向量数量积的最值问题的常见处理方法
求解平面向量最值问题的几个措施

探索探索与与研研究究图1B (-1,0),C (1,0),设x ,3-y ),PB =(-1-+PC )=2x 2-23y +2直线BC 为x 轴、.求得若∠AOB =150°,OA +n OB ,则3m -n 33θ),其中0°≤θ≤150°.设A (1,0),则θ=2sin æèöøθ+π3,2.故选C .以圆心为原点,两.设将问题我们无法快速求将目将问题转化为函数求得平面向量的最θ,向量c =æèöøcos 2θ2⋅,cos θ=2x -1,图2探索探索与与研研究究可得|c |2=[xa +(1-x )b]2=x 2+2x (1-x )(2x -1)+(1-x )2=-4x 3+8x 2-4x +1.令f (x )=-4x 3+8x 2-4x +1,x ∈[0,1],则f ′(x )=-4(3x -1)(x -1),由f ′(x )=0,得x =13或1.当0≤x <13时,f ′(x )<0,此时函数单调递减;当13<x <1时,f ′(x )>0,此时函数单调递增.所以f (x )min =f æèöø13=1127,故|c |min=.通过换元,将|c |2的表达式转化为关于x 的一元三次函数式.再对函数求导,根据导函数与单调性之间的关系判断出函数的单调性,求得函数的最小值,即可求得|c |min .三、利用向量的几何意义向量兼有数与形的“双重身份”,是联系代数与几何的纽带.在求解平面向量最值问题时,可根据平面向量的几何意义,如加法的三角形法则、平行四边形法则,向量的模即为向量所在线段的长,两个向量的数量积即为一个向量的模与其在另一个向量所在方向上的投影的乘积,来构造几何图形,进而根据图形的几何特征与性质求最值.例4.已知P 是边长为2的正六边形ABCDEF 内的一点,则 AP ∙AB 的取值范围是().A.(-2,6)B.(-6,2)C.(-2,4)D.(-4,6)图3解:过C 作CC ′⊥AB ,设垂足为C ′,过F 作FF ′⊥AB ,设垂足为F ′,如图3所示.因为|| AB =2,则 AP 在 AB 方向上的投影为||AP cos ∠PAB ,当P 与C 重合时,|| AP cos ∠PAB 的最大值为|||| AC ′=3,当P 与F 重合时,|| AP cos ∠PAB 的最小值为-||||F ′A =-1,故-1<|| AP cos ∠PAB <3,由向量数量积的几何意义可知, AP ⋅ AB 即为AB 的模与 AP 在 AB 方向上的投影的乘积,即 AP ⋅AB =|| AB ⋅||AP cos ∠PAB ,所以 AP ∙AB 的取值范围是(-2,6).故选A.解答本题,需灵活运用向量数量积的几何意义:AP ∙ AB 即为 AB 的模与 AP 在AB 方向上的投影的乘积,即 AP ∙ AB =|| AB ⋅|| AP cos ∠PAB .再添加辅助线,根据正六边形的结构特征,求得||AP cos ∠PAB 的取值范围,即可解题.四、利用等和线的性质等和线有如下性质:①当P 0在直线AB 上,且OP 垂直于等和线时,若 OP =k OP 0=x OA +yOB (k ,x ,y ∈R),则x +y =k .根据相似三角形的性质可知等和线之间的距离之比为|k |=|| OP|| OP 0(如图4).②当等和线恰为直线AB 时,k =1;③当等和线在点O 与直线AB 之间时,k ∈(0,1);④当直线AB 在点O 与等和线之间时,k ∈(1,+∞);⑤当等和线经过点O 时,k =0;⑥当两等和线关于点O 对称时,对应的两个定值k 互为相反数.利用等和线的性质求解最值问题的一般步骤为:(1)找到等和线为1的情形;(2)平移等和线到可行域内;(3)利用平面几何知识求出最值.例5.在矩形ABCD 中,AB =1,AD =2,动点P 在以C 为圆心且与BD 相切的圆上.若 AP =λ AB +μAD ,则λ+μ的最大值为().A.3B.2C.2D.25图5解:如图5,设BD 与圆的相切点为P 1,则点A 到BD 的距离等于|P 1C |.当P 在P 1处时,λ+μ=1;当P 在P 1关于点C 对称的点P 2处时,λ+μ最大,此时(λ+μ)max =|P 1P 2|+|P 1C ||P 1C |=3.故选A .平面向量OP 满足: OP =λ OA +μ OB (λ,μ∈R),则点P 在直线AB上或在平行于AB 的直线上,可知图449一一一一一一一一一一一一一一一一一一λ+μ=k (定值),此时直线AB 及平行于AB 的直线为等和线,即可根据等和线的性质求得最值.五、利用极化恒等式极化恒等式:a ⋅b =14[(a +b )2-(a -b )2]是解答向量问题的重要工具.当遇到共起点的两向量的数量积最值问题时,可以考虑根据三角形法则和平行四边形法则,将两个向量的数量积的最值问题转化为两个向量的和、差的最值问题,利用极化恒等式求解.例6.如图6,在四边形ABCD 中,∠B =60°,AB =3,BC =6,且 AD =λ BC ,AD ∙ AB =-32,则实数λ的值为,若M ,N 是线段BC 上的动点,且MN =1,则DM ∙DN 的最小值为.图6解:由 AD ∙ AB =-32,得(λ BC )∙ AB =λ| BC || AB |cos ∠B=λ×6×3æèöø-12=-32,解得λ=16.分别过D ,A 作BC 的垂线,垂足分别为E ,F ,由极化恒等式得,DM ∙ DN =||DQ 2-||QM 2=|| DQ 2-æèöø122≥|| DE 2-æèöø122=|| AF 2-æèöø122=132.一般地,若在三角形ABC 中,M 为BD 的中点,由极化恒等式可得: AB ∙ AD =| AM |2-| BM |2;在平行四边形ABCD 中, AB ∙ AD =14(| AC |2-| BD |2),这样就将向量的数量积问题转化为两条线段长度的平方差问题.解答本题,需先找到定点,再根据动点的变化情况求最值可见,求解平面向量最值问题的措施很多.解题的关键是要根据解题的需求,建立合适的平面直角坐标系和关系式,灵活运用函数的性质、等和线的性质、向量的几何意义、极化恒等式进行求解.(作者单位:云南省曲靖市会泽县茚旺高级中学)探索探索与与研研究究比较函数式的大小问题通常会综合考查一次函数、二次函数、指数函数、对数函数、幂函数的性质和图象.解答这类问题的常用方法有:特殊值法、放缩法、中间值法、基本不等式法等.在解题时,若能选用恰当的方法,就能达到事半功倍的效果.本文主要谈一谈下列三种比较函数式大小的思路.一、利用重要不等式在比较函数式的大小时,可根据已有的经验和不等式结论来进行比较,这样能有效地提升解题的效率.常用的重要不等式有:(1)基本不等式及其变形式:若ab >0,a 、b >0,则a +b ≥2ab 、21a +1b≤ab ≤a +b 2≤,当且仅当a =b 时等号成立;(2)切线不等式:e x +1、ln x ≤x -1;(3)柯西不等式:a ,b ,x ,y ∈R ,()a2+b 2()x 2+y 2≥(ax +by )2,(ax -by )2≥()a 2-b 2()x 2-y 2;等等.例1.设a =0.1e 0.1,b =19,c =-ln 0.9,请比较a ,b ,c的大小.解:由于b =19=109-1,c =-ln 0.9=ln 109,令x =-0.1,由切线不等式:e x ≥x +1,当且仅当x =0时等号成立,可得e -0.1>-0.1+1=0.9,则e 0.1<109,所以0.1e 0.1<0.1×109=19,即a <b ,令x =109,由切线不等式:e x≥x +1,得:ln 109<109-1=19,即c <b ,而e 0.1>0.1+1=1.1,则0.1e 0.1>0.1×1.1=0.11,由重要不等式:当x >1时,恒有ln x <12(x -1x )成立,可知-ln 0.9=ln 109<12(109-910)=19180<0.11,50。
大招6投影法速解向量的数量积问题(含答案解析)

大招6投影法速解向量的数量积问题向量的数量积公式为cos a b a b θ⋅=,若将公式中的cos b θ 看作一个整体,则向量的数量积可表示为a b a ⋅=⨯ 向量b 在向量a上的投影向量的模(或模的相反数),如图所示.这种方法就是投影法,利用投影法可以快速求解高考中一些数量积问题,尤其是两个向量中一个向量固定不变时,可以使用该法.运用该法解题的思路模型为:识别题型→向量的数量积问题选择方法→投影法(有一个固定向量,用投影法;夹角不易求,用投影法)计算→谁不动,往谁身上投;或者选择投影向量的模好计算的向量进行求解【典例1】在矩形ABCD 中,AB =1,AD =2,AC 与BD 相交于点O ,过点A 作AE ⊥BD ,则AE EC ⋅=()A .1225B .2425C .125D .45【大招指引】利用投影解决向量积的方法进行求解.【解析】()()2444=2555AE EC AE EA AC AE AE AB AD ⋅⋅+=-⋅++=-+⨯=【题后反思】本题也可以利用极化恒等式进行化简:2224=5AE EC AO EO AE ⋅-==【温馨提醒】如图,PA PB PA PH⋅=⋅对于cos PA PB PA PB θ⋅= ,其中cos PB θ 是PB 在PA上的投影,在Rt △PBH 中cos PB PH θ=,故PA PB PA PH ⋅= ,考虑到cos θ可能为钝角,故写成PA PB PA PH ⋅=⋅.【举一反三】1.已知圆O 的方程为229x y +=,直线l 过点()1,2P 且与圆O 交于,M N 两点,当弦长MN 最短时,OM MN ⋅=()A .4-B .8-C .4D .8【典例2】已知O 的半径为1,直线PA 与O 相切于点A ,直线PB 与O 交于B ,C 两点,D 为BC 的中点,若2PO PA PD ⋅的最大值为()A .122B .1222+C .12D .22【大招指引】取PO 中点E ,1222DE BO ==,将P ,A ,O 看成定点,则D 为圆E 上的定点,作DH ⊥PA ,进而利用投影法进行求解.【解析】取PO 中点E ,122DE BO ==P ,A ,O 看成定点,则D 为圆E 上的定点,作DH ⊥PA ,则PA PD PA PH =⋅⋅,当DH ∥AO 时取到最值取PA 中点G最小值计算:此时2122PH HG PG =-=-,故()min 2122PA PD PA PH =⋅⋅-=- 最大值计算:此时2122PH HG PG =+=+,()max 2122PA PD PA PH ==⋅⋅+【题后反思】本题也可以构造函数进行求解:如图所示,1,2OA OP ==,则由题意可知:π4APO ∠=,由勾股定理可得221PA OP OA =-=当点,A D 位于直线PO 异侧时或PB 为直径时,设=,04OPC παα∠≤<,则:PA PD⋅ =||||cos 4PA PD πα⎛⎫⋅+ ⎪⎝⎭12cos 4παα⎛⎫=+ ⎪⎝⎭sin 22ααα⎛⎫=- ⎪ ⎪⎝⎭2cos sin cos ααα=-1cos 21sin 222αα+=-12224πα⎛⎫=-- ⎪⎝⎭04πα≤<,则2444πππα-≤-<∴当ππ244α-=-时,PA PD ⋅ 有最大值1.