土壤微生物研究方法

合集下载

土壤微生物研究法

土壤微生物研究法

土壤微生物研究法土壤微生物是指生活在土壤中、具有生命活动能力的微生物种类,包括细菌、真菌、放线菌、放线杆菌、病毒等微生物,是土壤中一种极其重要的生物群落。

由于其对土壤生态系统的功能和稳定性有着极其重要的作用,因此对其进行研究具有重要的意义。

土壤微生物研究法包括传统的培养技术和现代的分子生物学技术。

传统的培养技术主要是通过对土壤样品进行适当处理后,将其分离出来并在特定培养基上生长,以获得代表土壤微生物种群的纯培养菌株。

而分子生物学技术则直接对土壤中的微生物DNA进行分析,以获得同时存在于土壤中的多种微生物群落的信息。

1. 传统的培养技术传统的培养技术主要是通过将土壤样品进行适当处理后,将其中的微生物进行分离、纯化、形态鉴定和鉴定物种等各种步骤。

该方法需要依靠生物培养基,通过对各种因素进行调控,使不同菌株能够在培养基上良好地生长繁殖。

其优点是可以准确地进行细胞计数、分离菌株、进行鉴定等,但也有不少局限性,如对部分微生物的培养需要非常特殊的培养基和条件,有时其培养数量也不足以代表真实的微生物群落。

在实际应用中,培养技术被广泛应用于微生物的鉴定和功能研究。

通过培养得到的不同菌株,可以进行各种实验,比如酶活性测定、基因表达等,以此来分析微生物的功能。

但是,在应用中仍然存在一些限制:1)在土壤中,存在许多有效菌株是难以在培养板上培养的;2)微生物分离所得的纯培养菌株有时会引起歧义或误判,无法准确反应真实的微生物群落;3)培养上的试验存在人为干扰,如微量元素的添加和实验条件等,可能影响微生物的形态和生长情况。

2. 分子生物学技术随着分子生物学技术的进步,直接对微生物DNA进行分析已经成为了研究微生物的重要方法之一。

这种方法不需要进行任何的培养步骤,能够直接获得土壤微生物胞外DNA信息,并可以分析土壤中细菌、真菌、原核生物等微生物量的水平和组成,其优点是准确、简便、迅速、全面。

目前常用的技术包括:1)宏基因组测序技术:该技术使用高通量测序机器,直接对土壤微生物DNA进行测序分析。

土壤微生物群落特征研究

土壤微生物群落特征研究

土壤微生物群落特征研究随着现代农业的迅速发展,土壤问题愈发凸显。

土壤是植物生长的根基,其中土壤微生物的数量、种类和功能是保证土壤健康的重要因素之一。

因此,研究土壤微生物群落的特征对于实现可持续农业发展至关重要。

一、土壤微生物群落的定义土壤微生物群落是指土壤中各种微生物的总体存在情况。

其中包括细菌、放线菌、真菌、原生动物和古生菌等生物,它们相互作用、繁殖和死亡,形成一个生态系统。

土壤微生物群落是土壤生态系统的重要组成部分,也是一种复杂的生物群体。

通过对土壤微生物群落的研究,可以深入了解土壤生态系统的功能以及生物间的相互作用关系。

二、土壤微生物群落的分类根据微生物的形态和生物学特征,可以将土壤微生物群落分为五类:细菌、放线菌、真菌、原生动物和古生菌。

1. 细菌细菌是土壤微生物群落中数量最多的成员。

它们通常以直线、弯曲或螺旋状形式存在,其大小在0.2至700微米之间。

细菌主要以分解有机物为生,可以通过分解复合氮、磷和其他微量元素,为植物提供必需的营养元素。

2. 放线菌放线菌是一种类似细菌的微生物,通常以线状或分支形式存在。

放线菌对土壤生态系统具有良好的调节作用,可以分解有机物、产生酶,同时也可以抑制一些有害菌种,保持土壤生态平衡。

3. 真菌真菌是一种含有细胞壁的微生物,通常以菌丝形式存活。

在土壤微生物群落中,真菌可以作为分解有机物的主要来源之一,同时也可以形成共生关系,与大多数植物形成根系真菌共生。

这种共生关系有利于植物吸收营养,提高植物的抗逆能力。

4. 原生动物原生动物是一种单细胞有机体,通常呈球形或卵圆形,大小从10至100微米不等。

在土壤微生物群落中,原生动物可以参与有机物的分解和生物循环,同时也可以对其他微生物的数量和分布产生重要影响。

5. 古生菌古生菌是一种孤立的微生物类群,原生于原始环境,其数量非常有限。

在土壤微生物群落中,古生菌主要参与有机物的分解和微量元素的循环过程。

三、土壤微生物群落特征研究进展随着现代分子生物学技术的发展,土壤微生物群落的研究越来越深入。

“土壤微生物的分解作用”实验研究

“土壤微生物的分解作用”实验研究

土壤微生物的分解作用实验研究一、实验背景土壤是由无机和有机物质组成的,其中有机物质主要是由植物和动物遗骸的死亡和腐烂所形成。

然而,这些有机物质不会一直存在于土壤中,因为有许多微生物,如细菌和真菌等,能够通过分解有机物质来获取能量和营养素。

这个过程称为土壤微生物的分解作用。

通过研究土壤微生物的分解作用,可以更好地了解土壤中的有机物质循环、生态系统的稳定性和生态环境的保护等问题。

因此,本实验旨在探究土壤中微生物分解有机物质的过程。

二、实验材料和方法2.1 实验材料•双歧杆菌菌粉•番茄叶片•磨砂纸•滴定管•烧杯•氢氧化钠(NaOH)•盐酸(HCl)•色谱管2.2 实验方法1.采集土壤样本,并将土壤放入培养皿内。

