专题09 等差数列、等比数列(讲学案) 2018年高考文数二轮复习精品资料 Word版 含解析
最新-2018高考数学二轮复习 专题三:第一讲等差数列与等比数列 文 课件 精品

②法一:依题意有:Sn=na1+nn- 2 1d
=-n2+4n=-(n-2)2+4. ∴当n=2时,Sn有最大值4. 法二:∵an=-2n+5. ∴该数列为递减数列,设其前n项和最大,则有
an≥0
,即-2n+5≥0
,
an+1<0
-2n+1+5<0
∴23<n≤25.又∵n∈N*,∴n=2, ∴{an}的前2项和最大,最大值 S2=2a1+2×2 1d=2×3-2=4. 答案:(1)n2-2n+6 (2)见解析
数列{an}满足________(其中n∈N*,d为与n值无关且为常数)
{an}是等差数列.
2.等差数列的通项公式
若等差数列的首项为a1,公差为d,则an=a1+________= am+________(n,m∈N*).
3.等差中项
若x,A,y成等差数列,则A=________,其中A为x、y的等
高分突破
有关等差数列的基本问题
(1)将全体正整数排成一个三角形数阵: 1
23 456 7 8 9 10 根据以上排列的规律,数阵中第n行(n≥3)从左向右的 第3个数为________. (2)已知{an}是一个等差数列,且a2=1,a5=-5. ①求{an}的通项an; ②求{an}的前n项和Sn的最大值.
等比数列{an}的前n项和为Sn,已知S1,S3,S2成等差数 列
(1)求{an}的公比q; (2)若a1-a3=3,求Sn
解析:(1)依题意有
a1+(a1+a1q)=2(a1+a1q+a1q2), 由于a1≠0,故2q2+q=0,又q≠0,从而q=-
21.
(2)由已知可得a1-a1-212=3故a1=4,
②-①得:ban+1-ban-2n=(b-1)an+1. 即an+1=ban+2n.③ (1)当b=2时,由③得an+1=2an+2n, ∴an+1-(n+1)·2n=2an+2n-(n+1)·2n =即2a(n+aa1nn---nnn·+2=·n2-121n·-,2n1又).∵a1-1·21-1=1≠0, ∴{an-n·2n-1}是首项为1,公比为2的等比数列. (2)当b=2时,由(1)知,an-n·2n-1=2n-1, ∴an=(n+1)·2n-1. 当b≠2时,由③知:
2018高考数学理二轮复习课件:1-3-1 等差数列、等比数列 精品

1.[2015·银川一模]若等比数列{an}的前 n 项和 Sn=a·3n-2,则 a2=( )
A.4
B.12
C.24
D.36
解析 由等比数列的前 n 项和公式形式 Sn=A-Aqn,可知 Sn=a·3n-2 中 a=2,则 a2=S2-S1=2×32 -2-(2×31-2)=12.故选 B.
2.[2015·课标全国卷Ⅰ]已知{an}是公差为 1 的等差数列,Sn 为{an}的前 n 项和.若 S8=4S4,则 a10=( )
2.[2015·九江高三一模]等差数列{an}中,a1=20115,am=1n,an=m1 (m≠n),则数列{an}的公差为_2_01_1_5____.
解析 ∵am=20115+(m-1)d=1n, an=20115+(n-1)d=m1 ,∴(m-n)d=1n-m1 , ∴d=m1n, ∴am=20115+(m-1)m1n=1n,解得m1n=20115, 即 d=20115.
a2-a1=2×2-1, 将以上各式相加,
得 an-a1=(2n-1)+[2(n-1)-1]+[2(n-2)-1]+…+(2×2-1)=[2n+2(n-1)+2(n-2)+…+2×2] -(n-1)=n-122n+4-n+1=(n-1)(n+2)-n+1=n2-1.
又因为 a1=2,所以 an=n2-1+a1=n2+1(n≥2). 当 n=1 时,a1=2 适合上式. 故 an=n2+1(n∈N*).
2.[2015·陕西高考]中位数为 1010 的一组数构成等差数列,其末项为 2015,则该数列的首项为___5_____. 解析 设等差数列的首项为 a1,根据等差数列的性质可得,a1+2015=2×1010,解得 a1=5.
建模规范答题
2018届高三数学二轮复习:数列专题及其答案

.2018 届高三第二轮复习——数列第 1 讲等差、等比考点【高考感悟】从近三年高考看,高考命题热点考向可能为:考什么怎么考题型与难度主要考查等差、等比数列的基题型:三种题型均可出现1.等差 (比 )数列的基本运算本量的求解难度:基础题主要考查等差、等比数列的定题型:三种题型均可出现2.等差 (比 )数列的判定与证明义证明难度:基础题或中档题主要考查等差、等比数列的性题型:选择题或填空题3.等差 (比 )数列的性质质难度:基础题或中档题1.必记公式(1)等差数列通项公式: an= a1 + (n- 1) d.n( a1+ an)n(n- 1 )d(2) 等差数列前 n 项和公式:S == na1+.n22(3)等比数列通项公式: ana1q n-1 .(4)等比数列前 n 项和公式:na1 ( q= 1)S n=n n .a1( 1 -q )a1- aq ( q≠1)=1 - q1- q(5)等差中项公式: 2an= an- 1+an+1 (n≥ 2) .(6)等比中项公式: a2n= an- 1 ·an+1(n≥ 2) .S1 ( n= 1)(7) 数列 {an}的前 n 项和与通项 an 之间的关系: an= . Sn- Sn- 1( n≥ 2)2.重要性质(1) 通项公式的推广:等差数列中,an=am+ (n-m )d;等比数列中,an= amq n-m...(2)增减性:①等差数列中,若公差大于零,则数列为递增数列;若公差小于零,则数列为递减数列.②等比数列中,若a1>0 且 q> 1 或 a1< 0 且 0 < q< 1,则数列为递增数列;若a1> 0 且 0 < q< 1 或a1< 0 且 q> 1,则数列为递减数列.3.易错提醒(1)忽视等比数列的条件:判断一个数列是等比数列时,忽视各项都不为零的条件.(2) 漏掉等比中项:正数a, b 的等比中项是±ab,容易漏掉-ab .【真题体验】1. (2015 ·新课标Ⅰ高考)已知 {an}是公差为 1 的等差数列, Sn 为 {an}的前 n 项和.若 S8= 4S4,则 a10= ( )17 19A. B. C. 10D. 122 212. (2015 ·新课标Ⅱ高考)已知等比数列 {an}满足 a1=, a3a5 = 4( a4-1) ,则 a2 = ()41 1A. 2 B.1 C.D.2 83. (2015 ·浙江高考)已知 {n}是等差数列,公差d不为零.若a2,a3,7 成等比数列,且2a1+a2 =1,则a aa1= __________,d= ________.4. (2016 ·全国卷1)已知 a n是公差为 3 的等差数列,数列b n满足 b1=1, b2 =1, a n b n 1b n1 nb n,.3(I )求a n 的通项公式;( II )求b n的前 n 项和 ...【考点突破】考点一、等差(比)的基本运算1.(2015 ·湖南高考)设 Sn 为等比数列 {an}的前 n 项和,若 a1 = 1,且 3 S1,2S2 ,S3 成等差数列,则an= ________.92. (2015 ·重庆高考)已知等差数列{an}满足 a3=2,前 3 项和 S3=.2(1)求 {an}的通项公式;(2)设等比数列 {bn}满足 b1= a1 ,b4 = a15,求 {bn}的前 n 项和 Tn.考点二、等差(比)的证明与判断【典例 1 】( 2017 ·全国1 )记 Sn 为等比数列 a n的前 n 项和,已知 S2=2 , S3 =-6.( 1)求 a n 的通项公式;( 2)求 Sn,并判断 Sn+1, Sn,Sn+2 是否成等差数列。