当点,A D 位于直线PO 同侧时,设,04OPC παα∠<<,则:PA PD ⋅ =||||cos 4PA PD πα⎛⎫⋅- ⎪⎝⎭1cos4παα⎛⎫=- ⎪⎝⎭sin22ααα⎛⎫=+ ⎪ ⎪⎝⎭2cos sin cos ααα=+1cos 21sin 222αα+=+1224πα⎛⎫=++ ⎪⎝⎭,04πα≤<,则32444πππα≤+<∴当242ππα+=时,PA PD ⋅ 有最大值12.综上可得,PA PD ⋅的最大值为12.【温馨提醒】利用投影法处理平面向量的数量积的实质是数量积是几何意义,要善于作图,往往要利用平面几何知识.【举一反三】2.在ABC V 中,若OA OB OC OP === ,2AB AC ==uu u r uuu r ,120BAC ∠=︒,则AP AB ⋅的取值范围为.3.如图所示,已知正六边形123456PP P P P P ,下列向量的数量积中最大的是()A .1213PP PP ⋅ B .1214PP PP ⋅C .1215PP PP ⋅D .1216PP PP ⋅4.ABC V 的外接圆的半径等于3,4AB =,则AB AC ⋅uu u r uuu r的取值范围是().A .[8,12]-B .[4,24]-C .[4,20]-D .[8,16]-5.设,A B 是圆C 上不同的两点.且AB =则⋅=AB AC .6.ABC V 中,3AB =,6AC =,G 为ABC V 的重心,O 为ABC V 的外心,则AO AG ⋅=.7.已知圆O 的半径为2,弦2AB =,点C 为圆O 上任意一点,则AB AC ⋅uu u r uuu r的最大值是__________.8.如图所示,在边长为3的等边三角形ABC 中,23AD AC =,且点P 在以AD 的中点O 为圆心,OA 为半径的半圆上,则BP BC ⋅的最大值为.参考答案:1.B【分析】根据题意,由条件可知,当MN 最短时,直线l OP ⊥,然后再结合向量的数量积,从而得到结果.【详解】当MN 最短时,直线l OP ⊥,OP ==4MN ==,()cos π82MN OM MN OM MN OMN MN ⋅=⋅-∠=-⋅=-.故选:B.2.[]2,6-【分析】要求AP AB ⋅ 的取值范围,只需要研究动向量AP 在定向量AB的投影向量的模的最值,然后利用数形结合思想,来找到最值点1P 和2P ,然后利用已知数据就可以计算出结果.【详解】因为OA OB OC OP ===,所以O 为ABC V 的外心,且P 为ABC V 外接圆上一动点,又2AB AC == ,120BAC ∠=︒,由余弦定理得:BC ==所以ABC V 外接圆的半径12sin1202BC r =⨯=︒,可得OA OB AB AC ===,即四边形OBAC 是菱形,可得OC //AB ,如图,作PD AB ⊥,垂足为D ,则AP 在AB方向上的投影向量是AD ,当点P 在圆O 上运动时,作PD AB ⊥,垂足D 可能不在线段AB 上,而是在直线AB 上,所以cos AP AB AP AB PAD ⋅=⋅∠,所以当PD 与圆相切时,AP AB ⋅取到最大值和最小值,即P 在1P (直线CO 与圆的另一个交点)处取最大值,此时cos 2cos306AP AB AP AB PAD ︒⋅=⋅∠=⨯⨯= ,在2P (与C 重合)处取最小值,此时cos 22cos1202AP AB AP AB PAD ︒⋅=⋅∠=⨯⨯=- ,所以AP AB ⋅的取值范围为[]2,6-.故答案为:[]2,6-.3.A【分析】根据正六边形的性质及数量积的定义计算可得;【详解】解:根据正六边形的几何性质,可知1213,6PP PP π= ,1214,3PP PP π= ,1215,2PP PP π= ,12162,3PP PP π=.12160PP PP ∴⋅< ,12150PP PP ⋅= ,211311122223cos 62P PP PP P P P P π⋅== ,212141212122cos 3PP PP PP PP PP π⋅=⋅⋅= .比较可知A 正确.故选:A 4.C【分析】以A 为原点建立平面直角坐标系,设出C 点坐标,利用向量数量积的坐标运算求得AB AC ⋅uu u r uuu r ,结合三角函数的取值范围求得AB AC ⋅uu u r uuu r的取值范围.【详解】依题意,ABC V 的外接圆的半径等于3,4AB =,以A 为原点,AB 为x 轴建立如图所示平面直角坐标系,4,0,圆心O 到AB ,也即x =,故圆心(O ,半径3r =,所以圆的标准方程为()(22223x y -+=.设()[][]23cos ,3sin ,cos 1,1,sin 1,1C θθθθ+∈-∈-,C 与,A B 不重合.所以812cos AB AC θ⋅=+uu u r uuu r,由于[]cos 1,1θ∈-,所以[]812cos 4,20AB AC θ⋅=+∈- .故选:C5.6【分析】设D 点为AB 的中点,则CD AB ⊥,再根据数量积的定义计算即可.【详解】如图,设D 点为AB 的中点,则CD AB ⊥,则21cos 62AB AC AB AC BAC AB AD AB ⋅=∠=== .故答案为:6.6.152【解析】根据三角形的外心的性质,得出212AO AB AB ⋅= ,212AO AC AC ⋅= ,由三角形的重心的性质,得出1()3AO AG AO AB AC ⋅=⋅+ ,通过向量的数量积运算,即可求出AO AG ⋅的值.【详解】解:因为G 为ABC V 的重心,O 为ABC V 的外心,所以212AO AB AB ⋅= ,212AO AC AC ⋅= ,所以111()333AO AG AO AB AC AO AB AO AC ⋅=⋅+=⋅+⋅ 221166AB AC =+93615662=+=,即152AO AG ⋅= .故答案为:152.【点睛】本题考查平面向量的数量积的应用,考查三角形的重心和外心的向量表示,考查计算能力.7.6【分析】建立平面直角坐标系,用坐标法来研究平面向量的数量积即可求解【详解】不妨以O 为原点,平行与AB 的直线为y 轴,AB 的垂直平分线为x 轴,建立如图所示的平面直角坐标系,由题意可知圆的方程为:224x y +=,则可知))()1,,2cos ,2sin ABC θθ-,()()0,2,2cos 2sin 1AB AC θθ+==uu u r uuu r,()2sin 142sin 2AB AC θθ⋅==++uu u r uuu r,显然当sin 1θ=时,AB AC ⋅uu u r uuu r的最大值是6故答案为:68.9【分析】BP 在BC 上的投影向量是BE,由向量数量积的几何意义,BP BC BE BC ⋅= ,求BE的最大值即可【详解】如图,过P 向BC 作垂线,垂足为E ,则BP 在BC 上的投影向量是BE,答案第5页,共5页BP 在BC上的投影向量BE 可能与BC 同向,也可能与BC 反向,在本题中BP 与BC 的夹角为锐角,所以是同向的,由向量数量积的几何意义,BP BC BE BC BE BC ⋅=⋅= .由等边三角形ABC 边长为3,23AD AC = ,得2AD =,即半圆O 的直径为2,过点C 作直线BC 的垂线l ,AC 与直线l 的夹角为30o ,2OC =,则圆心O 到直线l 的距离为1,所以直线l 与圆O 相切,记切点为1P ,当点P 在半圆上运动到与1P 重合时,BE BC = ,BE 最大,BP BC ⋅ 取最大值,最大值为29BC = .故答案为:9.。
平面向量数量积的最小值问题

平面向量数量积的最小值问题引言平面向量的数量积是向量运算中的一种重要形式之一,它可以用于表示向量之间的夹角以及判断向量的正交性。
对于给定的平面向量,我们感兴趣的问题之一就是如何求得它们数量积的最小值。
本文将介绍平面向量数量积的最小值问题,以及一些解决该问题的方法。
问题描述给定平面上的两个向量 $\\vec{a}$ 和 $\\vec{b}$,它们的数量积(也称为点积或内积)定义为:$$ \\vec{a} \\cdot \\vec{b} = |\\vec{a}| \\cdot |\\vec{b}| \\cdot \\cos(\\theta) $$其中 $|\\vec{a}|$ 和 $|\\vec{b}|$ 分别表示向量 $\\vec{a}$ 和 $\\vec{b}$ 的模长,$\\theta$ 表示 $\\vec{a}$ 和 $\\vec{b}$ 之间的夹角。
我们的目标是求解数量积的最小值。
方法一:代数法一种简单直接的方法是通过代数运算求解最小值。
设 $\\vec{a} =\\begin{bmatrix}a_x \\\\ a_y \\end{bmatrix}$ 和 $\\vec{b} = \\begin{bmatrix}b_x \\\\ b_y \\end{bmatrix}$,则数量积可以表示为:$$ \\vec{a} \\cdot \\vec{b} = a_x \\cdot b_x + a_y \\cdot b_y $$为了求解最小值,可以利用数量积的几何意义,选择一个使得夹角$\\theta$ 最小的向量 $\\vec{b}$。
根据向量的乘积性质,当 $\\theta = 0$ 时,夹角最小,此时:$$ \\vec{a} \\cdot \\vec{b} = |\\vec{a}| \\cdot |\\vec{b}| \\cdot \\cos(0) =|\\vec{a}| \\cdot |\\vec{b}| $$为了使 $\\vec{a} \\cdot \\vec{b}$ 最小,我们只需找到一个使得$|\\vec{b}|$ 最小的向量,这个向量可以通过求解 $\\vec{b}=\\begin{bmatrix}b_x \\\\ b_y \\end{bmatrix}$ 的模长最小值问题来得到。
巧用向量方法解决最值问题

巧用向量方法求解决最值问题梁常东1蒋晓云2(1钦州师专数学与计算机科学系 广西 钦州 535000 2桂林师专数学与计算机科学系 广西 桂林 541001)在中学数学中,对某些代数式的最值问题通常使用凑配技巧(如配方法)求解,现在高中数学增加了向量内容,我们使用向量方法求解最值问题,特别是一些无理式的最值问题,可以大大简化解题过程,提高解题效率,收到事半功倍的效果。