2.在土壤中添加5g的双歧杆菌菌粉,并与土壤充分混合。

3.取番茄叶片,用磨砂纸磨碎成小颗粒。

4.将磨碎的番茄叶片加入培养皿内,并充分混合。

5.在烧杯中添加10ml的NaOH溶液,并将滴定管插入NaOH溶液中。

6.在培养皿中加入适量的水,使土壤湿润。

7.将培养皿密封好,并放置在恒温培养箱中,温度设置为25℃,保存30天。

8.每天观察培养皿内的情况,记录并拍照。

9.将培养皿中的样品取出,挥发水分,然后进行质量分析。

10.对样品进行分析时,可以使用气相色谱(GC)和质谱(MS)等设备进行分析,以确定分解产物的类型和含量。

三、实验结果经过30天的培养,观察发现土壤中的番茄叶片明显减少,形态也发生了变化。

在实验的早期阶段,番茄叶片被微生物附着和固定在土壤表面,但在后期,叶片被完全分解并转变为土壤中的有机物质。

根据样品检测结果,可以发现产生了大量的有机酸(如苹果酸和柠檬酸)和糖类物质。

这些物质不仅可以为微生物提供能量和营养,还可以为土壤提供养分和改善土壤质量。

四、实验结论通过本实验的研究,可以得出以下结论:1.土壤中微生物参与了有机物质的分解过程,将有机物质分解成简单的有机酸和糖类物质。

2.分解产物可以为微生物和土壤提供能量和养分,有助于保持生态系统的稳定性和提高土壤的质量。

土壤微生物数量测定方法

土壤微生物数量测定方法

土壤微生物数量测定方法土壤微生物是指生活在土壤中的微小生物,包括细菌、真菌、放线菌、古菌等。

土壤微生物在土壤的生物地球化学循环、有机质分解、养分转换和植物健康等过程中起着重要的作用。

因此,对土壤微生物数量的准确测定具有重要意义。

本文将介绍一些常用的土壤微生物数量测定方法。

1.瓶培法:将适量的土壤样品与适量的培养基混合,在37°C下培养约24小时,然后通过平板计数法或最凼稀释法进行测定。

2.膜过滤法:将土壤提取液通过特定孔径的膜过滤器滤过,然后将膜放置在培养基上进行细菌的生长,最后进行计数。

3.间接法:通过测定土壤样品的可培养细菌指标,如氧化还原酶、脱氢酶等的活性,从而推算出土壤中的细菌数量。

4.分子生物学方法:通过PCR扩增土壤DNA中的细菌基因,如16SrRNA基因,再通过测定PCR产物进行细菌数量的测定。

1.直接镜检法:直接在显微镜下观察土壤样品中的真菌,通过计数来估算真菌的数量。

2.平板计数法:将土壤样品均匀撒在培养基上,通过培养方法使真菌生长形成菌落,最后进行计数。

3.膜过滤法:与细菌数量测定相似,将土壤提取液通过膜过滤器滤过,然后将膜放置在适当的培养基上进行真菌的生长,最后进行计数。

4.分子生物学方法:通过PCR扩增土壤DNA中的真菌基因,如18SrRNA基因,再通过测定PCR产物进行真菌数量的测定。

1.直接镜检法:直接在显微镜下观察土壤样品中的放线菌,通过计数来估算放线菌的数量。

2.平板计数法:将土壤样品均匀撒在培养基上,通过培养方法使放线菌生长形成菌落,最后进行计数。

3.膜过滤法:与细菌和真菌数量测定类似,将土壤提取液通过膜过滤器滤过,然后将膜放置在适当的培养基上进行放线菌的生长,最后进行计数。

4.分子生物学方法:通过PCR扩增土壤DNA中的放线菌基因,如16SrRNA基因,再通过测定PCR产物进行放线菌数量的测定。

通过上述方法测定土壤中微生物的数量,可以了解土壤微生物对土壤生态系统功能的影响,并为土壤质量评价和科学合理利用提供依据。

模拟土壤微生物摇瓶培养法

模拟土壤微生物摇瓶培养法

模拟土壤微生物摇瓶培养法摇瓶培养法是一种常用的土壤微生物研究方法,可以用来定量评估土壤中微生物的数量和活性。

本文将介绍模拟土壤微生物摇瓶培养法的基本原理、步骤和注意事项。

一、摇瓶培养法的基本原理摇瓶培养法是通过将土壤样品与培养基混合在摇瓶中,培养一定时间后,通过计数培养瓶中微生物的数量来评估土壤微生物的多寡。

在培养过程中,土壤样品中的微生物会通过代谢活动产生可见的变化,如产酸、产气等,从而可以通过观察这些变化来评估微生物的数量和活性。

二、摇瓶培养法的步骤1.准备土壤样品:从研究对象的土壤中采集一定量的样品,避免采集过程中的污染。

样品应随机采集,保证代表性。

2.制备培养基:根据研究需要选择适当的培养基,如常用的液体培养基包括液体肉汤培养基、液体琼脂培养基等。

制备培养基时应严格按照配方和操作要求进行。

3.摇瓶培养:将土壤样品与培养基混合均匀后注入摇瓶中,摇瓶培养一定时间。

培养时间一般为24小时至72小时,根据研究需要进行调整。

4.观察和计数:培养结束后,观察培养瓶中是否有可见的变化,如产酸或产气等。

根据需要,可以进行进一步的计数工作,如使用显微镜计数或进行菌落计数。

5.数据分析:根据观察和计数结果,可以评估土壤微生物的数量和活性,并进行数据统计和分析。

三、摇瓶培养法的注意事项1.样品处理:在采集和处理样品的过程中,要避免污染和氧化,以免影响微生物的生长和代谢活动。

2.培养基选择:根据研究对象和目的选择适当的培养基,以促进微生物的生长和代谢。

3.培养条件控制:在培养过程中,要控制好温度、pH值、湿度等条件,以提供适宜的生长环境。

4.摇瓶方式:在培养过程中,要根据研究需要选择适当的摇瓶方式,如旋转摇瓶、摇床摇瓶等,以促进培养基和微生物的充分接触。

5.观察和计数方法:观察和计数时要仔细、准确,尽量避免主观误差。

可以使用显微镜计数、菌落计数或其他适当的方法进行。

6.数据处理和分析:在数据处理和分析时,要注意统计学方法的选择和正确应用,以得出准确和可靠的结果。

土壤微生物研究方法

土壤微生物研究方法

第二节 土壤微生物的计数与分析
• 一、培养计数法

根据培养基上所生长微生物的数量来 估算土壤中微生物的数量的方法
(一)一般微生物的分离与计数
• 稀释平板法
• 最大或然数法(MPN稀释法) • 土粒法
• 稀释平板法:

用已知质量的土壤在适量的溶液中搅拌的时候,微生 物和土壤分离,这些分开的微生物细胞在营养琼脂平板上 生长成为分散的菌落,根据菌落数换算得单位重量土壤中 微生物的数量。土壤中微生物的数量很多,因此必须取少 量样品制成土壤悬液,然后稀释,使发育在培养皿中的菌 落可以很好地分散开
测定是微生物在与野外环境完全不同的溶液 中的代谢活性,因此,也不能确定它的结果能 否反映土壤区系的实际代谢情况;
二、土壤微生物结构多样性分析
• 磷脂脂肪酸法也称为PLEA法 • (phospholipid fatty acid 法); • 磷酸脂肪酸是所有微生物细胞膜磷脂的组分,具有结构多 样性和较高的生物学特异性,用磷酸脂肪酸作为标记物来 研究鉴别土壤微生物群落结构多样性变化。
?土壤微生物细胞利用31种碳源进行代谢以代谢过程产生的酶与四唑类显色物质如种碳源进行代谢以代谢过程产生的酶与四唑类显色物质如ttctv发生颜色反应的浊度差异为基础运用独有的显性排列技术分析土壤微生物的代谢特征指纹图谱反映不同环境条件引起的土壤微生物群落变化发生颜色反应的浊度差异为基础运用独有的显性排列技术分析土壤微生物的代谢特征指纹图谱反映不同环境条件引起的土壤微生物群落变化?biolog测试板含有96个小孔除对照外其余孔内分别含有不同的有机碳源和一种指示剂通过接种菌悬液根据微生物对碳源利用时指示剂颜色变化差异来鉴定微生物群落功能多样性个小孔除对照外其余孔内分别含有不同的有机碳源和一种指示剂通过接种菌悬液根据微生物对碳源利用时指示剂颜色变化差异来鉴定微生物群落功能多样性该法优点?灵敏度高分辨力强?无需分离培养纯种微生物可以最大限度地保留微生物群落原有的代谢特征无需分离培养纯种微生物可以最大限度地保留微生物群落原有的代谢特征?测定简便数据读取与记录可以由计算机辅助完成测定简便数据读取与记录可以由计算机辅助完成?可以连续监测微生物的变化可批量分析该法缺点?特别依赖于群体生理活性不能监测休眠体也不能检测那些不能利用特别依赖于群体生理活性不能监测休眠体也不能检测那些不能利用biolog碳源底物的群体

土壤微生物分析方法

土壤微生物分析方法

土壤微生物分析方法
一、引言
土壤是地球上肥沃的生活空间,也是物质循环的重要环节。

微生物在土壤中起着重要作用,它们参与着养分、水、氮的循环,帮助植物吸收养分和水,并发挥抗病虫、降解污染物等作用,是土壤生态系统中的重要组成部分。

随着科学技术的发展,目前的研究已经逐渐从单一微生物研究转变成研究其复杂而多样的群落,并且研究微生物群落的多样性和功能。

因此,准确研究土壤微生物以及其群落结构及功能,对于土壤环境的分析和调控有重要意义。

1、液体培养法
液体培养法是一种用于分析土壤微生物群落的常用方法,它的工作原理是在恒温的培养箱中,用有机物质和无机物质组成的培养基培养土壤中的微生物,并监测它们的生长。

培养基的组成成分可以根据需要变化,以考察特定微生物的生长情况及功能。

液体培养法可以清楚的显示不同类型的微生物群落的数量和组成,为分析其功能及其影响环境的作用提供重要的参考依据。

2、分子生物学技术
分子生物学技术包括核酸提取、PCR扩增、PCR测序等技术,主要用于检测土壤中的微生物群落结构,研究其适应性、多样性、抗药性等方面的知识。

土壤微生物量测定方法

土壤微生物量测定方法

土壤微生物量测定方法一、土壤微生物生物量碳(氯仿熏蒸-K2SO4提取-碳分析仪器法)1、试剂(1)去乙醇氯仿制备:在通风橱中,将分析纯氯仿与蒸馏水按1 2(v : v)加入分液漏斗中,充分摇动1 min,慢慢放出底层氯仿于烧杯中,如此洗涤3次。

得到的无乙醇氯仿中加入无水氯化钙,以除去氯仿中的水分。

纯化后的氯仿置于试剂瓶中,在低温(4℃)、黑暗状态下保存。

(2)氢氧化钠溶液[c(NaOH)= 1 mol L-1]:通常分析纯固体氢氧化钠中含有碳酸钠,与酸作用时生成二氧化碳,从而影响滴定终点判断和测定的准确度。

配制时应先除去碳酸钠,根据碳酸钠不溶于浓碱,可先将氢氧化钠配成50%(w : v)的浓氧溶液,密闭放置3~4 d。

待碳酸钠沉降后,取56 ml 50%氢氧化钠上清液(约19 mol L-1),用新煮沸冷却的除去二氧化碳的蒸馏水释稀到1 L,即为浓度1 mol L-1 NaOH溶液,用橡皮塞密闭保存。