山东省胶州市2018届高考数学二轮复习第4讲等差数列等比数列学案文

第4讲 等差数列、等比数列学习目标【目标分解一】等差、等比数列的基本运算【目标分解二】等差、等比数列的基本性质 【目标分解三】等差、等比数列的判定与证明【课前自主复习区】■核心知识储备一1.等差数列的通项公式及前n 项和公式a n = ; +=m n a a ; S n = = .2.等比数列的通项公式及前n 项和公式a n = ; ⋅=m n a a ; S n =.■核心知识储备二:1.若m ,n ,p ,q ∈N *,m +n =p +q ,则在等差数列中 ,在等比数列中 . 2.(1)等比数列(q ≠-1)中连续k 项的和成等比数列,即S k ,S 2k -S k ,S 3k -S 2k ,…成等比数列,其公比为 .(2)等差数列中连续k 项的和成等差数列,即S k ,S 2k -S k ,S 3k -S 2k ,…成等差数列,公差为 .3.若A 2n -1,B 2n -1分别为等差数列{a n },{b n }的前2n -1项的和,则a nb n = .■核心知识储备三:(1)证明数列{a n }是等差数列的两种基本方法①利用定义,证明a n +1-a n (n ∈N *)为同一常数;②利用中项性质,即证明2a n =a n -1+a n +1(n ≥2). (2)证明数列{a n }是等比数列的两种基本方法①利用定义,证明a n +1a n (n ∈N *)为同一常数; ②利用等比中项,即证明a 2n =a n -1a n +1(n ≥2).[高考真题回访]1.(2015·全国卷Ⅰ)已知{a n }是公差为1的等差数列,S n 为{a n }的前n 项和,若S 8=4S 4,则a 10=( )A.172 B .192 C .10 D .122.(2015·全国卷Ⅱ)设S n 是等差数列{a n }的前n 项和,若a 1+a 3+a 5=3,则S 5=( )A .5B .7 C.9 D .113.(2014·全国卷Ⅱ)等差数列{a n }的公差为2,若a 2,a 4,a 8成等比数列,则{a n }的前n 项和S n =( )A .n (n +1)B .n (n -1) C.n n +12D.n n -124.(2015·全国卷Ⅱ)已知等比数列{a n }满足a 1=14,a 3a 5=4(a 4-1),则a 2=( )A .2B .1 C.12 D.185.(2015·全国卷Ⅰ)在数列{a n }中,a 1=2,a n +1=2a n ,S n 为{a n }的前n 项和.若S n =126,则n =________.【课堂互动探究区】【目标分解一】等差、等比数列的基本运算【例1】(1)已知等比数列{a n }的前n 项和为S n ,a 1+a 3=30,S 4=120,设b n =1+log 3a n ,那么数列{b n }的前15项和为( )A .152B .135C .80D .16(2)设{a n }是首项为a 1,公差为-1的等差数列,S n 为其前n 项和.若S 1,S 2,S 4成等比数列,则a 1=( ) A .2 B .-2 C.12 D .-12【我会做】(1)在数列{a n }中,a 1=1,a n +1=a n +3,S n 为{a n }的前n 项和,若S n =51,则n =__________.(2)(2017·东北三省四市联考)等比数列{a n }中各项均为正数,S n 是其前n 项和,且满足2S 3=8a 1+3a 2,a 4=16,则S 4=________.【我能做对】1设等比数列{a n }的前n 项和为S n ,若S m -1=5,S m =-11,S m +1=21,则m =( )A .3B .4C .5D .62. 《九章算术》是我国古代第一部数学专著,全书收集了246个问题及其解法,其中一个问题为“现有一根九节的竹子,自上而下各节的容积成等差数列,上面四节容积之和为3升,下面三节的容积之和为4升,求中间两节的容积各为多少?”该问题中第2节,第3节,第8节竹子的容积之和为( ) A.176升 B .72升 C.11366升 D .10933升3.★(2016·全国Ⅰ卷)已知{a n }是公差为3的等差数列,数列{b n }满足b 1=1,b 2=13,a n b n +1+b n +1=nb n .(1)求{a n }的通项公式; (2)求{b n }的前n 项和.【目标分解二】等差、等比数列的基本性质【例2】(2017·福州五校二模联考)在等比数列{a n }中,a 3,a 15是方程x 2-7x +12=0的两根,则a 1a 17a 9的值为( )A .2 3B .4C .±2 2D .±4(2017·湘中名校联考)若{a n }是等差数列,首项a 1>0,a 2 016+a 2 017>0,a 2 016·a 2 017<0,则使前n 项和S n >0成立的最大正整数n 是( )A .2 016B .2 017C .4 032D .4 033 【我会做】(1)已知各项不为0的等差数列{a n }满足2a 2-a 27+2a 12=0,数列{b n }是等比数列,且b 7=a 7,则b 3b 11等于( )A .16B .8 C.4 D .2★(2)(2017·武汉二模)等比数列{a n }的各项均为正数,且a 5a 6+a 4a 7=18,则log 3a 1+log 3a 2+…+log 3a 10=( )A .12B .10C .8D .2+log 35【目标分解三】等差、等比数列的判定与证明【例3】(2017·全国卷Ⅰ)记S n 为等比数列{a n }的前n 项和.已知S 2=2,S 3=-6.(1)求{a n }的通项公式; (2)求S n ,并判断S n +1,S n ,S n +2是否成等差数列.【我能做对】★★(2014·全国Ⅰ卷)已知数列{a n }的前n 项和为S n ,a 1=1,a n ≠0,a n a n +1=λS n -1,其中λ为常数.(1)证明:a n +2-a n =λ; (2)是否存在λ,使得{a n }为等差数列?并说明理由.【课后巩固区】三年真题| 验收复习效果1.(2017·全国Ⅰ卷)记S n 为等差数列{a n }的前n 项和.若a 4+a 5=24,S 6=48,则{a n }的公差为( )A .1B .2C .4D .82.(2017·全国Ⅲ卷)等差数列{a n }的首项为1,公差不为0.若a 2,a 3,a 6成等比数列,则{a n }前6项的和为( )A .-24B .-3C .3D .83.(2017·全国Ⅱ卷)我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯( ) A .1盏 B .3盏 C .5盏D .9盏4.(2015·全国Ⅱ卷)已知等比数列{a n }满足a 1=3,a 1+a 3+a 5=21,则a 3+a 5+a 7=( )A .21B .42C .63D .84★5.(2016·全国Ⅰ卷)设等比数列{a n }满足a 1+a 3=10,a 2+a 4=5,则a 1a 2…a n 的最大值为________.★★6.(2016·全国Ⅲ卷)已知数列{a n }的前n 项和S n =1+λa n ,其中λ≠0.(1)证明{a n }是等比数列,并求其通项公式; (2)若S 5=3132,求λ.。
2018届高考数学理新课标二轮专题复习课件:3-2数列 精品

3.(2016·太原检测)已知数列{an}满足:a1=12,3(11+-aann+1)=
2(1+an) 1-an+1 ,an·an+1<0(n≥1,n∈N*);数列{bn}满足:bn=an+12-
an2(n≥1,n∈N*). (1)求数列{an},{bn}的通项公式; (2)证明:数列{bn}中的任意三项不可能成等差数列.