1 利用向量的数量积求最值设向量),,(y x m = ,),(b a n = 则n m与的数量积为:()by ax n m n m n m +=∠⋅=⋅,cos ,从而有:n m n m⋅≤⋅,当且仅当同向时取等号与n m (1)()22222222)( , b a by ax y x nn m m ++≥+⋅≥即 ,当且仅当同向时取等号与n m (2) 完全类似地,设向量),,(z y x m = ,),,(c b a n = ,则n m与的数量积为:~cz by ax n m ++=⋅,从而也有:n m n m ⋅≤⋅,当且仅当同向时取等号与n m ;()2222222222)(c b a cz by ax x y x nn m m ++++≥++⋅≥即 ,当且仅当同向时取等号与n m 。
在求解某些初等代数最值问题时,根据条件和结论的特点,将其转化为向量形式,利用向量的数量积,往往能避免繁杂的凑配技巧,使解答过程直观又易接受,下面举例说明:例1设y x,∈R +,且102=+y x ,求函数22y x w +=的最小值。
解:设)2,1(),y (x,==n m,由定义有:5,,1022222=+==+=⋅n y x m y x n m从而 ()22222nn m m y x w ⋅≥=+==205102=,当且仅当n m 与同向,即021>=y x 时取等号,所以当5.2,5==y x 时,22y x w +=取得最小值20。
妙用极化恒等式解决平面向量数量积问题

妙用极化恒等式解决平面向量数量积问题【题型归纳目录】题型一:定值问题题型二:范围与最值问题题型三:求参问题以及其它问题【知识点梳理】(1)平行四边形平行四边形对角线的平方和等于四边的平方和:2222||||2(||||)a b a b a b ++-=+ 证明:不妨设,AB a AD b ==,则C A a b =+ ,DB a b =- ()22222C 2AC A a ba ab b ==+=+⋅+ ①()222222DB DB a ba ab b==-=-⋅+ ②①②两式相加得:()()22222222AC DB a b AB AD+=+=+ (2)极化恒等式:上面两式相减,得:()()2214a ba b ⎡⎤+--⎢⎥⎣⎦————极化恒等式①平行四边形模式:2214a b AC DB ⎡⎤⋅=-⎣⎦ 几何意义:向量的数量积可以表示为以这组向量为邻边的平行四边形的“和对角线”与“差对角线”平方差的14.②三角形模式:2214a b AM DB ⋅=- (M 为BD 的中点)AB CM 【典型例题】题型一:定值问题例1.(2023·全国·高三专题练习)如图,在ABC 中,D 是BC 的中点,E 、F 是AD 上的两个三等分点,·4BA CA = ,·1BF CF =-,则·BE CE 的值是()A .4B .8C .78D .34例2.(2023·全国·高三专题练习)如图,在ABC 中,D 是BC 边的中点,E ,F 是线段AD的两个三等分点,若7BA CA ⋅= ,2BE CE ⋅= ,则BF CF ⋅=()A .2-B .1-C .1D .2例3.(2023·全国·高一假期作业)如图,在平行四边形ABCD 中,1,2AB AD ==,点,,,E F G H分别是,,,AB BC CD AD 边上的中点,则EF FG GH HE ⋅+⋅=A .32B .32-C .34D .34-题型二:范围与最值问题例4.(2023·山东师范大学附中模拟预测)边长为1的正方形内有一内切圆,MN 是内切圆的一条弦,点P 为正方形四条边上的动点,当弦MN 的长度最大时,PM PN ⋅的取值范围是_________.例5.(2023·湖北省仙桃中学模拟预测)如图直角梯形ABCD 中,EF 是CD 边上长为6的可移动的线段,4=AD ,AB =12BC =,则BE BF ⋅的取值范围为________________.例6.(2023·陕西榆林·三模(文))四边形ABCD 为菱形,30BAC ∠=︒,6AB =,P 是菱形ABCD 所在平面的任意一点,则PA PC ⋅的最小值为________.例7.(2023·重庆八中模拟预测)ABC 中,3AB =,4BC =,5AC =,PQ 为ABC 内切圆的一条直径,M 为ABC 边上的动点,则MP MQ ⋅的取值范围为()A .[]0,4B .[]1,4C .[]0,9D .[]1,9题型三:求参问题以及其它问题例8.(2023春·江苏扬州·高一期末)在ABC 中,26AC BC ==,ACB ∠为钝角,M ,N 是边AB 上的两个动点,且2MN =,若CM CN ⋅的最小值为3,则cos ACB ∠=_________.例9.(2023·全国·高三专题练习)在ABC 中,24AC BC ==,ACB ∠为钝角,,M N 是边AB 上的两个动点,且1MN =CM CN ⋅ 的最小值为34,则cos ACB ∠=__________.例10.(2023·全国·高一)设三角形ABC ,P 0是边AB 上的一定点,满足P 0B =14AB ,且对于边AB 上任一点P ,恒有00PB PC P B P C ⋅≥⋅,则三角形ABC 形状为___________.【同步练习】一、单选题1.(2023春·江西·高三校联考阶段练习)已知点P 在棱长为2的正方体表面上运动,AB 是该正方体外接球的一条直径,则PA PB ⋅的最小值为()A .-2B .-3C .-1D .02.(2023秋·浙江湖州·高三安吉县高级中学校考期末)已知正方形ABCD 的边长为2,MN 是它的外接圆的一条弦,点P 为正方形四条边上的动点,当弦MN 的长度最大时,PM PN ⋅的取值范围是()A .[]1,0-B .⎡⎣C .[]1,2D .[]1,1-3.(2023春·四川广安·高三校考开学考试)如图,在边长为4的等边ABC 中,点E 为中线BD 的三等分点(靠近点B ),点F 为BC 的中点,则FE EC ⋅=()A .4B .56-C .103-D .–34.(2023·贵州贵阳·统考模拟预测)如图,在ABC 中,26,3,,23AB AC BAC BD DC π==∠==,则AB AD ⋅=()A .18B .9C .12D .65.(2023·广东·高三校联考阶段练习)八角星纹是大汶口文化中期彩陶纹样中具有鲜明特色的花纹.八角星纹常绘于彩陶盆和豆的上腹,先于器外的上腹施一圈红色底衬,然后在上面绘并列的八角星形的单独纹样.八角星纹以白彩的成,黑线勾边,中为方形或圆形,且有向四面八方扩张的感觉.八角星纹延续的时间较长,传播范围亦广,在长江以南的时间稍晚的崧泽文化的陶豆座上也屡见刻有八角大汶口文化八角星纹.图2是图1抽象出来的图形,在图2中,圆中各个三角形(如ACD )为等腰直角三角形,点O 为四心,中间部分是正方形且边长为2,定点A ,B 所在位置如图所示,则AB AO ⋅的值为()A .10B .12C .14D .166.(2023秋·辽宁葫芦岛·高三葫芦岛第一高级中学校考期末)如图,在四边形ABCD 中,4AC = ,12BA BC ⋅= ,E 为AC 中点.2BE ED =,求DA DC ⋅ 的值()A .0B .12C .2D .67.(2023秋·重庆南岸·高三重庆市第十一中学校校考阶段练习)如图,在ABC 中,60ABC ∠=︒,3AB =,4BC =,M 是BC 边上的中点,P 是AM 上一点,且满足13BP BA mBC =+ ,则BP AM ⋅=().A .43B .13C .13-D .43-8.(2023·浙江·永嘉中学校联考模拟预测)已知ABC 是边长为1的正三角形,2BD DC =,AB +AC =2AE ,则AE AD ⋅=()A .34B .32C .38D .19.(2023·四川绵阳·统考二模)如图,在边长为2的等边ABC 中,点E 为中线BD 的三等分点(靠近点B ),点F 为BC 的中点,则FE EC ⋅=()A.B.56-C.34D.12二、填空题10.(2023春·河北邢台·高三邢台市第二中学校考阶段练习)如图,在梯形ABCD中,//AB DC,1AD BC==;2AB=,π3ABC∠=,E是BC的中点,则DB AE⋅=_________.11.(2023秋·河北石家庄·高二统考期末)已知AB为圆()22:11C x y-+=的直径,点P为直线20x y-+=上的任意一点,则PA PB⋅的最小值为______.12.(2023·全国·模拟预测)已知在△ABC中,∠BAC=60°,点D为边BC的中点,E,F分别为BD,DC的中点,若AD=1,则AB AF AC AE⋅+⋅的最大值为______.13.(2023·浙江·校联考模拟预测)在ABC中,E为边BC中点,若8BC=,ACE△的外接圆半径为3,则22AB AC+的最大值为________.14.(2023·全国·高一专题练习)在平行四边形ABCD中,3Aπ∠=,边AB、AD的长分别为2、1,若M、N分别是边BC、CD上的点,且满足BM CNBC CD=,则AM AN⋅的取值范围是______.15.(2023秋·江苏苏州·高二统考期末)已知圆O的直径AD上有两点B、C,且有2AB BC CD===,MN为圆O的一条弦,则BM CN⋅的范围是______.16.(2023秋·天津静海·高三静海一中校考期末)在等腰梯形ABCD中,已知//,2,1,60AB DC AB BC ABC==∠=︒,动点E和F分别在线段BC和DC上,且1,6BE BC DFλλ==,则AE AF⋅的最大值为__________.17.(2023秋·天津南开·高三统考阶段练习)已知平行四边形ABCD中,2,45AB DAB==∠= ,E是BC的中点,点P满足2AP AE AD=-,则||PD=________;PE PD ⋅=__________.18.(2023秋·天津南开·高三校考阶段练习)如图在ABC 中,90ABC ∠= ,8BC =,12AB =,F 为AB 中点,E 为CF 上一点.若3CE =,则EA EB ⋅=______;若()01CE CF λλ=≤≤ ,则EA EB ⋅的最小值为______.三、解答题19.(2023·高一单元测试)在Rt ABC 中,已知斜边BC a =,若长为2a 的线段PQ 以点A为中点,求BP CQ ⋅ 的最大值.参考答案【典型例题】题型一:定值问题例1.