(3)硫酸钾提取剂[c(K2SO4)= 0.5 mol L-1]:取1742.5 g分析纯硫酸钾,用研钵磨成粉末状,倒于25 L塑料桶中,加蒸馏水至20 L,盖紧螺旋盖置于摇床(150 r min-1)上溶解24 h即可。

(4)六偏磷酸钠溶液[ρ(Na)= 5 g 100 ml-1,pH 2.0]:称取50.0 g分析纯六偏磷酸钠溶于800 ml高纯度去离子水中,用分析纯浓磷酸调节至pH 2.0,用高纯度去离子水定容至1 L。

要注意的是六偏磷酸钠溶解速度很慢应提前配制;由于其易粘于烧杯底部,若加热常因受热不均使烧杯破裂。

(5)过硫酸钾溶液[ρ(K2S2O8)= 2 g 100 ml-1]:称取20.0 g分析纯过硫酸钾,溶于高纯度去离子水中,定容至1 L。

值得注意过硫酸钾溶液易被氧化,应避光存放且最多使用7 d。

(6)磷酸溶液[ρ(H3PO4)= 21 g 100 ml-1]:量取37 ml 分析纯浓磷酸(85%),慢慢加入到188 ml高纯度去离子水中即可。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Pedobiologia 50(2006)275—280SHORT COMMUNICATIONChoice of methods for soil microbial community analysis:PLFA maximizes power compared to CLPP and PCR-based approachesPhilip W.Ramsey a,Ã,Matthias C.Rillig a ,Kevin P .Feris b ,William E.Holben a ,James E.Gannon aa Microbial Ecology Program,Division of Biological Sciences,The University of Montana,USA bDepartment of Biology,Boise State University,USAReceived 11January 2006;received in revised form 6March 2006;accepted 9March 2006KEYWORDS Polyphasic;Phospholipid fatty acid;PLFA;Community level physiological profiling;CLPP;PCRSummaryPolyphasic studies that used phospholipid fatty acid analysis (PLFA)in conjunction with community level physiological profiling (CLPP)or PCR-based molecular methods were analyzed in order to evaluate the power of each strategy to detect treatment effects on soil microbial community structure (MCS).We found no studies where CLPP or PCR-based methods differentiated treatments that were not also differentiated by PLFA.In 14of 32studies (44%),PLFA differentiated treatments that were not resolved by CLPP analysis.In 5of 25studies (20%),PLFA differentiated treatments that were not resolved by PCR-based methods.We discuss PLFA,CLPP ,and PCR-based methods with respect to power to discriminate change in MCS versus potential for characterization of underlying population level changes.&2006Elsevier GmbH.All rights reserved.The response of soil microbial community struc-ture (MCS)to perturbation is of interest to researchers seeking biologically relevant variables in experimentally or naturally altered ecosystems.For the current discussion,MCS is defined as the number and relative abundance of microbialpopulations in soil.Three strategies for the elucidation of treatment effects on MCS dominate contemporary Microb.Ecol.:community level physiological profiling (CLPP),phospholipid fatty acid analysis (PLFA),and PCR-based methods such as denaturing gradient gel electrophoresis (DGGE),terminal restriction fragment length polymorphism (T-RFLP),ribosomal intergenic spacer analysis (RISA),and randomly amplified polymorphic DNA(RAPD)(Øvre (as,2000).Independent assessments have indicated that each approach returns similar results with respect to the demonstration ofwww.elsevier .de/pedobi0031-4056/$-see front matter &2006Elsevier GmbH.All rights reserved.doi:10.1016/j.pedobi.2006.03.003ÃCorresponding author .Tel.:+14062434254.E-mail addresses:philip@ (P .W.Ramsey),matthias@ (M.C.Rillig),kevinferis@ (K.P .Feris),bill.holben@ (W.E.Holben),jim.gannon@ (J.E.Gannon).treatment effects(Widmer et al.,2001;Ritchie et al.,2000).The relative power of each to elucidate treatment effects has rarely been com-pared.In one study,PLFA was demonstrated to be more sensitive than CLPP and a PCR-based method (guanine plus cytosine ratio)to changes in MCS across a gradient of grassland management inten-sities(Grayston et al.,2004).In another study,the ability of PLFA and a molecular method,length heterogeneity PCR(LH-PCR),to resolve the effects of tillage and ground cover on MCS were compared using discriminant analysis(Dierksen et al.,2002). In that study,the inclusion of molecular data into the discriminant analysis did not improve predic-tive power of the analysis above that which was achieved using PLFA data alone.This study raises the hypothesis that using a polyphasic approach to detect change in MCS is no more useful than PLFA data alone.Here,we tested this hypothesis by searching for studies that used PLFA in conjunction with CLPP or PCR-based methods in order to evaluate the question:Has CLPP or a PCR-based method been used to detect a treatment effect on MCS that was not also detectable by PLFA? Searches of the Web of Science and CSA Illumina databases with various combinations of the words PLFA,FAME,CLPP,fatty acids,T-RFLP,Biolog s, DNA,PCR,16s,rDNA,DGGE,TGGE,gel electro-phoresis,soil,community structure,and polyphasic returned53studies that used PLFA in conjunction with CLPP or PCR-based methods to identify treatment effects on MCS.While not exhaustive, the highest impact factor soils journals were among the journals included(see references in Table1). Therefore,the sample should represent the current state of knowledge.Papers in which PCR-based methods were used to track specific populations either by DGGE band excision and sequencing or by the use of primer sets specific to phylogenetic groups were not considered to be demonstrations of change in MCS unless including a general test of significant difference(or correlation)at the total community level.No studies were found where CLPP or PCR-based analyses were used to