当 d=-1 时,a3=0 与已知矛盾,d=2. ∵an=a1+(n-1)d=2+2(n-1)=2n.(3 分) 由 bn+Sn=2,得 Sn=2-bn. 当 n=1 时,b1+S1=2,解得 b1=1; 当 n≥2 时,bn=Sn-Sn-1=(2-bn)-(2-bn-1)=bn-1-bn,即 bn=12bn-1. ∴数列{bn}是首项为 1,公比为12的等比数列,故 bn=2n1-1.(6 分)
(2)由(1)知 Sn=2-2n1-1, ∴cn=an2Sn=2n-2nn-1.(7 分) ∴Tn=2(1+2+3+…+n)-(210+221+232+…+2nn-1)=n(n+1) -(210+221+232+…+2nn-1). 令 Rn=210+221+232+…+2nn-1,
则12Rn=211+222+233+…+2nn, 两式相减得12Rn=1+12+212+…+2n1-1-2nn=11--2121n-2nn=2- n+2n 2, ∴Rn=4-n2+n-21 , ∴Tn=n2+n-4+n2+n-21 .(12 分)
(2)∵an·bn=(-1)n-123n×(-1)n+1n=32nn , ∴Tn=3(21+222+233+…+2nn), ∴12Tn=3(212+223+…+n-2n 1+2nn+1), 以上两式相减得:12Tn=3(211+212+…+21n-2nn+1)=3(1-21n- 2nn+1), ∴Tn=6(1-n2+n+21 ).
2018届高三数学文二轮新课标专题复习课件:1.4.1等差数列、等比数列 精品

【知识回顾】
1.等差数列 (1)通项公式:an=_a_1+_(_n_-_1_)_d_=am+_(_n_-_m_)_d_. (2)等差中项公式:2an=_a_n_-1_+_a_n_+1_(n∈N*,n≥2).
(3)前n项和公式:Sn=__n_(_a1_2_a_n_)__=_n_a_1 __n__n2__1__d_.
B.99
C.98
D.97
【解析】选C.方法一:由题意可知,
aa11
4d 9d
3, 8,
解得a1=-1,d=1,所以a100=-1+99×1=98.
方法二:由等差数列性质可知:
S9=9
a1 2
a9
9=922aa55=27,故a5=3,
而a10=8,因此公差d=a1100
a5=1,
5
所以a100=a10+90d=98.
2.等比数列
(1)等比数列的通项公式:an=_a_1q_n_-_1=_a_mq_n_-_m. (2)等比中项公式:an2 =_a_n_-1_·__a_n_+1_(n∈N*,n≥2).
(3)等比数列的前n项和公式: _n_a_1 (q=1),
Sn= a1 anq a1(1 qn ) __1__q__=___1__q___,(q≠1).