(2023·全国·高三专题练习)如图,在ABC 中,D 是BC 的中点,E 、F 是AD 上的两个三等分点,·4BA CA = ,·1BF CF =-,则·BE CE 的值是()A .4B .8C .78D .34【答案】C【解析】因为D 是BC 的中点,E ,F 是AD 上的两个三等分点,所以BF BD DF =+,CF CD DF BD DF =+=-+ ,3BA BD DA BD DF =+=+ ,3CA CD DA BD DF =+=-+,所以()()221BF CF BD DF BD DF DF BD ⋅=+⋅-+=-=- ,()()22·3394BD DF BD DF DF B A D BA C =+⋅-+=-= ,可得258DF = ,2138BD =,又因为2BE BD DE BD DF =+=+ ,2CE CD DE BD DF=+=-+所以()()225137224488·8BD DF BD DF DF BD BE CE =+⋅-+=-=⨯-= ,故选:C .例2.(2023·全国·高三专题练习)如图,在ABC 中,D 是BC 边的中点,E ,F 是线段AD的两个三等分点,若7BA CA ⋅= ,2BE CE ⋅= ,则BF CF ⋅=()A .2-B .1-C .1D .2【答案】B【解析】依题意,D 是BC 边的中点,E ,F 是线段AD 的两个三等分点,则222211436=72244AD BC FD BC BA CA BC AD BC AD --⎛⎫⎛⎫⋅=-⋅-== ⎪ ⎪⎝⎭⎝⎭-,22221141223232269414FD BC BE CE BC AD BC AD AD BC -⋅=⋅--=-⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭== ,因此221,8FD BC == ,221144181.2244FD BC BF CF BC FD BC FD -⨯-⎛⎫⎛⎫⋅=-⋅--===- ⎪ ⎪⎝⎭⎝⎭故选:B.例3.(2023·全国·高一假期作业)如图,在平行四边形ABCD 中,1,2AB AD ==,点,,,E F G H分别是,,,AB BC CD AD 边上的中点,则EF FG GH HE ⋅+⋅=A .32B .32-C .34D .34-【答案】A【解析】取HF 中点O ,则222131(24EF FG EF EH EO OH ⋅=⋅=-=-=,222131()24GH HE GH GF GO OH ⋅=⋅=-=-= ,因此32EF FG GH HE ⋅+⋅= ,选A.题型二:范围与最值问题例4.(2023·山东师范大学附中模拟预测)边长为1的正方形内有一内切圆,MN 是内切圆的一条弦,点P 为正方形四条边上的动点,当弦MN 的长度最大时,PM PN ⋅的取值范围是_________.【答案】10,4⎡⎤⎢⎥⎣⎦【解析】如下图所示:设正方形ABCD 的内切圆为圆O ,当弦MN 的长度最大时,MN 为圆O 的一条直径,()()22214PM PN PO OM PO OM PO OM PO ⋅=+⋅-=-=- ,当P 为正方形ABCD 的某边的中点时,min12OP=,当P 与正方形ABCD的顶点重合时,max2OP=,即122OP ≤≤ ,因此,2110,44PM PN PO ⎡⎤⋅=-∈⎢⎥⎣⎦ .故答案为:10,4⎡⎤⎢⎥⎣⎦.例5.(2023·湖北省仙桃中学模拟预测)如图直角梯形ABCD 中,EF 是CD 边上长为6的可移动的线段,4=AD,AB =12BC =,则BE BF ⋅的取值范围为________________.【答案】[]99,148【解析】在BC 上取一点G ,使得4BG =,取EF 的中点P ,连接DG ,BP ,如图所示:则DG =8GC =,16CD ==,tanBCD ∠=60BCD ∠= .()()()22222112944BE BF BE BF BE BF BP FE BP ⎡⎤⎡⎤⋅=+--=-=-⎢⎥⎢⎥⎣⎦⎣⎦ ,当BP CD ⊥时,BP 取得最小值,此时12sin 60BP =⨯=所以()(2min999BE BF⋅=-=.当F 与D 重合时,13CP =,12BC =,则22211213212131572BP =+-⨯⨯⨯= ,当E 与C 重合时,3CP =,12BC =,则222112321231172BP =+-⨯⨯⨯= ,所以()max1579148BE BF ⋅=-= ,即BE BF ⋅ 的取值范围为[]99,148.故答案为:[]99,148例6.(2023·陕西榆林·三模(文))四边形ABCD 为菱形,30BAC ∠=︒,6AB =,P 是菱形ABCD 所在平面的任意一点,则PA PC ⋅的最小值为________.【答案】27-【解析】由题设,=AC AC 的中点O ,连接OA ,OC ,OP ,则PA PO OA =+ ,PC PO OC PO OA =+=- ,所以()()2222727PA PC PO OA PO OA PO OA PO ⋅=+⋅-=-=-≥- .故答案为:27-例7.(2023·重庆八中模拟预测)ABC 中,3AB =,4BC =,5AC =,PQ 为ABC 内切圆的一条直径,M 为ABC 边上的动点,则MP MQ ⋅的取值范围为()A .[]0,4B .[]1,4C .[]0,9D .[]1,9【答案】C【解析】由题可知,222AB BC AC +=,所以ABC 是直角三角形,90B ∠=︒,设内切圆半径为r ,则()113434522ABC S r =⨯⨯=⨯++ ,解得1r =,设内切圆圆心为O ,因为PQ 是ABC 内切圆的一条直径,所以1OP = ,OQ OP =- ,则MP MO OP =+,MQ MO MO O OQ P =+=- ,所以()()2221MP MQ MO OP MO OP MO OP MO ⋅=+-=-=- ,因为M 为ABC 边上的动点,所以min 1MO r ==;当M 与C 重合时,max MO 所以MP MQ ⋅的取值范围是[]0,9,故选:C题型三:求参问题以及其它问题例8.(2023春·江苏扬州·高一期末)在ABC 中,26AC BC ==,ACB ∠为钝角,M ,N 是边AB 上的两个动点,且MN =,若CM CN ⋅的最小值为3,则cos ACB ∠=_________.【答案】29-【解析】取线段MN 的中点P ,连接CP ,过C 作CO AB ⊥于O ,如图,112PM MN ==,依题意,()()2221CM CN CP PM CP PM CP PM CP ⋅=+⋅-=-=- ,因CM CN ⋅的最小值为3,则CP 的最小值为2,因此2CO =,在Rt AOC 中,1cos 3CO OCA CA ∠==,sin 3OCA ∠=在Rt BOC 中,2cos 3CO OCB CB ∠==,sin 3OCB ∠=,所以cos cos()cos cos sin sin ACB OCA OCB OCA OCB OCA OCB ∠=∠+∠=∠∠-∠∠29-=.例9.(2023·全国·高三专题练习)在ABC 中,24AC BC ==,ACB ∠为钝角,,M N 是边AB 上的两个动点,且1MN =,若CM CN ⋅ 的最小值为34,则cos ACB ∠=__________.【答案】18-【解析】取MN 的中点P ,取PN PM =- ,12PN PM ==,()()()()214CM CN CP PM CP PN CP PM CP PM CP ⋅=+⋅+=+⋅-=- ,因为CM CN ⋅ 的最小值34,所以min 1CP =.作CH AB ⊥,垂足为H ,如图,则1CH =,又2BC =,所以30B ∠=︒,因为4AC =,所以由正弦定理得:1sin 4A =,cos 4A =,所以()1cos cos 150sin 22ACB A A A ∠=︒-=-+1124=+⨯=故答案为:18-.例10.(2023·全国·高一)设三角形ABC ,P 0是边AB 上的一定点,满足P 0B =14AB ,且对于边AB 上任一点P ,恒有00PB PC P B P C ⋅≥⋅,则三角形ABC 形状为___________.【答案】C 为顶角的等腰三角形【解析】取BC 的中点D ,连接PD ,P 0D,如图所示:22111224PB PC PD BC PD BC PD BC ⎛⎫⎛⎫⋅=+⋅-=- ⎪ ⎪⎝⎭⎝⎭,同理2200014P B P C P D BC ⋅-= ,00PB PC P B P C ⋅≥⋅ ,222201144PD BC P D BC-≥∴- 0PD P D ∴≥0P D AB ∴⊥,设O 为AB 的中点,001//,2P B OB P D OC OC AB AC BC ∴=⇒⇒⊥∴=即三角形ABC 为以C 为顶角的等腰三角形.故答案为:C 【同步练习】一、单选题1.(2023春·江西·高三校联考阶段练习)已知点P 在棱长为2的正方体表面上运动,AB 是该正方体外接球的一条直径,则PA PB ⋅的最小值为()A .-2B .-3C .-1D .0【答案】A【解析】由题意可得正方体外接球的直径AB =O 为正方体外接球的球心,则O 为AB 的中点,OA OB =-且OA OB =222()()()3P OA OP OB OP OA OB OA B A PB O OP OP OP OP =-⋅-=⋅-+⋅+=⋅=- ,由212OP ≥=,PA PB ⋅ 的最小值为2132-=-.故选︰A .2.(2023秋·浙江湖州·高三安吉县高级中学校考期末)已知正方形ABCD 的边长为2,MN 是它的外接圆的一条弦,点P 为正方形四条边上的动点,当弦MN 的长度最大时,PM PN ⋅的取值范围是()A .[]1,0-B .⎡⎣C .[]1,2D .[]1,1-【答案】A【解析】当弦MN 的长度最大时,弦MN 过正方形ABCD 的外接圆的圆心O ,因为正方形ABCD 的边长为2,所以圆O 如下图所示:则PM PO OM =+ ,PN PO ON PO OM =+=-,所以,()()22PM PN PO OM PO OM PO OM ⋅=+⋅-=- .因为点P 为正方形四条边上的动点,所以1PO ≤≤又OM = ,所以[]1,0PM PN ⋅∈-,故选:A.3.(2023春·四川广安·高三校考开学考试)如图,在边长为4的等边ABC 中,点E 为中线BD 的三等分点(靠近点B ),点F 为BC 的中点,则FE EC ⋅=()A .B .56-C .103-D .–3【答案】C【解析】由已知,4BA = ,4BC =,60ABC ∠= ,所以cos BA BC BA BC ABC ⋅=⋅∠ 14482=⨯⨯=.由已知D 是AC 的中点,所以()12BD BA BC =+,()1136BE BD BA BC ==+,12BF BC = .所以FE BE BF =- ()1162BA BC BC =+-1163BA BC =- ,EC BC BE=- ()16BC BA BC =-+ 1566BA BC =-+ ,所以,11156366FE EC BA BC BA BC ⎛⎫⎛⎫⋅=-⋅-+ ⎪ ⎪⎝⎭⎝⎭22175363618BA BA BC BC =-+⋅-17516816363618310=-⨯+⨯-⨯=-.