differentiate a treatment effect on soil MCS that was not also identified by PLF A of the same samples.Conversely,in14of32 studies(44%),PLF A differentiated treatments that were not resolved by CLPP analysis of the same samples.In5of25studies(20%),PLF A differentiated treatments that were not resolved by a PCR-based method.These studies are arranged categorically in T able1.In thefive studies where PCR-based methods were unable to detect differences detected by PLF A,the specific PCR-based methods used were LH-PCR,DGGE(twice),RISA,and DNA RAPD(Dierk-sen et al.,2002;Thirup et al.,2003;Leckie et al., 2004;Ritz et al.,2004;Suhadolc et al.,2004).If the MCS changes detected by PLFA are real in all cases, our analysis implies that studies using only CLPP or a PCR-based method incur a type II error rate of approximately44%and20%,respectively.Of the three general strategies for detecting MCS changes,PCR-based methods are used in a higher proportion of studies than PLFA or CLPP(Fig.1), probably because PCR-based methods offer the greatest potential for characterization of under-lying population level changes.However,the power of PCR-based methods to resolve treatment effects on the total soil microbial community may be limited compared to PLFA because less statistically relevant information can be gained from pattern analysis of PCR-generatedfingerprint patterns than from PLFA profiles.One explanation of this is that in a typical DGGE analysis,20–50detectable and quantifiable bands may vary in intensity by one or two orders of magnitude(due to detection and imaging limitations),while in a typical PLFA profile more than70continuous variables(PLFA peaks)can be detected in concentrations ranging over at least 3orders of magnitude.Further,quantitative estimates of population densities gleaned from community level analyses must be considered carefully due to so-called‘‘PCR bias’’introduced by the exponential amplification of DNA targets. Rarefaction analysis of molecular data allows estimates of relative population abundance within a sample(e.g.Basiliko et al.,2003).Still,quanti-fication of change in the abundance of individual populations requires support from additional ana-lyses,such as species/group specific quantitative PCR(Yu et al.,2005).CLPP produces large numbers of continuous variables and so should be highly sensitive to change in MCS.However,CLPP requires growth of microbes on carbon substrates in microtiter plates (i.e.metabolism).Many organisms present in soil will not grow in the wells and,conversely,organ-isms growing in the wells may not have been active in the soil.Also,not all substrates catabolized by soil microbes are represented.Thus,CLPP probably loses sensitivity due to a bias toward under-representing metabolic diversity.It hence appears that PLFA offers the most powerful approach to demonstrating change in MCS,and that monophasic studies relying on CLPP or PCR-based methods are prone to high type II error rates.On the other hand,PLFA offers limited insight into changes in specific microbial popula-tions.While certain PLFAs can be used as biomar-kers for specific populations(White and Ringelberg, 1998),the resolution of population level changeP.W.Ramsey et al.276within communities is coarse due to several factors including:(1)overlap exists in the PLFA composi-tion of microorganisms;(2)determination of signature PLFAs for specific microbes requires their isolation in pure culture;and(3)PLFA patterns for individual populations can vary in response to environmental stimuli.Therefore,where popula-tion level information is needed,PCR-based meth-ods offer avenues for hypothesis testing not available through PLFA.In some situations,it is more important to employ the most powerful method of demonstrat-ing a treatment effect on MCS than it is to use a method that provides information on underlying changes in microbial populations.Statistical power depends on effect size,variability,and sample size,and could also be related to the number of response variables in a multivariate analysis.Hence there are a number of possible reasons for the observed difference in power forTable1.Authors,year,and treatment type of polyphasic studies in which PLFA was used in conjunction with a molecular method or CLPPStudies in which PLFA resolved a treatment effect that molecular methods did not Studies in which PLFA resolved a treatment effect that CLPP did notDierksen et al.(2002)Methods comparison B(a(a th et al.(1998)Contamination Leckie et al.(2004)Plant cover type/nutrient availability Bossio et al.(2005)Land use change Ritz et al.(2004)Spatial structure Bundy et al.(2004)Contamination Suhadolc et al.(2004)Heavy metals Entry et al.(2004)Land useThirup et al.(2003)Introduced bacteria and fungicide Grayston et al.(2001)Cover-type gradientStudies in which PLFA and CLPP resolved the same treatment effect Ibekwe and Kennedy(1998)Methods comparisonBossio et al.(2005)Plant cover type Ibekwe et al.(2001)FumigantsCahyani et al.(2003)Succession O’Donnell et al.(2001)Cover type/fertilizers Cahyani et al.(2004)Succession Pankhurst et al.(2001)Salinity/alkalinityClegg et al.