【加固训练】
1.等差数列{an}的前n项和Sn,若a1=2,S3=12,则a6=( )
A.8
B.10
C.12
D.14
【解解得析ad】1==2选2所,,C以.由a6题=a意1+得5,d=3a11a=122.,3d=12,
2.(2016·重庆一模)在等差数列{an}中,a1=2,a3+a5=10,
2018年高三年级数学二轮复习-数列专题及答案解析
2018届高三第二轮复习——数列第1讲等差、等比考点【高 考 感 悟】从近三年高考看,高考命题热点考向可能为:1.必记公式(1)等差数列通项公式:a n =a 1+(n -1)d . (2)等差数列前n 项和公式:S n =n (a 1+a n )2=na 1+n (n -1)d2.(3)等比数列通项公式:a n a 1qn -1.(4)等比数列前n 项和公式:S n =⎩⎪⎨⎪⎧na 1(q =1)a 1(1-q n )1-q=a 1-a n q 1-q (q ≠1).(5)等差中项公式:2a n =a n -1+a n +1(n ≥2). (6)等比中项公式:a 2n =a n -1·a n +1(n ≥2). (7)数列{a n }的前n 项和与通项a n 之间的关系:a n =⎩⎪⎨⎪⎧S 1(n =1)S n -S n -1(n ≥2).2.重要性质(1)通项公式的推广:等差数列中,a n =a m +(n -m )d ;等比数列中,a n =a m qn -m.(2)增减性:①等差数列中,若公差大于零,则数列为递增数列;若公差小于零,则数列为递减数列. ②等比数列中,若a 1>0且q >1或a 1<0且0<q <1,则数列为递增数列;若a 1>0且0<q <1或a 1<0且q >1,则数列为递减数列. 3.易错提醒(1)忽视等比数列的条件:判断一个数列是等比数列时,忽视各项都不为零的条件. (2)漏掉等比中项:正数a ,b 的等比中项是±ab ,容易漏掉-ab .【 真 题 体 验 】1.(2015·新课标Ⅰ高考)已知{a n }是公差为1的等差数列,S n 为{a n }的前n 项和.若S 8=4S 4,则a 10=( )A.172 B.192C .10D .12 2.(2015·新课标Ⅱ高考)已知等比数列{a n }满足a 1=14,a 3a 5=4(a 4-1),则a 2=( )A .2B .1 C.12 D.183.(2015·浙江高考)已知{a n }是等差数列,公差d 不为零.若a 2,a 3,a 7成等比数列,且2a 1+a 2=1,则a 1=__________,d =________.4.(2016·全国卷1)已知{}n a 是公差为3的等差数列,数列{}n b 满足12111==3n n n n b b a b b nb +++=1,,,. (I )求{}n a 的通项公式;(II )求{}n b 的前n 项和.【考 点 突 破 】考点一、等差(比)的基本运算1.(2015·湖南高考)设S n 为等比数列{a n }的前n 项和,若a 1=1,且3S 1,2S 2,S 3成等差数列,则a n =________.2.(2015·重庆高考)已知等差数列{a n }满足a 3=2,前3项和S 3=92.(1)求{a n }的通项公式;(2)设等比数列{b n }满足b 1=a 1,b 4=a 15,求{b n }的前n 项和T n .考点二、等差(比)的证明与判断【典例1】( 2017·全国1 )记S n 为等比数列{}n a 的前n 项和,已知S 2=2,S 3=-6.(1)求{}n a 的通项公式;(2)求S n ,并判断S n +1,S n ,S n +2是否成等差数列。
2018届高考数学文新课标二轮专题复习课件:2-8 数列 精品
(2)(2016·福州五校联考)已知数列{an}的前 n 项和为 Sn=pn2 a1+2a2+3a3+…+nan
-2n,n∈N*,bn= 1+2+3+…+n ,若数列{bn}是公差为 2
的等差数列,则数列{an}的通项公式为________.
【解析】 由 Sn=pn2-2n 可知,当 n=1 时,a1=p-2, 当 n≥2 时,an=Sn-Sn-1=2pn-p-2,a1=p-2 适合上式, 因而对任意的 n∈N*,均有 an=2pn-p-2,an+1-an=2p, 因而数列{an}是公差为 2p 的等差数列,a2=3p-2,b1=a1= p-2, b2=a11++22a2=7p- 3 6,b2-b1=7p- 3 6-(p-2)=2,得 p=23, a1=-21.
4.(2016·兰州模拟)已知数列{an},{bn}都是等差数列,Sn,
Tn
分别是它们的前
n
项和,并且Sn=7n+1,则 a2+a5+a17+a22 =
Tn n+3
b8+b10+b12+b16
() 34
A. 5 31
C. 4
B.5 31
D. 5
答案 D 解析 令 Sn=(7n+1)n,Tn=n(n+3),则 an=14n-6,bn= 2n+2,所以ba82++ba150++ab1172++ab2126=2128++6242++22362++33402=351.
(2)(2016·河南六市联考)已知正项数列{an}的前 n 项和为 Sn,
若{an}和{ Sn}都是等差数列,且公差相等,则 a6=( )
11
3
A. 4
B.2
7 C.2
D.1
【 解 析 】 设 {an} 的 公 差 为 d , 由 题 意 得 , Sn = na1+n(n- 2 1)d= d2n2+(a1-d2)n,又{an}和{ Sn}都是
2018年高考数学二轮复习第一部分专题三数列第一讲等差数列等比数列教案
第一讲 等差数列、等比数列[考情分析]等差数列、等比数列的判定及其通项公式在考查基本运算、基本概念的同时,也注重对函数与方程、等价转化、分类讨论等数学思想的考查;对等差数列、等比数列的性质考查主要是求解数列的等差中项、等比中项、通项公式和前n 项和的最大、最小值等问题,主要是中低档题;等差数列、等比数列的前n 项和是高考考查的重点.[真题自检]1.(2015·高考全国卷Ⅱ)设S n 是等差数列{a n }的前n 项和,若a 1+a 3+a 5=3,则S 5=( ) A .5 B .7 C .9D .11解析:法一:∵a 1+a 5=2a 3,∴a 1+a 3+a 5=3a 3=3,∴a 3=1,∴S 5=a 1+a 52=5a 3=5.法二:∵a 1+a 3+a 5=a 1+(a 1+2d )+(a 1+4d )=3a 1+6d =3,∴a 1+2d =1, ∴S 5=5a 1+5×42d =5(a 1+2d )=5.解析:A2.(2015·高考全国卷Ⅰ)已知{a n }是公差为1的等差数列,S n 为{a n }的前n 项和,若S 8=4S 4,则a 10=( )A.172B.192C .10D .12解析:∵公差为1,∴S 8=8a 1+8×8-12×1=8a 1+28,S 4=4a 1+6. ∵S 8=4S 4,∴8a 1+28=4(4a 1+6),解得a 1=12,∴a 10=a 1+9d =12+9=192.答案:B3.(2015·高考全国卷Ⅰ改编)在数列{a n }中,a 1=2,a n +1=2a n ,S n 为{a n }的前n 项和.若S n =126,求n 的值.