故选:C.4.(2023·贵州贵阳·统考模拟预测)如图,在ABC 中,26,3,,23AB AC BAC BD DC π==∠==,则AB AD ⋅= ()A .18B .9C .12D .6【答案】D【解析】2()2B D C BD BD C →→==-,即23BD BC →→=,22123333AD AB BD AB BC AB AC ABAB AC →→→→→→→→→→⎛⎫∴=+=+=+-=+ ⎪⎝⎭,2212122π663cos 6333333123AB AD A A B AB AB AC AB C →→→⎛⎫∴⋅=⋅=+⋅=⨯+⨯⨯⨯= ⎪⎭+⎝ .故选:D5.(2023·广东·高三校联考阶段练习)八角星纹是大汶口文化中期彩陶纹样中具有鲜明特色的花纹.八角星纹常绘于彩陶盆和豆的上腹,先于器外的上腹施一圈红色底衬,然后在上面绘并列的八角星形的单独纹样.八角星纹以白彩的成,黑线勾边,中为方形或圆形,且有向四面八方扩张的感觉.八角星纹延续的时间较长,传播范围亦广,在长江以南的时间稍晚的崧泽文化的陶豆座上也屡见刻有八角大汶口文化八角星纹.图2是图1抽象出来的图形,在图2中,圆中各个三角形(如ACD )为等腰直角三角形,点O 为四心,中间部分是正方形且边长为2,定点A ,B 所在位置如图所示,则AB AO ⋅的值为()A .10B .12C .14D .16【答案】C【解析】如图所示:连接OD ,因为中间阴影部分是正方形且边长为2,且图中各个三角形为等腰直角三角形,所以可得4ADO ODB π∠=∠=,||OD = ||4AD = ,2ADB π∠=则()()··AB AO AD DB AD DO =++ ,23cos cos44AD AD DO DB AD DB DO ππ=++⋅+24421422⎛=+⨯-+⨯= ⎝⎭.故选:C.6.(2023秋·辽宁葫芦岛·高三葫芦岛第一高级中学校考期末)如图,在四边形ABCD 中,4AC = ,12BA BC ⋅= ,E 为AC 中点.2BE ED =,求DA DC ⋅ 的值()A .0B .12C .2D .6【答案】A【解析】4AC = ,E 为AC 中点,2AE CE ∴==,()()()()22BA BC BE EA BE EC BE EA BE EA BE EA ⋅=+⋅+=+⋅-=- 2412BE =-= ,4BE ∴= ,122DE BE ∴==,()()()()22DA DC DE EA DE EC DE EA DE EA DE EA ∴⋅=+⋅+=+⋅-=- 440=-=.故选:A.7.(2023秋·重庆南岸·高三重庆市第十一中学校校考阶段练习)如图,在ABC 中,60ABC ∠=︒,3AB =,4BC =,M 是BC 边上的中点,P 是AM 上一点,且满足13BP BA mBC =+ ,则BP AM ⋅=().A .43B .13C .13-D .43-【答案】D【解析】因为P 是AM 上一点,故可设AP AM λ=,因为M 是BC 边上的中点,所以12BM BC =,所以12AM BM BA BC BA =-=- ,()11122BP BA AP BA AM BA BC BA BA BC λλλλλ=+=+=+-=-+ ,又13BP BA mBC =+ ,所以111,32m λλ-==,故13m =,所以()13BP BA BC =+ ,所以()()()221111132322BP AM BA BCBC BA BC BA BC BA ⎛⎫⎛⎫⋅=+⋅-=--⋅ ⎪ ⎪⎝⎭⎝⎭,因为60ABC ∠=︒,3AB =,4BC =,所以43cos606BC BA ⋅=⨯⨯=,所以111416963223BP AM ⎛⎫⋅=⨯--⨯=- ⎪⎝⎭ ,故选:D.8.(2023·浙江·永嘉中学校联考模拟预测)已知ABC 是边长为1的正三角形,2BD DC =,AB +AC =2AE ,则AE AD ⋅=()A .34B .32C .38D .1【答案】A【解析】由2AB +AC =AE,可知E 为BC 中点,所以AE BC ⊥,如图所示:因为2BD DC =,根据上图可知16AD AE ED AE BC=+=+ 21364AE AD AE AE BC AE ⎛⎫⋅=⋅+==⎪⎝⎭故选:A9.(2023·四川绵阳·统考二模)如图,在边长为2的等边ABC 中,点E 为中线BD 的三等分点(靠近点B ),点F 为BC 的中点,则FE EC ⋅=()A.B .56-C .34D .12【答案】B【解析】由已知,2BA =,2BC = ,60ABC ∠= ,所以cos BA BC BA BC ABC ⋅=⋅∠ 12222=⨯⨯=.由已知D 是AC 的中点,所以()12BD BA BC =+ ,()1136BE BD BA BC ==+ ,12BF BC = .所以FE BE BF =- ()1162BA BC BC =+-1163BA BC =- ,EC BC BE =- ()16BC BA BC =-+ 1566BA BC =-+,所以,11156366FE EC BA BC BA BC ⎛⎫⎛⎫⋅=-⋅-+ ⎪ ⎪⎝⎭⎝⎭22175363618BA BA BC BC=-+⋅-17554243636186=-⨯+⨯-⨯=-.故选:B.二、填空题10.(2023春·河北邢台·高三邢台市第二中学校考阶段练习)如图,在梯形ABCD 中,//AB DC ,1AD BC ==;2AB =,π3ABC ∠=,E 是BC 的中点,则DB AE ⋅= _________.【答案】94【解析】在梯形ABCD 中,依题意,12CD BA =,而E 是BC 的中点,则12DB DC CB BA BC =+=--,12AE BE BA BA BC =-=-+ ,又22AB BC ==,π3ABC ∠=,所以2211113)()2224(2D BA BC BA BC BA B B AE C BA BC ⋅=--⋅-+=-+⋅2113π9221cos 22434=⨯-+⨯⨯⨯=.故答案为:9411.(2023秋·河北石家庄·高二统考期末)已知AB 为圆()22:11C x y -+=的直径,点P 为直线20x y -+=上的任意一点,则PA PB ⋅的最小值为______.【答案】72【解析】圆心()1,0C ,半径为1,且点C 为线段AB 的中点,()()()()2221PA PB PC CA PC CB PC CA PC CA PC CA PC ⋅=+⋅+=+⋅-=-=- ,圆心C 到直线20x y -+=的距离为2d ==当PC 与直线20x y -+=垂直时,PC 取最小值,即21PA PB PC ⋅=- 取最小值,且()()22minmin7112PA PBPC d ⋅=-=-=.故答案为:72.12.(2023·全国·模拟预测)已知在△ABC 中,∠BAC =60°,点D 为边BC 的中点,E ,F 分别为BD ,DC 的中点,若AD =1,则AB AF AC AE ⋅+⋅的最大值为______.【答案】53【解析】设AC =b ,AB =c ,则1||||cos602bc AB AC AB AC ︒⋅=⨯= ,∵D 为边BC 的中点,∴()12AD AB AC =+ ,∴()222124AD AB AB AC AC =+⋅+ ,即:224b c bc ++=,①又∵222b c bc +≥,当且仅当b c =时取等号.②∴由①②得:43bc ≤.又∵E 、F 分别为BD 、DC 的中点,∴231)4(41AD AE AB AB AC +=+= ,231)4(41AD AF AC AC AB +=+= ,∴223131113()()4444442AB AF AC AC AB AB AC A C AE AB C AB AB A AC⋅+⋅=⋅++⋅+=++⋅22131145()11442233b c bc bc =++=+≤+⨯=,当且仅当b c =时取等号.∴AB AF AC AE ⋅+⋅ 的最大值为53.故答案为:53.13.(2023·浙江·校联考模拟预测)在ABC 中,E 为边BC 中点,若8BC =,ACE △的外接圆半径为3,则22AB AC +的最大值为________.【答案】104【解析】如图所示:1()2AE AB AC =+ ,()222124AE AB AC AB AC =++⋅ ,()()22224242AB AC AE AB AC AE A B E E E A EC ++=-⋅=-⋅+ ()()()()22222222424AE AE AE A A EB EB E A B E E E E B =+----⋅==+ 因为8BC =,所以4EB =.因为ACE △的外接圆半径为3,所以6AE ≤,当且仅当AE 为圆直径时等号成立.所以()()2222223616104A C EB B A AE +≤++== ,当且仅当AE 为圆直径时等号成立.故答案为:10414.(2023·全国·高一专题练习)在平行四边形ABCD 中,3A π∠=,边AB 、AD 的长分别为2、1,若M 、N 分别是边BC 、CD 上的点,且满足BM CN BC CD= ,则AM AN ⋅ 的取值范围是______.【答案】[2,5]【解析】如图,建立平面直角坐标系,则(0,0),(2,0)A B ,因为3A π∠=,1AD =,所以122D ⎛ ⎝⎭,522C ⎛ ⎝⎭,设,[0,1]BM CN BC CDλλ==∈,则52,222M N λλ⎛⎫⎛+- ⎪ ⎪ ⎝⎭⎝⎭,所以22532225(1)6224AM AN λλλλλλ⎛⎫⎛⎫⋅=+-+=--+=-++ ⎪⎪⎝⎭⎝⎭ ,因为[0,1]λ∈,所以2(1)6[2,5]λ-++∈,所以AM AN ⋅ 的取值范围为[2,5],故答案为:[2,5]15.(2023秋·江苏苏州·高二统考期末)已知圆O 的直径AD 上有两点B 、C ,且有2AB BC CD ===,MN 为圆O 的一条弦,则BM CN ⋅ 的范围是______.【答案】1716,2⎡⎤-⎢⎥⎣⎦【解析】因为圆O 的直径AD 上有两点B 、C ,且有2AB BC CD ===,则BC 的中点为圆心O ,故圆O 的半径为3,()()()()BM CN OM OB ON OC OM OB ON OB ⋅=-⋅-=-+ 1OM ON OB ON OB OM =⋅-⋅+⋅- ,由于()()22222OB ON OM OB OM ON OM ON OB ON OB OM +-=++-⋅-⋅+⋅ ()192OM ON OB ON OB OM =-⋅-⋅+⋅ ,且0OB ON OM OB NM +-=-≥ ,当且仅当OB NM = 时,等号成立,7OB ON OM OB NM OB NM +-=-≤+≤ ,当且仅当OB 、MN 方向相同且MN 为圆O 的直径时,两个等号同时成立,故[]0,7OB ON OM +-∈ ,则()[]1920,49OM ON OB ON OB OM -⋅-⋅+⋅∈ ,所以1915,2OM ON OB ON OB OM ⎡⎤⋅-⋅+⋅∈-⎢⎥⎣⎦ ,所以1716,2BM CN ⎡⎤⋅∈-⎢⎥⎣⎦ .