(2003)Plant cover type Priha et al.(2001)Land useEbersberger et al.(2004)Global change Priha et al.(1999)Cover typeGriffiths et al.(1997)Contamination Soederberg et al.(2002)Cover typeGriffiths et al.(1999)Nutrient availability Thirup et al.(2003)SuccessionHernesmaa et al.(2005)Plant cover type Yao et al.(2000)Land useIbekwe et al.(2002)Plant cover type Studies in which PLFA and molecular methodsresolved the same treatment effectIbekwe et al.(2001)Fumigants Broughton and Gross(2000)Productivity gradientKandeler et al.(2000)Contamination Certini et al.(2004)Spatial structure Landeweert et al.(2003)Methods comparison Collins and Cavigelli(2003)Elevation gradientMacNaughton et al.(1999)Contamination Ellis et al.(2001)Methods comparison Miethling et al.(2000)Plant cover type/spatial structure Fang et al.(2001)Cover typePatra et al.(2005)Plant cover Fritze et al.(2000)ContaminationRitchie et al.(2000)Methods comparison Kelly et al.(1999)ContaminationSuzuki et al.(2005)Plant cover type Macdonald et al.(2004)Cover typeT urpeinen et al.(2004)Contamination Miethling et al.(2000)Land use/inoculation Widmer et al.(2001)Methods comparison Pankhurst et al.(2002)Spatial structureYang et al.(2003)Succession Pietikaeinen et al.(2000)FireRitz et al.(2004)Spatial structureSchutter et al.(2001)Land useSchutter and Dick(2001)Carbon substratesSiciliano and Germida(1998)InoculantsSiciliano et al.(1998)Cover typeThompson et al.(1999)ContaminationWidmer et al.(2001)Methods comparison Choice of methods for soil microbial community analysis277the various strategies,including the number of response variables a method yields,data type (continuous vs.presence/absence),and cultivation or PCR biases.Especially in situations where it is important to minimize type II errors (such as questions involving pollution effects),a hierarchi-cal analysis approach may be warranted:first,PLFA would be used to detect treatment differences,and subsequently (if an effect was found)a PCR-based method for resolving particular populations involved in the detected response.For example,Callaway et al.(2004a)used PLFA to show that microbial communities differed between rhizo-spheres of native grasses and an invasive weed.Then Callaway et al.(2004b)used a PCR-based method to explore the effects of differences in microbial communities between rhizospheres of the weed grown in its native soil and in soil from its invaded range in a situation where further identi-fication of populations could have been valuable (Callaway et al.,2004b ).Particularly in soil ecology,lack of power is a significant problem (e.g.Klironomos et al.,1999)that can be exacer-bated by a choice of method that does not maximize power.AcknowledgmentsJ.E.G.and M.C.R.acknowledge funding from the USDOI.P .W.R.acknowledges funding from an Inland Northwest Research Alliance (INRA)Fellowship.ReferencesB (a(a th, E.,Diaz-Ravina,M.,Frosteg (a rd,(A.,Campbell,C.D.,1998a.Effect of metal-rich sludge amendments on the soil microbial community.Appl.Environ.Microbiol.64,238–245.Basiliko,N.,Yavitt,J.B.,Dees,P .M.,Merkel,S.M.,2003.Methane biogeochemistry and methanogen commu-nities in two northern peatland ecosystems,New York state.Geomicrobiol.J.20,563–577.Bossio,D.A.,Girvan,M.S.,Verchot,L.,Bullimore,J.,Borelli,T .,Albrecht, A.,Scow,K.M.,Ball, A.S.,Pretty,J.N.,Osborn, A.M.,2005.Soil microbial community response to land use change in an agricultural landscape of western Kenya.Microb.Ecol.49,50–62.Broughton,L.C.,Gross,K.L.,2000.Patterns of diversity in Plant Soil microbial communities along a productiv-ity gradient in a Michigan old-field.Oecologia 125,420–427.Bundy,J.G.,Paton,G.I.,Campbell, C.D.,-bined microbial community level and single species biosensor responses to monitor recovery of oil polluted soil.Soil Biol.Biochem.36,1149–1159.Cahyani,V .R.,Matsuya,K.,Asakawa,S.,Kimura,M.,2003.Succession and phylogenetic composition of bacterial communities responsible for the composting process of rice straw estimated by PCR-DGGE analysis.Soil Sci.Plant Nutr .49,619–630.Cahyani,V .R.,Matsuya,K.,Asakawa,S.,Kimura,M.,2004.Succession and phylogenetic profile of eukar-yotic communities in the composting process of rice straw estimated by PCR-DGGE analysis.Biol.Fert.Soils 40,334–344.Callaway,R.M.,Thelen,G.C.,Barth,S.,Ramsey,P .W.,Gannon,J.E.,2004a.Soil fungi alter interactions between the invader Centaurea maculosa and North American natives.Ecology 85,1062–1071.Callaway,R.M.,Thelen,G.C.,Rodriquez, A.,Holben,W.E.,2004b.Soil biota and native plant invasion.Nature 474,731–733.Certini,G.,Campbell,C.D.,Edwards,A.C.,2004.Rock fragments in soil support a different microbial com-munity from the fine earth.Soil Biol.Biochem.36,1119–1128.Clegg,C.D.,Lovell,R.D.L.,Hobbs,P .J.,2003.The impact of grassland management regime on the community structure of selected bacterial groups in soils.FEMS Microbiol.Ecol.43,263–270.Collins,H.P .,Cavigelli,M.A.,2003.Soil microbial com-munity characteristics along an elevation gradient in the laguna mountains of Southern California.Soil Biol.Biochem.35,1027–1037.Dierksen,K.P .,Whittaker ,G.W.,Banowetz,G.M.,Azeve-do,M.D.,Kennedy,A.C.,Steiner ,J.J.,Griffith,S.M.,2002.High