解析:∵a 1=2,a n +1=2a n ,∴数列{a n }是首项为2,公比为2的等比数列. 又∵S n =126,∴-2n1-2=126,∴n =6.等差数列、等比数列的基本运算[方法结论]1.两组求和公式 (1)等差数列:S n =n a 1+a n2=na 1+n n -2d ;(2)等比数列:S n =a 1-q n1-q=a 1-a n q1-q(q ≠1). 2.在进行等差(比)数列项与和的运算时,若条件和结论间的联系不明显,则均可化成关于a 1和d (q )的方程组求解,但要注意消元法及整体计算,以减少计算量.[题组突破]1.(2017·贵阳模拟)等差数列{a n }的前n 项和为S n ,且a 3+a 9=16,则S 11=( ) A .88 B .48 C .96D .176解析:依题意得S 11=a 1+a 112=a 3+a 92=11×162=88,选A. 优解:依题意,可考虑将题目中的等差数列特殊化为常数列(注意慎用此方法),即a n =8,因此S 11=88,选A.答案:A2.(2017·海口模拟)已知数列{a n },a n >0, 它的前n 项和为S n ,且2a 2是4a 1与a 3的等差中项.若{a n }为等比数列,a 1=1,则S 7=________.解析:设数列{a n }的公比为q ,依题意有a 1=1,4a 2=4a 1+a 3,即4q =4+q 2,故q =2,则S 7=1-271-2=127. 答案:1273.(2017·长沙模拟)已知数列{a n }为等差数列,其中a 2+a 3=8,a 5=3a 2. (1)求数列{a n }的通项公式;(2)数列{b n }中,b 1=1,b 2=2,从数列{a n }中取出第b n 项记为c n ,若{c n }是等比数列,求{b n }的前n 项和.解析:(1)设等差数列{a n }的公差为d ,依题意有⎩⎪⎨⎪⎧2a 1+3d =8a 1+4d =3a 1+3d ,解得a 1=1,d =2,从而{a n }的通项公式为a n =2n -1,n ∈N *. (2)c 1=ab 1=a 1=1,c 2=ab 2=a 2=3, 从而等比数列{c n }的公比为3, 因此c n =1×3n -1=3n -1.另一方面,c n =a n b =2b n -1, 所以2b n -1=3n -1,因此b n =3n -1+12. 记{b n }的前n 项和为S n , 则S n =+31+…+3n -1+n 2=3n+2n -14.[误区警示]在运用等比数列前n 项和公式时,一定要注意判断公比q 是否为1,切忌盲目套用公式导致失误.等差数列、等比数列的性质[方法结论]1.等差数列、等比数列常用性质:(1)若n 为奇数,则S n =na 12n+.(2)若n 为偶数,则S n =n2(a 2n +a 12n +).3.在等差数列中,当项数为偶数2n 时,有S 偶-S 奇=nd ,S 偶S 奇=a n +1a n;当项数为奇数2n -1时, 有S 奇-S 偶=a n ,S 偶S 奇=n -1n. 4.在等比数列中,当项数为偶数2n 时,S 偶S 奇=q .[题组突破]1.(2017·洛阳模拟)等差数列{a n }为递增数列,若a 21+a 210=101,a 5+a 6=11,则数列{a n }的公差d 等于( )A .1B .2C .9D .10解析:依题意得(a 1+a 10)2-2a 1a 10=(a 5+a 6)2-2a 1a 10=121-2a 1a 10=101,∴a 1a 10=10, 又a 1+a 10=a 5+a 6=11,a 1<a 10,∴a 1=1,a 10=10,d =a 10-a 110-1=1,选A.答案:A2.(2017·江西红色七校联考)等比数列{a n }满足a n >0,q >1,a 3+a 5=20,a 2a 6=64,则公比q 为( ) A.14 B.12 C .2D .4解析:通解:由已知可得a 21q 6=64,即a 1q 3=8,得a 4=8,所以8q+8q =20,化简得2q 2-5q +2=0,解得q =2或q =12(舍去),故q =2,选C.优解:由已知可得⎩⎪⎨⎪⎧a 3+a 5=20a 3a 5=64,解得⎩⎪⎨⎪⎧a 3=4a 5=16或⎩⎪⎨⎪⎧a 3=16a 5=4(舍去),故a 5a 3=164=4=q 2,故q =2,选C. 答案:C3.(2017·江西高安中学等九校联考)已知数列{a n }是等比数列,数列{b n }是等差数列,若a 1·a 6·a 11=33,b 1+b 6+b 11=7π,则tanb 3+b 91-a 4·a 8的值是( )A .1 B.22C .-22D .- 3解析:{a n }是等比数列,{b n }是等差数列,且a 1·a 6·a 11=33,b 1+b 6+b 11=7π,∴a 36=(3)3,3b 6=7π,∴a 6=3,b 6=7π3,∴tan b 3+b 91-a 4·a 8=tan 2b 61-a 26=tan2×7π31-32=tan(-7π3)=tan(-2π-π3)=-tan π3=- 3.答案:D [误区警示]在等比数列中,S m ,S 2m -S m ,S 3m -S 2m …仍成等比数列的前提是S m ≠0,易忽视这一条件.等差数列、等比数列的判定与证明[方法结论]1.证明数列{a n }是等差数列的两种基本方法: (1)利用定义,证明a n +1-a n (n ∈N *)为一常数; (2)利用等差中项性质,即证明2a n =a n -1+a n +1(n ≥2). 2.证明{a n }是等比数列的两种基本方法: (1)利用定义,证明a n +1a n(n ∈N *)为一常数; (2)利用等比中项性质,即证明a 2n =a n -1a n +1(n ≥2,a n ≠0). [典例] (2017·高考全国卷Ⅰ)记S n 为等比数列{a n }的前n 项和. 已知S 2=2,S 3=-6. (1)求{a n }的通项公式;(2)求S n ,并判断S n +1,S n ,S n +2是否成等差数列. 解析:(1)设{a n }的公比为q .由题设可得⎩⎪⎨⎪⎧a 1+q =2,a 1+q +q2=-6.解得q =-2,a 1=-2.故{a n }的通项公式为a n =(-2)n. (2)由(1)可得S n =a 1-qn1-q=-23+(-1)n 2n +13.由于S n +2+S n +1=-43+(-1)n 2n +3-2n +23=2[-23+(-1)n 2n +13]=2S n ,故S n +1,S n ,S n +2成等差数列. [类题通法]等价转化思想在解决a n 与S n 关系问题中的应用在已知a n 与S n 的关系问题中,通常利用a n 与S n 的关系转化为{a n }中a n 与a n -1或a n +1与a n 的关系,然后求解其他问题.[演练冲关]1.(2017·华南师大附中测试)在数列{a n }中,a 1=p ,a n +1=qa n +d (n ∈N *,p ,q ,d 是常数),则d =0是数列{a n }是等比数列的( )A .必要不充分条件B .充分不必要条件C .充要条件D .