故答案为:1716,2⎡⎤-⎢⎥⎣⎦.16.(2023秋·天津静海·高三静海一中校考期末)在等腰梯形ABCD 中,已知//,2,1,60AB DC AB BC ABC ==∠=︒,动点E 和F 分别在线段BC 和DC 上,且1,6BE BC DF λλ== ,则AE AF ⋅ 的最大值为__________.【答案】3【解析】由题可得图形如下:由于12112AB AD ⋅=⨯⨯= ,21cos02AB DC ⋅=⨯⨯= ,111122AD BC ⋅=⨯⨯= ,111122BC DC ⎛⎫⋅=⨯⨯-=- ⎪⎝⎭,因为1,6BE BC DF DC λλ== ,所以011116016λλλ<≤⎧⎪⇒≤≤⎨<≤⎪⎩,则()()()16AE AF AB BE AD DF AB BC AD DC λλ⎛⎫⋅=+⋅+=+⋅+ ⎪⎝⎭ 11111112666262AB AD AB DC BC AD BC DC λλλλ⎛⎫=⋅+⋅+⋅+⋅=+⨯++⨯- ⎪⎝⎭ 1111232λλ=++,1,16λ⎡⎤∈⎢⎥⎣⎦,当且仅当132λλ=,即λ=时取等号,即取最小值,函数1111232y λλ=++在1,63λ⎡∈⎢⎥⎣⎦上单调递减,在λ⎤∈⎥⎝⎦上单调递增,当1λ=时,11111117123212324λλ++=++=;当16λ=时,1111112312321212λλ++=++=,所以AE AF ⋅ 的最大值为3.故答案为:3.17.(2023秋·天津南开·高三统考阶段练习)已知平行四边形ABCD中,2,45AB DAB ==∠= ,E 是BC 的中点,点P 满足2AP AE AD =- ,则||PD = ________;PE PD ⋅= __________.【答案】5【解析】由题意知245AB AD DAB ==∠=,12AE AB AD =+ ,22122AB AD AP AE AD AD AB =+⎛⎫=-- ⎪=⎝⎭ ,2PD AD AP AD AB =-=- ,所以2222244PD AD AB AD AB AD AB --⋅+==2242cos 454210-⨯+⨯= =,所以||PD = PE PD ⋅= ()()()1222AE AD AB A AP AP D AB AD AB ⎛⎫⋅=+-- ⎪⎝--⎭ ()122AD AB AD AB ⎛⎫-- ⎪⎝=⎭ ()22211125222AD AB PD ===-⨯= .;518.(2023秋·天津南开·高三校考阶段练习)如图在ABC 中,90ABC ∠= ,8BC =,12AB =,F 为AB 中点,E 为CF 上一点.若3CE =,则EA EB ⋅= ______;若()01CE CF λλ=≤≤ ,则EA EB ⋅ 的最小值为______.【答案】1336-【解析】因为90ABC ∠= ,162BF AB ==,8BC =,则10CF ==,当3CE =时,7EF =,此时()()()()22227613EA EB EF FA EF FB EF FB EF FB EF FB ⋅=+⋅+=-⋅+=-=-= ;()1EF CF CE CF λ=-=- ,则()222213636EA EB EF FB CF λ⋅=-=--≥- ,当且仅当1λ=时,等号成立,故EA EB ⋅ 的最小值为36-.故答案为:13;36-.三、解答题19.(2023·高一单元测试)在Rt ABC 中,已知斜边BC a =,若长为2a 的线段PQ 以点A 为中点,求BP CQ ⋅ 的最大值.【解析】由题意作出图形,如图,因为90BAC ∠= ,所以0AB AC ⋅= ,因为AP AQ =- ,BP AP AB =- ,CQ AQ AC =- ,所以()()BP CQ AP AB AQ AC ⋅=-⋅- ()()AQ AB AQ AC =--⋅- 2AQ AQ AC AB AQ AB AC=-+⋅-⋅+⋅ ()2a AQ AC AB AB AC =-+⋅-+⋅ 2a AQ BC=-+⋅ 212a PQ BC =-+⋅ 22cos ,a a PQ BC =-+ ,故当cos ,1PQ BC = ,即PQ 与BC 同向时,BP CQ ⋅ 取得最大值0.。
专题2.3 平面向量中范围、最值等综合问题 高考数学选填题压轴题突破讲义(解析版)

一.方法综述平面向量中的最值与范围问题是一种典型的能力考查题,能有效地考查学生的思维品质和学习潜能,能综合考察学生分析问题和解决问题的能力,体现了高考在知识点交汇处命题的思想,是高考的热点,也是难点,其基本题型是根据已知条件求某个变量的范围、最值,比如向量的模、数量积、向量夹角、系数的范围的等,解决思路是建立目标函数的函数解析式,转化为求函数(二次函数、三角函数)的最值或应用基本不等式,同时向量兼顾“数”与“形”的双重身份,所以解决平面向量的范围、最值问题的另外一种思路是数形结合,应用图形的几何性质.二.解题策略类型一与向量的模有关的最值问题【例1】【安徽省黄山市2019届高三一模】如图,在中,,,为上一点,且满足,若的面积为,则的最小值为()A.B.C.D.【答案】B【解析】设,,则三角形的面积为,解得,由,且C,P,D三点共线,可知,即,故.以所在直线为轴,以点为坐标原点,过点作的垂线为轴,建立如图所示的坐标系,则,,,,则,,,则(当且仅当即时取“=”).故的最小值为.【指点迷津】三点共线的一个向量性质:已知O、A、B、C是平面内的四点,则A、B、C三点共线的充要条件是存在一对实数、,使,且.【举一反三】1、【宁夏六盘山高级中学2019届高三下学期二模】如图,矩形中边的长为,边的长为,矩形位于第一象限,且顶点分别位于轴、轴的正半轴上(含原点)滑动,则的最大值为()A.B.C.D.【答案】B【解析】如图,设,则因为所以则所以的最大值为所以选B2、【浙江省湖州三校2019年高考模拟】已知向量,的夹角为,且,则的最小值为()A.B.C.5 D.【答案】B【解析】由题意可设,,因此表示直线上一动点到定点距离的和,因为关于直线的对称点为,所以选B.3、【四川省成都外国语学校2019届高三3月月考】在平面直角坐标系中,,若,则的最小值是()A.B.C.D.【答案】C【解析】由于,即,即,所以在以原点为圆心,半径为的圆上.得到三点共线.画出图像如下图所示,由图可知,的最小值等于圆心到直线的距离减去半径,直线的方程为,圆心到直线的距离为,故的最小值是,故选C.类型二与向量夹角有关的范围问题【例2】【四川省成都市实验外国语学校2019届高三10月月考】已知向量与的夹角为,,,,,在时取得最小值若,则夹角的取值范围是______.【答案】【解析】,,,在时取得最小值解可得:则夹角的取值范围本题正确结果:【指点迷津】求变量的取值范围、最值,往往要将目标函数用某个变量表示,转化为求函数的最值问题,期间要注意变量之间的关系,进而得解. 【举一反三】1、非零向量b a ,满足b a2=22b a,2|||| b a,则b a 与的夹角的最小值是 .【答案】3【解析】由题意得2212a b a b r r r r ,24a b r r ,整理得22422a b a b a b r r r r r r ,即1a b r11cos ,22a b a b a b a b r rr r r r r r ,,3a b r r ,夹角的最小值为3 .2、【上海市2019年1月春季高考】在椭圆上任意一点,与关于轴对称,若有,则与的夹角范围为____________【答案】【解析】 由题意:,设,,因为,则与结合,又与结合,消去,可得:所以本题正确结果:类型三 与向量投影有关的最值问题【例3】【辽宁省沈阳市郊联体2019届高三一模】若平面向量,满足||=|3|=2,则在方向上的投影的最大值为( ) A .B .C .D .【答案】A 【解析】 因为,所以,在方向上的投影为,其中为,的夹角.又,故.设,则有非负解,故, 故,故,故选A .【指点迷津】向量的数量积有两个应用:(1)计算长度或模长,通过用;(2)计算角,.特别地,两个非零向量垂直的充要条件是.另外,的几何意义就是向量在向量的投影与模的乘积,向量在向量的投影为.【举一反三】1、已知ABC 的外接圆的圆心为O ,半径为2,且0OA AB AC u u u v u u u v u u u v v ,则向量CA u u u v 在向量CB u u u v方向上的投影为( ) A. 3 B. 3 C. -3 D. 3 【答案】B本题选择B 选项.2、设1,2OA OB u uu v u u u v , 0OA OB u u u v u u u v , OP OA OB u u u v u u u v u u u v ,且1 ,则OA u u u v 在OP uuu v 上的投影的取值范围( ) A. 25-,15B.25,15C. 5,15D. 5-,15【答案】D当λ0 时, 0,x当222215λ8λ4482λ0521x λλλλ,故当λ1 时,1x 取得最小值为1,即1101x x, 当λ0 时, 222215844825215x,即15x 505x综上所述 5( ,1x故答案选D 类型四 与平面向量数量积有关的最值问题 【例4】【辽宁省鞍山市第一中学2019届高三一模】中,,,,且,则的最小值等于 A .B .C .D .【答案】C 【解析】 由题意知,向量,且,可得点D 在边BC 上,,所以,则,即,所以时以C 为直角的直角三角形.如图建立平面直角坐标系,设,则, 则,,当时,则最小,最小值为.故选:C .【指点迷津】平面向量数量积的求法有:①定义法;②坐标法;③转化法;其中坐标法是同学们最容易忽视的解题方法,要倍加注视,若有垂直或者容易出现垂直的背景可建立平面直角坐标系,利用坐标法求解.【举一反三】1、已知正方形ABCD 的边长为1,点E 是AB 边上的动点,则DE DC u u u r u u u r的最大值为( )A. 1B. 12C. 3D. 2【答案】A2、【辽宁省鞍山市第一中学2019届高三一模】中,,,,且,则的最小值等于 A .B .C .D .【答案】C 【解析】 由题意知,向量,且,可得点D 在边BC 上,,所以,则,即,所以时以C 为直角的直角三角形.如图建立平面直角坐标系,设,则, 则,,当时,则最小,最小值为.