resolution characterization of soil biologi-cal communities by nucleic acid and fatty acid analyses.Soil Biol.Biochem.34,1853–1860.Ebersberger ,D.,Wermbter ,N.,Niklaus,P .A.,Kandeler ,E.,2004.Effects of long term CO 2enrichment on01998199920002001200220032004P e r c e n t a g e o f s t u d i e s u s i n g C L P P , P L F A , o r P C R (%)Figure 1.Percentage of soil microbial community structure studies using CLPP (light gray bars),PLFA (open bars),and PCR-based methods (dark gray bars),by year ,from 1998to 2004.Results were compiled from a search of CSA Illumina database.The search terms ‘‘soil’’and ‘‘microbial community structure’’returned 250studies,of which 200(80%)used one of the three major strategies for the determination of microbial community structure.P .W.Ramsey et al.278microbial community structure in calcareous grass-land.Plant Soil264,313–323.Ellis,R.J.,Neish,B.,Trett,M.W.,Best,J.G.,Weightman,A.J.,Morgan,P.,Fry,J.C.,parison ofmicrobial and meiofaunal community analyses for determining impact of heavy metal contamination.J.Microbiol.Methods45,171–185.Entry,J.A.,Fuhrmann,J.J.,Sojka,R.E.,Shewmaker,G.E.,2004.Influence of irrigated agriculture on soilcarbon and microbial community structure.Environ.Mgmt.33,363–373.Fang,C.,Radosevich,M.,Fuhrmann,J.J.,2001.Char-acterization of rhizosphere microbial community structure infive similar grass species using FAME and BIOLOG analyses.Soil Biol.Biochem.33,679–682. Fritze,H.,Perkioemaeki,J.,Saarela,U.,Katainen,R., Tikka,P.,Yrjaelae,K.,Karp,M.,Haimi,J.,Ro-mantschuk,M.,2000.Effect of cd-containing wood ash on the microflora of coniferous forest humus.FEMS Microbiol.Ecol.32,43–51.Grayston,S.J.,Griffith,G.S.,Mawdsley,J.L.,Campbell,C.D.,Bardgett,R.D.,2001.Accounting for variabilityin soil microbial communities of temperate upland grassland ecosystems.Soil Biol.Biochem.33, 533–551.Grayston,S.J.,Campbell,C.D.,Bardgett,R.D.,Mawds-ley,J.L.,Clegg,C.D.,Ritz,K.,Griffiths,B.S.,Rodwell, J.S.,Edwards,S.J.,Davies,W.J.,Elston, D.J., Millard,P.,2004.Assessing shifts in microbial community structure across a range of grasslands of differing management intensity using CLPP,PLFA,and community DNA techniques.Appl.Soil Ecol.25, 63–84.Griffiths,B.S.,Diaz-Ravina,M.,Ritz,K.,McNicol,J.W., Ebblewhite,N.,B(a(a th, E.,munity DNA hybridisation and%G+C profiles of microbial commu-nities from heavy metal polluted soils.FEMS Microbiol.Ecol.24,103–112.Griffiths, B.S.,Ritz,K.,Ebblewhite,N.,Dobson,G., 1999.Soil microbial community structure:effects of substrate loading rates.Soil Biol.Biochem.31, 145–153.Hernesmaa, A.,Bjorklof,K.,Kiikkila,O.,Fritze,H., Haahtela,K.,Romantschuk,M.,2005.Structure and function of microbial communities in the rhizosphere of Scots pine after tree-felling.Soil Biol.Biochem.37, 777–785.Ibekwe,A.M.,Kennedy,A.C.,1998.Phospholipid fatty acid profiles and carbon utilization patterns for analysis of microbial community structure underfield and greenhouse conditions.FEMS Microbiol.Ecol.26, 151–163.Ibekwe,A.M.,Papiernik,S.K.,Gan,J.,Yates,S.R.,Yang,C.,Crowley,D.E.,2001.Impact of fumigants on soilmicrobial communities.Appl.Environ.Microbiol.67, 3245–3257.Ibekwe, A.M.,Kennedy, A.C.,Frohne,P.S.,Papiernik, S.K.,Yang,C.,Crowley,D.E.,2002.Microbial diversity along a transect of agronomic zones.FEMS Microbiol.Ecol.39,183–191.Kandeler,E.,Tscherko,D.,Bruce,K.D.,Stemmer,M., Hobbs,P.J.,Bardgett,R.D.,Amelung,W.,2000.Structure and function of the soil microbial commu-nity in microhabitats of a heavy metal polluted soil.Biol.Fert.Soils32,390–400.Kelly,J.J.,Haeggblom,M.,Tate III,R.L.,1999.Changes in soil microbial communities over time resulting from one time application of zinc:a laboratory microcosm study.Soil Biol.Biochem.31,1455–1465. Klironomos,J.N.,Rillig,M.C.,Allen,M.F.,1999.Design-ing belowgroundfield experiments with the help of semi-variance and power analyses.Appl.Soil Ecol.12, 227–238.Landeweert,R.,Veenman,C.,Kuyper,T.W.,Fritze,H., Wernars,K.,Smit,E.,2003.Quantification of ecto-mycorrhizal mycelium in soil by real-time PCR compared to conventional quantification techniques.FEMS Microbiol.Ecol.45,283–292.Leckie,S.E.,Prescott, C.E.,Grayston,S.J.,Neufeld, J.D.,Mohn,W.W.,2004.Characterization of humus microbial communities in adjacent forest types that differ in nitrogen availability.Microb.Ecol.48,29–40. MacDonald,L.M.,Paterson,E.,Dawson,L.A.,McDonald,A.J.S.,2004.Short-term effects of defoliation on thesoil microbial community associated with two con-trasting lolium perenne cultivars.Soil Biol.Biochem.36,489–498.MacNaughton,S.J.,Stephen,J.R.,Venosa,A.D.,Davis,G.A.,Chang,Y.J.,White, D.C.,1999.Microbialpopulation changes during bioremediation of an experimental oil spill.Appl.Environ.Microbiol.65, 3566–3574.Miethling,R.,Wieland,G.,Backhaus,H.,Tebbe, C., 2000.Variation of microbial rhizosphere communities in response to crop species,soil origin,and inoculation with Sinorhizobium meliloti L33.Microb.Ecol.40, 43–56.O’Donnell, A.G.,Seasman,M.,Macrae, A.,Waite,I., Davies,J.T.,2001.Plants and fertilisers as drivers of change in microbial community structure and function in soils.Plant Soil232,135–145.