既不充分也不必要条件解析:当d =0,p =0时,a n =0,数列{a n }不是等比数列,所以充分性不成立;当q =0,p =d ,d ≠0时,a n =d ,则数列{a n }为公比为1的等比数列,所以必要性不成立.综上所述,d =0是数列{a n }是等比数列的既不充分也不必要条件,故选D. 答案:D2.(2017·临川一中模拟)已知数列{a n }满足:a 1=3,a n +1=n +1na n +2n +2. (1)证明:数列{a n n}是等差数列; (2)证明:1a 1+1a 2+1a 3+…+1a n<1.证明:(1)由a n +1=n +1n a n +2n +2得a n +1n +1=a n n +2,即a n +1n +1-a nn=2, ∴数列{a n n}是首项为3,公差为2的等差数列. (2)由(1)知,a n n=3+(n -1)×2=2n +1, ∴a n =n (2n +1), ∴1a n =1nn +<1nn +=1n -1n +1, ∴1a 1+1a 2+1a 3+…+1a n <(11-12)+(12-13)+(13-14)+…+(1n -1n +1)=11-1n +1<1, ∴1a 1+1a 2+1a 3+…+1a n<1.等差、等比数列与其他知识的交汇1.交汇点 数列与其他知识的交汇数列在中学教材中既有相对独立性,又有较强的综合性,很多数列问题一般转化为特殊数列求解,一些题目常与函数、向量、三角函数、解析几何等知识交汇结合,考查数列的基本运算与应用. [典例1] (2017·宜昌月考)已知等差数列{a n }的前n 项和为S n ,若OB →=a 1OA →+a 2 016OC →,且A ,B ,C 三点共线(该直线不过点O ),则S 2 016等于( )A .1 007B .1 008C .2 015D .2 016解析:∵A ,B ,C 三点共线,∴a 1+a 2 016=1,∴S 2 016=a 1+a 2 0162=1 008,故选B.答案:B [类题通法]本题巧妙地将三点共线条件(PA →=xPB →+yPC →且A ,B ,C 三点共线⇔x +y =1)与等差数列的求和公式结合,解决的关键是抓住整体求值思想.[演练冲关]1.(2017·铜仁质检)在由正数组成的等比数列{a n }中,若a 3a 4a 5=3π,则sin(log 3a 1+log 3a 2+…+log 3a 7)的值为( ) A.12 B.32 C .1D .-32解析:因为a 3a 4a 5=3π=a 34,所以a 4=3π3,即log 3a 1+log 3a 2+…+log 3a 7=log 3(a 1a 2…a 7)=log 3a 74=7log 33π3=7π3,所以sin(log 3a 1+log 3a 2+…+log 3a 7)=32.答案:B2.创新点 新定义下数列的创新问题 [典例2] 设S n 为数列{a n }的前n 项和,若S 2n S n(n ∈N *)是非零常数,则称该数列为“和等比数列”;若数列{c n }是首项为2,公差为d (d ≠0)的等差数列,且数列{c n }是“和等比数列”,则d =________.解析:由题意可知,数列{c n }的前n 项和为S n =n c 1+c n2,前2n 项和为S 2n =2nc 1+c 2n2,所以S 2nS n =2n c 1+c 2n2n c 1+c n2=2+2nd4+nd -d=2+21+4-d nd.因为数列{c n }是“和等比数列”,即S 2nS n 为非零常数,所以d =4. 答案:4 [类题通法]解决新定义下数列问题一般是直接扣定义进行求解.本例的关键是抓住S 2nS n为非零常数来确定参数值.[演练冲关]2.在数列{a n }中,n ∈N *,若a n +2-a n +1a n +1-a n=k (k 为常数),则称{a n }为“等差比数列”,下列是对“等差比数列”的判断: ①k 不可能为0;②等差数列一定是“等差比数列”; ③等比数列一定是“等差比数列”;④“等差比数列”中可以有无数项为0.其中所有正确判断的序号是________.解析:由等差比数列的定义可知,k不为0,所以①正确,当等差数列的公差为0,即等差数列为常数列时,等差数列不是等差比数列,所以②错误;当{a n}是等比数列,且公比q=1时,{a n}不是等差比数列,所以③错误;数列0,1,0,1,…是等差比数列,该数列中有无数多个0,所以④正确.答案:①④。
2018高三二轮复习数列专题学案
2017数列专题复习知识点:1、等差数列通项公式: 2、 等差数列求和公式: 3、等比数列通项公式: 4、等比数列求和公式: 题型一:通项公式的求解(1)等差数列通项公式的求解:例:已知各项均不相等的等差数列前四项和是a 1,a 7的等比中项,求数列的通项公式;变式训练:1、已知等差数列{}n a 的前n 项和为n S ,且满足1596,63;a a S +==求通项公式; 2、已知数列}{n a 是首项为正数的等差数列,数列11{}n n a a +的前n 项和为12+n n,求数列}{n a 的通项公式; 3、已知数列的前n 项的和,求数列的通项公式;4、已知数列为等差数列,且514a =,720a =,求数列的通项公式;5、已知数列{}n a 各项均为正数,其前n 项和为n S ,且满足24(1)n n S a =+,求{}n a 的通项公式;6、设等差数列{}n a 的前n 项和为n S ,且244S S =,122+=n n a a ,求数列{}n a 的通项公式;(2)、等比数列通项公式的求解:例:设{}n a 是公比大于1的等比数列,n S 为数列{}n a 的前n 项和,已知37S =,且123334a a a ++,,构成等差数列,求数列{}n a 的通项公式;变式训练:1、设数列{}n b 的前n 项和为n S ,且b n =2-2S n ;求数列{}n a 的通项公式;2、在等比数列中,,公比,且,又是与的等比中项,求等比数列的通项公式;3、数列{}n a 的前n 项和记为()11,1,211n n n S a a S n +==+≥,求{}n a 的通项公式;4、已知递增的等比数列满足是的等差中项,求的通项公式; {}20{}n a 34,14a S ={}n a {}n a 22n S n n =+{}n a {}n a {}n a {}n a 0()n a n *>∈N (0,1)q ∈3546392100a a a a a a ++=44a 6a {}n a {}n a 234328,2a a a a ++=+且24,a a {}n a6、已知n S 是等比数列{}n a 的前n 项和,4S ,2S ,3S 成等差数列,且23418a a a ++=-,求{}n a 的通项公式;3、非等差等比数列通项公式的求解 例:)(1n f a a n n +=+(1)、已知数列{}n a 满足211=a ,nn a a n n ++=+211,求{}n a 的通项公式(2)已知数列{}n a 满足11a =,1n n a a n +=+,求{}n a 的通项公式例: q pa a n n +=+1(1)已知数列{}n a 中,11=a ,321+=+n n a a ,求求{}n a 的通项公式(2)已知数列{}n a 满足*111,21().n n a a a n N +==+∈,求数列{}n a 的通项公式;变式训练:1、设n S 为数列{n a }的前项和,已知01≠a ,211n n a a S S -=,∈n N *,求数列{n a }的通项公式;2、设数列{}n a 满足123(21)2n a a n a n +++-=K .