故选:C .3、已知圆的半径为2,是圆上任意两点,且,是圆的一条直径,若点满足(),则的最小值为( )A. -1B. -2C. -3D. -4 【答案】C类型五 平面向量系数的取值范围问题【例5】在矩形ABCD 中, 12AB AD ,,动点P 在以点C 为圆心且与BD 相切的圆上,若AP AB AD u u u v u u u v u u u v,则 的最大值为( )A. 3B. 22C. 5D. 2【答案】A∴圆的方程为(x ﹣1)2+(y ﹣2)2=45, 设点P 25cosθ+1, 25), ∵AP AB AD u u u v u u u v u u u v,25, 25sinθ+2)=λ(1,0)+μ(0,2)=(λ,2μ), ∴55cosθ+1=λ, 55sinθ+2=2μ, ∴255(θ+φ)+2,其中tanφ=2, ∵﹣1≤sin (θ+φ)≤1, ∴1≤λ+μ≤3,故λ+μ的最大值为3, 故选:A【指点迷津】(1)向量的运算将向量与代数有机结合起来,这就为向量和函数的结合提供了前提,运用向量的有关知识可以解决某些函数问题;(2)以向量为载体求相关变量的取值范围,是向量与函数、不等式、三角函数等相结合的一类综合问题; (3)向量的两个作用:①载体作用:关键是利用向量的意义、作用脱去“向量外衣”,转化为我们熟悉的数学问题;②工具作用:利用向量可解决一些垂直、平行、夹角与距离问题. 【举一反三】1、【云南省昆明市云南师范大学附属中学2019届高三上学期第四次月考】已知正方形ABCD 的边长为1,动点P 满足,若,则的最大值为A .B .C .D .【答案】C 【解析】解:以A 为原点建立如图所示的直角坐标系:则,,,,设, ,则由得,化简得:,又,,,,表示圆上的点到原点的距离得平方,其最大值等于圆心到原点的距离加半径的平方,即,故选:C .2.已知1,3,0OA OB OA OB u u u v u u u v u u u v u u u v ,点C 在AOB 内,且OC u u u v 与OA u u u v 的夹角为030,设,OC mOA nOB m n R u u u v u u u v u u u v ,则mn的值为( )A. 2B. 52C. 3D. 4【答案】C 【解析】如图所示,建立直角坐标系.由已知1,3,OA OB u u u v u u u v,,则10033OA OB OC mOA nOB m n u u u r u u u r u u u r u u u r u u u r(,),(,),(,), 33303n tan m, 3mn. 故选B3.【上海市金山区2019届高三二模】正方形ABCD 的边长为2,对角线AC 、BD 相交于点O ,动点P 满足,若,其中m 、n R ,则的最大值是________【答案】 【解析】建立如图所示的直角坐标系,则A (﹣1,﹣1),B (1,﹣1),D (﹣1,1),P (,),所以(1,sinθ+1),(2,0),(0,2),又,所以,则,其几何意义为过点E (﹣3,﹣2)与点P (sinθ,cosθ)的直线的斜率,设直线方程为y +2k (x +3),点P 的轨迹方程为x 2+y 2=1,由直线与圆的位置关系有:,解得:,即的最大值是1,故答案为:1类型六 平面向量与三角形四心的结合【例6】已知ABC 的三边垂直平分线交于点O , ,,a b c 分别为内角,,A B C 的对边,且 222c b b ,则AO BC u u u v u u u v的取值范围是__________.【答案】2,23【指点迷津】平面向量中有关范围最值问题的求解通常有两种思路:①“形化”,即利用平面向量的几何意义将问题转化为平面几何中的最值或范围问题,然后根据平面图形的特征直接进行判断;②“数化”,即利用平面向量的坐标运算,把问题转化为代数中的函数最值与值域、不等式的解集、方程有解等问题,然后利用函数、不等式、方程的有关知识来解决.【举一反三】1、如图,为的外心,为钝角,是边的中点,则的值为()A. 4B.C.D.【答案】B2.已知点O 是锐角三角形ABC 的外心,若OC mOA nOB u u u v u u u v u u u v(m , n R ),则( )A. 2m nB. 21m nC. 1m nD. 10m n 【答案】C【解析】∵O 是锐角△ABC 的外心,∴O 在三角形内部,不妨设锐角△ABC 的外接圆的半径为1,又OC mOA nOB u u u v u u u v u u u v ,∴|OC u u u v |=| mOA nOB u u u v u u u v |,可得2OC u u u v =22m OA u u u v +22n OB u u u v +2mn OA u u u v ⋅OB uuu v ,而OA u u u v ⋅OB uuu v =|OA u u u v|⋅|OB uuu v |cos ∠A 0B <|OA u u u v |⋅|OB uuu v|=1.∴1=2m +2n +2mn OA u u u v ⋅OB uuu v<22m n +2mn ,∴m n <−1或m n >1,如果m n >1则O 在三角形外部,三角形不是锐角三角形, ∴m n <−1, 故选:C.3、在ABC 中, 3AB , 5AC ,若O 为ABC 外接圆的圆心(即满足OA OB OC ),则·AO BC u u u v u u u v的值为__________. 【答案】8【解析】设BC 的中点为D ,连结OD ,AD ,则OD BC u u u v u u u v,则:222212121538.2AO BC AD DO BC AD BCAB AC AC AB AC ABu u u v u u u v u u u v u u u v u u u v u u u v u u u v u u uv u u u v u u u v u u u v u u uv u u u v三.强化训练1.【宁夏平罗中学2019届高三上期中】已知数列是正项等差数列,在中,,若,则的最大值为()A.1 B.C. D.【答案】C【解析】解:∵,故三点共线,又∵,∴,数列是正项等差数列,故∴,解得:,故选:C.2.【山东省聊城市第一中学2019届高三上期中】已知M是△ABC内的一点,且,,若△MBC,△MCA和△MAB的面积分别为1,,,则的最小值是()A.2 B.8 C.6 D.3【答案】D【解析】∵,,∴,化为.∴.∴.则,而=5+4=9,当且仅当,即时取等号,故的最小值是9,故选:D.3.【贵州省凯里市第一中学2019届高三下学期模拟《黄金卷三》】已知是边长为的正三角形,且,,设函数,当函数的最大值为-2时,()A.B.C.D.【答案】D【解析】,因为是边长为的正三角形,且,所以又因,代入得所以当时,取得最大,最大值为所以,解得,舍去负根.故选D项.4.【辽宁省鞍山市第一中学2019届高三一模】已知平面向量,,满足,若,则的最小值为A.B.C.D.0【答案】B【解析】因为平面向量,,满足,,,,设,,,,所以的最小值为.故选:B.5.已知直线分别于半径为1的圆O相切于点若点在圆O的内部(不包括边界),则实数的取值范围是( )A. B. C. D.【答案】B6.【河南省南阳市第一中学2019届高三第十四次考试】已知是平面内两个互相垂直的单位向量,若向量满足,则的最大值是()A.1 B.2 C.D.【答案】C【解析】解:以所在直线建立平面直角坐标系,设,,,因为所以,即,故,令(为参数),所以,因为,所以,,故选C.7.【四川省成都市外国语学校2019届高三一诊】如图所示,在中,,点在线段上,设,,,则的最小值为()A.B.C.D.【答案】D【解析】解:.∵,,三点共线,∴.即.由图可知.∴.令,得,令得或(舍).当时,,当时,.∴当时, 取得最小值故选:D.8.【安徽省宣城市 2019 届高三第二次调研】在直角三角形中,边 的中线 上,则的最大值为( ).,,A.B.C.D.【答案】B 【解析】 解:以 A 为坐标原点,以 AB,AC 方向分别为 x 轴,y 轴正方向建立平面直角坐标系, 则 B(2,0),C(0,4),中点 D(1,2)设,所以,,在 斜时,最大值为 .故选:B. 二、填空题 9.在△ABC 中,角 A,B,C 所对的边分别为 a,b,c.若对任意 λ∈R,不等式则 的最大值为_____. 【答案】2【解析】由,两边平方得,,则则,又,则,即,由 ,从而,即,从而问题可得解.恒成立, ,,2110.【2019 年 3 月 2019 届高三第一次全国大联考】已知 的内角 所对的边分别为 ,向量,,且,若 ,则 面积的最大值为________.【答案】 【解析】由 ,得,整理得.由余弦定理得,因为,所以.又所以,,当且仅当 时等号成立,所以,即.故答案为: . 11.【四川省广元市 2019 届高三第二次高考适应】在等腰梯形 ABCD 中,已知,,,,动点 E 和 F 分别在线段 BC 和 DC 上,且,【答案】【解析】解:等腰梯形 ABCD 中,已知,,,,,,,,,则的最小值为______.,22, ,则当且仅当即 时有最小值故答案为:12.【上海市七宝中学 2019 届高三下学期开学】若边长为 6 的等边三角形 ABC,M 是其外接圆上任一点,则的最大值为______.【答案】【解析】解:是等边三角形, 三角形的外接圆半径为 ,以外接圆圆心 为原点建立平面直角坐标系,设,.设,则,..23的最大值是.故答案为.13.【天津市第一中学 2019 届高三下学期第四次月考】在线段 以点 为中点,则的最大值为________【答案】0 【解析】中,已知 为直角,,若长为 的即 14.【安徽省黄山市 2019 届高三第二次检测】已知 是锐角,则 的取值范围为________.【答案】 【解析】 设 是 中点,根据垂径定理可知,依题意的最大值为 0. 的外接圆圆心, 是最大角,若,即,利用正弦定理化简得.由于,所以,即.由于 是锐角三角形的最大角,故,故.15.【北京市大兴区 2019 届高三 4 月一模】已知点,,点 在双曲线的取值范围是_________.的右支上,则24【答案】【解析】设点 P(x,y),(x>1),所以,因为,当 y>0 时,y=,所以,由于函数在[1,+∞)上都是增函数,所以函数在[1,+∞)上是增函数,所以当 y>0 时函数 f(x)的最小值=f(1)=1.即 f(x)≥1.当 y≤0 时,y=,所以,由于函数 所以函数在[1,+∞)上都是增函数, 在[1,+∞)上是减函数,所以当 y≤0 时函数 k(x)>0.综上所述,的取值范围是.16.【上海市青浦区 2019 届高三二模】已知 为的外心,,大值为________【答案】【解析】设的外接圆半径为 1,以外接圆圆心为原点建立坐标系,因为,所以,不妨设,,,则,,,因为,所以,,则 的最25解得,因为 在圆上,所以 即, ,所以,所以,解得或,因为 只能在优弧 上,所以,故26。
