能够维持恒定的温度。

在这种情况下,人工手动调节必然存在着较大偏差,只能够根据经验达到粗调节,不能够居民对室内温度恒定。

为了改变这一情况,多年以来供热行业一直在探讨开发能充分适应热负荷不断变化的细调节运行方式,以适应热负荷变化较大、调节频率较高对系统平衡能力的需求,满足热用户的合理需求,达到经济运行目的。

目前,由微机监控换热站从技术上满足了这种需求,其原理是通过变送器远程采集系统运行数据,经有线或者无线方式将信号传递到控制中心进行中央监控,同时将控制信号以组态模式实时反馈,控制电控执行机构进行系统调节,实现对二次供、回水温度的合理控制和处理突发事故。

无人值守换热站具有以下特点:运行人员少,人员培训时间段,界面人格化,且能只管的监控换热站的运行情况;可以科学的根据天气情况及负荷变化通过适时反馈自动进行蒸汽流量细调节,降低直接成本;既可以循环监控各换热站的运行参数,又能抽调某个换热站的运行状态,保证了系统监控实时性;可以设定系统临界参数,系统异常时在控制中心实现报警,在必要时能及时的将控制信号自动反馈到电动执行机构,处理突然事故,保证了系统的安全性。

从理论上,通过计算机技术、PLC、传感器数据通讯技术和测控技术,需做到换热站在整个运行期间无需人员巡视时可行的,但是相应的硬件设施投入相对过大。

因此从企业经济效益角度出发,应以远程监控影像安全运行参数为主,辅以人员巡查,达到无人值守的目的。

本课题来源于平安小区换热站的控制与技术,如何随时了解换热站的工作情况和有关信息,并根据这些信息和室外温度对换热站进行及时调控,使供暖系统始终在一个最佳工况下运行,从而获得良好的经济效益和社会效益,这就是本课题的研究目的所在。

相关文档
最新文档