(1)求{}n a 的通项公式;3、已知{}n a 是公差为3的等差数列,数列{}n b 满足12111==3n n n n b b a b b nb +++=1,,,求{}n a 的通项公式;4、设数列{}n a 的前n 项和为n S ,且2 2.n n S a =-,求数列{}n a 的通项公式;5、已知数列{}n a 满足12323(*)n a a a na n n N +++⋅⋅⋅+=∈,求数列{}n a 的通项公式n a ;6、已知等比数列{}n a 的公比11,1q a >=,且132,,14a a a +成等差数列,数列{}n b 满足:()n {}{}题型二:数列求和:1、 分类求和:例:已知等差数列{}n a 的前n 项和为n S ,且3155,225.a S == (Ⅰ)求数列{}n a 的通项n a ;(Ⅱ)设32n an b n =+,求数列{}n b 的前n 项和.n T变式训练:1、等比数列中,分别是下表第一、二、三行中的某一个数,且中的任何两个数不在下表的同一列.(Ⅰ)求数列的通项公式;(Ⅱ)若数列满足:(1)ln nn n n b a a =+-,求数列的前项和.2、设数列{}n a 的前n 项和为n S ,且3n n a S =-,数列{}n b 为等差数列,且5715,21.b b ==(Ⅰ)求数列{}n a 的通项公式n a ; (Ⅱ)将数列1n a ⎧⎫⎨⎬⎩⎭中的第1b 项,第2b 项,第3b 项,L 第n b 项,L 删去后,剩余的项按从小到大的顺序排成新数列{}n c ,求数列{}n c 的前2016项和.3、在等比数列中,,公比,且,又是与的等比中项.(Ⅰ)求数列的通项公式;(Ⅱ)设,求数列{}n b 的前项和.{}n a 123,,a a a 123,,a a a {}n a {}n b {}n b 2n 2n S {}n a 0()n a n *>∈N (0,1)q ∈3546392100a a a a a a ++=44a 6a {}n a 2log n n b a =n n S2、裂项求和例:已知各项均不相等的等差数列的前四项和是a 1,a 7的等比中项。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考侧重于考查等差、等比数列的通项a n ,前n 项和S n 的基本运算,另外等差、等比数列的性质也是高考的热点.备考时应切实文解等差、等比数列的概念,加强五个量的基本运算,强化性质的应用意识.1.等差数列(1)定义式:a n +1-a n =d (n ∈N *,d 为常数); (2)通项公式:a n =a 1+(n -1)d ;(3)前n 项和公式:S n =n a 1+a n 2=na 1+n n -1 d2; (4)性质:①a n =a m +(n -m )d (n 、m ∈N *);②若m +n =p +q (m 、n 、p 、q ∈N *),则a m +a n =a p +a q . 2.等比数列(1)定义式:a n +1a n =q (n ∈N *,q 为非零常数);(2)通项公式:a n =a 1q n -1;(3)前n 项和公式:S n =⎩⎪⎨⎪⎧na 1q =1,a 1 1-q n1-q q ≠1. (4)性质:①a n =a m q n-m(n ,m ∈N *);②若m +n =p +q ,则a m a n =a p a q (p 、q 、m 、n ∈N *).3.复习数列专题要把握等差、等比数列两个定义,牢记通项、前n 项和四组公式,活用等差、等比数列的性质,明确数列与函数的关系,巧妙利用a n 与S n 的关系进行转化,细辨应用问题中的条件与结论是通项还是前n 项和,集中突破数列求和的五种方法(公式法、倒序相加法、错位相减法、分组求和法、裂项相消法).【误区警示】1.应用a n 与S n 的关系,等比数列前n 项和公式时,注意分类讨论. 2.等差、等比数列的性质可类比掌握.注意不要用混.3.讨论等差数列前n 项和的最值时,不要忽视n 为整数的条件和a n =0的情形.4.等比数列{a n }中,公比q ≠0,a n ≠0.考点一 等差数列的运算例、(2017·高考全国卷Ⅰ)记S n 为等差数列{a n }的前n 项和.若a 4+a 5=24,S 6=48,则{a n }的公差为( )A .1B .2C .4D .8【变式探究】(1)(2016·高考全国卷Ⅰ)已知等差数列{a n }前9项的和为27,a 10=8,则a 100=( )A .100B .99C .98D .97【答案】C【解析】通解:∵{a n }是等差数列,设其公差为d , 由题意得⎩⎪⎨⎪⎧S 9=9a 1+9×82d =27a 10=a 1+9d =8,∴⎩⎪⎨⎪⎧a 1=-1,d =1.∴a 100=a 1+99d =-1+99×1=98,选C.优解:设等差数列{a n }的公差为d ,因为{a n }为等差数列,且S 9=9a 5=27,所以a 5=3.又a 10=8,解得5d =a 10-a 5=5,所以d =1,所以a 100=a 5+95d =98,选C.(2)设S n 是等差数列{a n }的前n 项和,若a 1+a 3+a 5=3,则S 5=( ) A .5 B .7 C .9 D .11【答案】A【解析】通解:∵a 1+a 3+a 5=a 1+(a 1+2d )+(a 1+4d )=3a 1+6d =3, ∴a 1+2d =1,∴S 5=5a 1+5×42d =5(a 1+2d )=5,故选A.优解:∵a 1+a 5=2a 3,∴a 1+a 3+a 5=3a 3=3, ∴a 3=1,∴S 5=5 a 1+a 5 2=5a 3=5,故选A.【方法规律】1.通解是寻求a 1与d 的关系,然后用公式求和.优解法是利用等差中项性质转化求和公式.2.在等差数列中,当已知a 1和d 时,用S n =na 1+n n -12d 求和.当已知a 1和a n或者a 1+a n =a 2+a n -1形式时,常用S n = a 1+a n n 2= a 2+a n -1 n2求解.【变式探究】若数列{a n }满足1a n +1-1a n =d (n ∈N *,d 为常数),则称数列{a n }为调和数列,已知数列⎩⎨⎧⎭⎬⎫1x n 为调和数列,且x 1+x 2+…+x 20=200,则x 5+x 16=( )A .10B .20C .30D .40考点二 等比数列的运算例2、【2017江苏,9】等比数列{}n a 的各项均为实数,其前n 项的和为n S ,已知3676344S S ==,,则8a = ▲ . 【答案】32【解析】当1q =时,显然不符合题意;当1q ≠时,3161(1)714(1)6314a q q a q q⎧-=⎪-⎪⎨-⎪=⎪-⎩,解得1142a q ⎧=⎪⎨⎪=⎩,则7812324a =⨯=. 【变式探究】(1)(2016·高考全国卷Ⅰ)设等比数列{a n }满足a 1+a 3=10,a 2+a 4=5,则a 1a 2…a n 的最大值为________.