解答向量数量积问题的几种方法

方法集锦向量的数量积问题的常见命题形式有:(1)根据向量及其夹角求两个向量的数量积或其范围;(2)由两个向量的数量积求向量或夹角.此类问题侧重于考查向量的数量积公式、向量的模的公式、向量的数乘运算法则的应用.下面结合几道例题介绍一下求解向量数量积问题的几种方法.一、定义法向量a 、b 的数量积为:a ∙b =|a |∙|b |cos θ,其中θ为向量a 、b 的夹角.根据向量数量积的定义可知,只需要知道两个向量的模的大小以及两个向量之间的夹角的余弦值,即可求得两个向量的数量积.在利用定义法求向量的数量积时,要注意两个向量之间的夹角θ为两个向量共起点时所形成的夹角.例1.如图1所示,在ΔABC 中,M 是BC 的中点,AM =1,点P 在AM 上,且 AP =2 PM ,则 PA ∙( PB + PC )=______.解:∵M 是BC 的中点,AM =1,且 AP =2 PM ,∴ PB + PC =2 PM ,|| AP =23,∴|| PM =12||AP =13,∴ PA ∙( PB + PC )= PA ∙2 PM = PA ∙ AP =|| PA 2∙cos 180°=-49.解答本题,需根据题意和图形,通过向量运算求得 PB + PC ,将求 PA ∙( PB + PC )转化为求 PA ∙ AP .而PA 、 AP 的大小相等、方向相反,其夹角为180°,根据AM =1求得向量 AP 的模长,即可根据向量数量积的定义求得问题的答案.例2.已知△ABC 是边长为1的等边三角形,点D 在边BC 上,且BD =2DC ,则 AB · AD 的值为().A.1B.23C.43D.1+解:∵ΔABC 是边长为1的等边三角形,且BD =2DC ,∴ BD =23 BC ,∴ AB · AD = AB ·( AB + BD )= AB 2+23 AB · BC =1+23×1×1׿èöø-12=23,∴B 正确.通过向量运算,可将问题转化为 AB 2+23AB ·BC .而 AB 与 AB 之间的夹角为0,AB 与 BC 之间的夹角为60°,且||AB =|| BC =1,根据向量的数量积定义进行求解,即可快速解题.二、利用向量数量积的几何意义向量数量积的几何意义是:a 的模||a 与b 在a 方向上的投影|b|cos θ的乘积.当无法求出两个向量的夹角的余弦值时,就可以通过画图,确定一个向量在另一个向量方向上的投影,利用向量数量积的几何意义解题.例3.如图2所示,在平行四边形ABCD 中,AP ⊥BD ,AP =3,试求 AP ∙ AC 的值.解:∵ AC =2 AO ,AP ⊥BD ,∴ AO 在 AP 方向上的投影为|| AP ,∴ AC 在AP 方向上的投影为2|| AP ,∴ AP ∙ AC =|| AP ∙2|| AP =18.我们利用向量数量积的几何意义,将求 AP ∙ AC 转化为求 AC 与 AC 在AP 方向上的投影的乘积.再根据平行四边形的性质:平行四边形的对角线互相平分,求得|| AP ,即可解题.例4.如图3所示,点P 是ΔABC 的外心,且|| AC =4,||AB =2,求 AP ∙( AC - AB )的值.解:延长AP ,交圆P 于点D ,连接BD ,CD ,由圆的性质可得ABCD 为正方形,∴AC ⊥CD ,AB ⊥BD ,∴ AP =12AD ,∴ AD 在 AC 方向上的投影为:|| AC , AP 在 AC 方向上的投影为:12|| AC ,∴ AP ∙ AC =12|| AC ∙|| AC =8,同理可知: AP 在 AB 方向上的投影为:12|| AB ,∴ AP ∙ AB =12|| AB ∙|| AB =2,∴ AP ∙( AC - AB )=8-2=6.解答本题,需充分利用圆的性质:直径所对的圆周角为90°,添加辅助线,构造正方形,以利用正方形图1图2狄亚男图339方法集锦的性质确定 AD 在 AC 方向上的投影、AP 在 AC 方向上的投影、 AP 在AB 方向上的投影.再根据向量数量积的几何意义建立关系式,即可解题.三、坐标法坐标法是指通过向量的坐标运算来解题的方法.通常需先根据题意和几何图形建立合适的平面直角坐标系,求得各个点的坐标;然后通过坐标运算,求得向量的模、向量的数量积.一般地,若a =(x 1,y 1),b=(x 2,y 2),则||a =x 12+y 12,a +b =(x 1+x 2,y 1+y 2),a -b =(x 1-x 2,y 1-y 2),a ∙b=x 1x 2+y 1y 2.例5.已知ΔABC 是边长为1的等边三角形,点D ,E 分别是边AB ,BC 的中点,连接DE ,并延长到点F ,使得DE =2EF ,则 AF ∙BC 的值为______.解:以等边三角形的一条边AC 的中点为原点,建立平面直角坐标系,如图4所示,可得A æèöø-12,0,B æèçø,C æèöø12,0,F æèçø12,所以 AF =æèçø, BC =æèçø12,.则 AF ∙BC =1×2æèçø=18.对于三角形问题,通常可以三角形的一条边为坐标轴,一个顶点或该边上的中点为原点,也可以三角形的一条边及其垂线为坐标轴,来建立平面直角坐标系,这样便于快速求得各个点的坐标.例6.在ΔABC 中,∠C =90°,CB =2,CA =4,P在边AC 的中线BD 上,求 CP ∙BP 的最小值.解:以点C 为坐标原点,建立如图5所示的平面直角坐标系.可得:A (0,4),B (2,0),C (0,0),D (0,2),设点P 的坐标为(x ,y ),则 BP =(x -2,y ),BD =(-2,2),设 BP =λ BD ,因为B ,D ,P 三点共线,所以x -2=-2λ,y =2λ,解得x =2-2λ,y =2λ,则点P 的坐标为(2-2λ,2λ),所以 BP =(-2λ,2λ),CP =(2-2λ,2λ),可得 CP ∙BP =4λ2-4λ+4λ2=8λ2-4λ,因为0≤λ≤1,所以当λ=14时, CP ∙ BP 的最小值为-12.我们根据∠C =90°,即AC ⊥CB ,以AC 、BC 为坐标轴,C 为原点建立平面直角坐标系.然后求得各个点的坐标,并设出P 点的坐标,即可通过向量的坐标运算求得 CP ∙BP 的表达式,从而求得其最值.四、基底法由平面向量的基本定理可知,平面内任意一个向量均可以用两个不共线的向量表示出来.若不易求出要求的两个向量,则可选取一组合适的基底,将要求的两个向量用这组基底表示出来,求得这组基底的模长、夹角,即可根据向量的数量积定义求得问题的答案.例7.如图6所示,在ΔABC 中,∠A =60°,AB =3,AC =2,D 是AC 的中点,点E 在AB 边上,且AE =12EB ,BD 与CE 交于点M ,N 是BC 的中点,则 AM ∙AN =______.解:由题意可知,E ,M ,C 三点共线,设 AM =λ AE +μ AC ,其中λ+μ=1.因为 AE =13 AB , AM =λ3AB +μ AC ,同理可得B ,M ,D 三点共线, AM =m AB +nAD ,可得:m +n =1,因为 AD =12 AC ,所以 AM =m AB +n 2AC ,可得λ3=m ,μ=n2,所以 AM =15 AB +25 AC ,则 AN =12 AB +12AC ,所以 AM ∙ AN =æèöø15AB +25 AC ∙æèöø12 AB +12 AC =135.以 AB , AC 为基底,将 AM 、 AN 用这两个基底表示出来,根据向量的共线定理和基本定理求得15AB +25AC 、12 AB +12AC,即可解题.相比较而言,定义法、基底法、坐标法的适用范围较广,但利用向量数量积的几何意义求解,能使解题过程中的运算量大大减少.同学们需熟练掌握这四种技巧,并在解题时选用合适的技巧,这样才能有效地提升解答向量数量积问题的效率.(作者单位:江苏省南通市如皋市第二中学)图6图4图540。
21 平面向量中最值、范围问题-备战2018高考技巧大全之高中数学黄金解题模板含解析

【高考地位】平面向量中的最值和范围问题,是一个热点问题,也是难点问题,这类试题的基本类型是根据给出的条件求某个量的最值、范围,如:向量的模、数量积、夹角及向量的系数.解决这类问题的一般思路是建立求解目标的函数关系,通过函数的值域解决问题,同时,平面向量兼具“数”与“形”的双重身份,解决平面向量最值、范围问题的另一个基本思想是数形结合.在高考各种题型均有出现如选择题、填空题和解答题,其试题难度属中高档题. 【方法点评】方法一 利用基本不等式求平面向量的最值使用情景:一般平面向量求最值问题解题模板:第一步 利用向量的概念及其基本运算将所求问题转化为相应的等式关系;第二步 运用基本不等式求其最值问题; 第三步 得出结论。
例1.已知点A 在线段BC 上(不含端点),O 是直线BC 外一点,且20OA aOB bOC --=,则221a ba b b+++的最小值是___________ 【答案】222例2 如右图所示,已知点G 是ABC ∆的重心,过点G 作直线与,AB AC 两边分别交于,N M 两点,且,AM x AB AN y AC ==,则2x y +的最小值为( )A .2B .13C .3223+ D .34【答案】C【变式演练1】如图所示,已知点G 是ABC ∆的重心,过点G 作直线与,AB AC 两边分别交于,M N 两点,且,AM x AB AN y AC ==,则x y +的最小值为( )A .2B .13C .43D .34【答案】CMNA BGQ考点:向量共线,基本不等式求最值【变式演练2】已知点A(1, 1),B(4,0),C(2,2).平面区域D由所有满足AP AB ACλμ=+(1≤≤a,1≤≤b)的点P(x,y)组成的区域.若区域D的面积为8,则a+b的最小值为.【答案】4考点:1、平面向量的线性运算;2、基本不等式. 【变式演练3】平行四边形ABCD 中,60,1,2,BAD AB AD P ∠===为平行四边形内一点,且22AP =,若),(R AD AB AP ∈+=μλμλ,则2u λ+的最大值为 . 6【解析】试题分析:对),(R AD AB AP ∈+=μλμλ两边平方可得()()22AP AB AD λμ=+可化为222222APAB AB AD ADλλμμ=+⋅⋅+,据已知条件可得22122λμ=+≥,即λμ≤,又()22212223λλμ=++=+≤,则λ+≤. 考点:向量的数量积运算;基本不等式方法二 利用向量的数量积m n m n ⋅≤求最值或取值范围使用情景:涉及数量积求平面向量最值问题解题模板:第一步 运用向量的加减法用已知向量表示未知向量;第二步 运用向量的数量积的性质求解; 第三步 得出结论。