Øvre(a s,L.,2000.Population and community level approaches for analyzing microbial diversity in natural environments.Ecol.Lett.3,236–251.Pankhurst,C.E.,Yu,S.,Hawke,B.G.,Harch,B.D.,2001.Capacity of fatty acid profiles and substrate utilization patterns to describe differences in soil microbial communities associated with increased salinity or alkalinity at three locations in South Australia.Biol.Fert.Soils33,204–217.Pankhurst,C.E.,Pierret,A.,Hawke,B.G.,Kirby,J.M., 2002.Microbiological and chemical properties of soil associated with macropores at different depths in a red-duplex soil in NSW Australia.Plant Soil238,11–20. Patra,A.K.,Abbadie,L.,Clays-Josserand,A.,Degrange, V.,Grayston,S.J.,Loiseau,P.,Louault,F.,Mahmood, S.,Nazaret,S.,Philippot,L.,Poly,E.,Prosser,J.I., Richaume,A.,Le Roux,X.,2005.Effects of grazing on microbial functional groups involved in soil N dy-namics.Ecol.Mono.75,65–80.Choice of methods for soil microbial community analysis279Pietikaeinen,J.,Hiukka,R.,Fritze,H.,2000.Does short-term heating of forest humus change its properties asa substrate for microbes?Soil Biol.Biochem.32,277–288.Priha,O.,Grayston,S.J.,Pennanen,T.,Smolander,A., 1999.Microbial activities related to C and N cycling and microbial community structure in the rhizo-spheres of Pinus sylvestris,Picea abies and Betula pendula seedlings in an organic and mineral soil.FEMS Microbiol.Ecol.30,187–199.Priha,O.,Grayston,S.J.,Hiukka,R.,Pennanen,T., Smolander,A.,2001.Microbial community structure and characteristics of the organic matter in soils under Pinus sylvestris,Picea abies and Betula pendula at two forest sites.Biol.Fert.Soils33,17–24. Ritchie,N.J.,Schutter,M.E.,Dick,R.P.,Myrold, D.D., e of length heterogeneity PCR and fatty acid methyl ester profiles to characterize microbial commu-nities in soil.Appl.Environ.Microbiol.66,1668–1675. Ritz,K.,McNicol,W.,Nunan,N.,Grayston,S.,Millard,P., Atkinson,D.,Gollotte,A.,Habeshaw,D.,Boag,B., Clegg,C.D.,Griffiths,B.S.,Wheatley,R.E.,Glover, L.A.,McCaig,A.E.,Prosser,J.I.,2004.Spatial struc-ture in soil chemical and microbiological properties in an upland grassland.FEMS Microbiol.Ecol.49, 191–205.Schutter,M.,Dick,R.,2001.Shifts in substrate utilization potential and structure of soil microbial communities in response to carbon substrates.Soil Biol.Biochem.33,1481–1491.Schutter,M.E.,Sandeno,J.M.,Dick,R.P.,2001.Seasonal, soil type,and alternative management influences on microbial communities of vegetable cropping systems.Biol.Fert.Soils34,397–410.Siciliano,S.D.,Germida,J.J.,1998.Biolog analysis and fatty acid methyl ester profiles indicate that pseudo-monad inoculants that promote phytoremediation alter the root-associated microbial community of Bromus biebersteinii.Soil Biol.Biochem.30, 1717–1723.Siciliano,S.D.,Theoret,C.M.,De Freitas,J.R.,Hucl,P.J., Germida,J.J.,1998.Differences in the microbial communities associated with the roots of different cultivars of canola and wheat.Can.J.Microbiol.44, 844–851.Soederberg,K.H.,Olsson,P.A.,B(a(a th,E.,2002.Structure and activity of the bacterial community in the rhizo-sphere of different plant species and the effect of arbuscular mycorrhizal colonisation.FEMS Microbiol.Ecol.40,223–231.Suhadolc,M.,Schroll,R.,Gattinger, A.,Schloter,M., Munch,J.C.,Lestan,D.,2004.Effects of modified pb-, zn-,and cd-availability on the microbial communities and on the degradation of isoproturon in a heavy metal contaminated soil.Soil Biol.Biochem.36, 1943–1954.Suzuki,C.,Kunito,T.,Aono,T.,Liu,C.T.,Oyaizu,H., 2005.Microbial indices of soil fertility.J.Appl.Microbiol.98,1062–1074.Thirup,L.,Johansen,A.,Winding,A.,2003.Microbial succession in the rhizosphere of live and decom-posing barley roots as affected by the anta-gonistic strain Pseudomonasfluorescens DR54-BN14 or the fungicide imazalil.FEMS Microbiol.Ecol.43, 383–392.Thompson,I.P.,Bailey,M.J.,Ellis,R.J.,Maguire,N., Meharg,A.A.,1999.Response of soil microbial com-munities to single and multiple doses of an organic pollutant.Soil Biol.Biochem.31,95–105.T urpeinen,R.,Kairesalo,T.,Haeggblom,M.M.,2004.Microbial community structureand activity in arsenic-, chromium-,and copper-contaminated soils.FEMS Microb.Ecol.47,39–50.White,D.,Ringelberg,D.,1998.Signature lipid biomar-ker analysis.In:Burlage,R.,Atlas,R.,Stahl, D., Geesey,G.,Sayler,G.(Eds.),Techniques in Microbial Ecology.Oxford University Press,Oxford,pp.255–272. Widmer,F.,Fliessbach,A.,Laczko,E.,Schulze-Aurich,J., Zeyer,J.,2001.Assessing soil biological character-istics:a comparison of bulk soil community DNA-, PLFA-,and biolog-analyses.Soil Biol.Biochem.33, 1029–1036.Yang,Y.,Dungan,R.S.,Ibekwe,A.M.,Valenzuela-Solano,C.,Crohn,D.M.,Crowley,D.E.,2003.Effect of organicmulches on soil bacterial communities one year after application.Biol.Fert.Soils38,273–281.Yao,H.,He,Z.,Wilson,M.J.,Campbell, C.D.,2000.Microbial biomass and community structure in a sequence of soils with increasing fertility and changing land use.Microb.Ecol.40,223–237.Yu,C.-P.,Sayler,R.A.G.,Chu,K.-H.,2005.Quantitative molecular assay forfingerprinting microbial commu-nities of wastewater and estrogen-degrading consor-tia.Appl.Environ.Microbiol.71,1433–1444.P.W.Ramsey et al.280。

相关文档
最新文档