【答案】64【解析】通解:求a 1a 2…a n 关于n 的表达式 a 2+a 4a 1+a 3= a 1+a 3 ·q a 1+a 3=510,∴q =12∴a 1+a 1⎝⎛⎭⎫122=10,∴a 1=8 ∴a 1·a 2·a 3…a n =a n 1·q n n -1 2=8n ×⎝⎛⎭⎫12n n -1 2=2-n 2+7n 2当n =3或n =4时,-n 2+7n2最大为6.∴a 1a 2…a n 的最大值为26=64 优解:利用数列的单调变化设{a n }的公比为q ,由a 1+a 3=10,a 2+a 4=5得a 1=8,q =12,则a 2=4,a 3=2,a 4=1,a 5=12,所以a 1a 2…a n ≤a 1a 2a 3a 4=64.(2)已知等比数列{a n }满足a 1=14,a 3a 5=4(a 4-1),则a 2=( )A .2B .1 C.12 D.18【答案】C【方法规律】1.解题关键:抓住项与项之间的关系及项的序号之间的关系,从这些特点入手选择恰当的性质进行求解.2.运用函数性质:数列是一种特殊的函数,具有函数的一些性质,如单调性、周期性等,可利用函数的性质解题.【变式探究】等比数列{a n }中,a 4=2,a 5=5,则数列{lg a n }的前8项和等于( ) A .6 B .5 C .4D .3【解析】选C.由题意知a 1·a 8=a 2·a 7=a 3·a 6=a 4·a 5=10,∴数列{lg a n }的前8项和等于lg a 1+lg a 2+…+lg a 8=lg(a 1·a 2·…·a 8)=lg(a 4·a 5)4=4lg(a 4·a 5)=4lg 10=4.故选C.考点三 数列递推关系的应用例3、(2016·高考全国卷Ⅰ)(本小题满分12分)已知{a n }是公差为3的等差数列,数列{b n }满足b 1=1,b 2=13,a n b n +1+b n +1=nb n .(1)求{a n }的通项公式. (2)求{b n }的前n 项和.【方法规律】判断和证明数列是等差(比)数列的方法1.定义法:对于n ≥1的任意自然数,验证a n +1-a n ⎝⎛⎭⎫或a n +1a n 为与正整数n 无关的一常数.2.中项公式法:(1)若2a n =a n -1+a n +1(n ∈N *,n ≥2),则{a n }为等差数列; (2)若a 2n =a n -1·a n +1(n ∈N *,n ≥2),则{a n }为等比数列. 【变式探究】已知等差数列{a n }的公差d ≠0,{a n }的部分项ak 1,ak 2,…,ak n 构成等比数列,若k 1=1,k 2=5,k 3=17,求k n .解:设等比数列ak 1,ak 2,…,ak n 的公比为q , 因为k 1=1,k 2=5,k 3=17, 所以a 1a 17=a 25,即a 1(a 1+16d )=(a 1+4d )2,化简得a 1d =2d 2.又d ≠0,得a 1=2d ,所以q =a 5a 1=a 1+4d a 1=2d +4d2d=3.一方面,ak n 作为等差数列{a n }的第k n 项,有ak n =a 1+(k n -1)d =2d +(k n -1)d =(k n +1)d , 另一方面,ak n 作为等比数列的第n 项,有ak n =ak 1·q n -1=a 1·3n -1=2d ·3n -1,所以(k n +1)d =2d ·3n -1.又d ≠0,所以k n =2×3n -1-1.1.(2017·高考全国卷Ⅰ)记S n 为等差数列{a n }的前n 项和.若a 4+a 5=24,S 6=48,则{a n }的公差为( )A .1B .2C .4D .8【解析】通解:选C.设{a n }的公差为d ,则由⎩⎪⎨⎪⎧a 4+a 5=24,S 6=48,得⎩⎪⎨⎪⎧a 1+3d + a 1+4d =24,6a 1+6×52d =48,解得d =4.故选C.优解:由S 6=48得a 4+a 3=16, (a 4+a 5)-(a 4+a 3)=8, ∴d =4,故选C.2.(2017·高考全国卷Ⅲ)等差数列{a n }的首项为1,公差不为0.若a 2,a 3,a 6成等比数列,则{a n }前6项的和为( )A .-24B .-3C .3D .8【解析】选A.由已知条件可得a 1=1,d ≠0,由a 23=a 2a 6可得(1+2d )2=(1+d )(1+5d ),解得d =-2.所以S 6=6×1+6×5× -2 2=-24.故选A.3.(2017·高考全国卷Ⅲ)设等比数列{a n }满足a 1+a 2=-1,a 1-a 3=-3,则a 4=________. 【答案】-84.(2017·高考全国卷Ⅰ)记S n 为等比数列{a n }的前n 项和.已知S 2=2,S 3=-6. (1)求{a n }的通项公式;(2)求S n ,并判断S n +1,S n ,S n +2是否成等差数列.1. 【2016高考新课标1卷】已知等差数列{}n a 前9项的和为27,108a =,则100a = ( ) (A )100 (B )99 (C )98 (D )97 【答案】C 【解析】由已知,1193627,98a d a d +=⎧⎨+=⎩所以110011,1,9919998,a d a a d =-==+=-+=故选C.2【2016高考浙江文数】如图,点列{A n },{B n }分别在某锐角的两边上,且1122,,n n n n n n A A A A A A n ++++=≠∈*N ,1122,,n n n n n n B B B B B B n ++++=≠∈*N ,(P Q P Q ≠表示点与不重合).若1n n n n n n n d A B S A B B +=,为△的面积,则( )A .{}n S 是等差数列B .2{}n S 是等差数列 C .{}n d 是等差数列 D .2{}n d 是等差数列【答案】A3.【2016年高考北京文数】已知{}n a 为等差数列,n S 为其前n 项和,若16a =,350a a +=,则6=S _______..【答案】6【解析】∵{}n a 是等差数列,∴35420a a a +==,40a =,4136a a d -==-,2d =-, ∴616156615(2)6S a d =+=⨯+⨯-=,故填:6.4.【2016高考江苏卷】已知{}n a 是等差数列,{S }n 是其前n 项和.若21253,S =10a a +=-,则9a 的值是 ▲ .【答案】20.【解析】由510S =得32a =,因此2922(2d)33,23620.d d a -+-=-⇒==+⨯= 5、【2016高考新课标1卷】设等比数列{}n a 满足a 1+a 3=10,a 2+a 4=5,则a 1a 2 …a n 的最大值为 .【答案】64【解析】设等比数列{}n a 的公比为(0)q q ≠,由1324105a a a a +=⎧⎨+=⎩得2121(1)10(1)5a q a q q ⎧+=⎪⎨+=⎪⎩,解得1812a q =⎧⎪⎨=⎪⎩.所以2(1)1712(1)22212118()22n n n n n n n n a a a a q--++++-==⨯= ,于是当3n =或4n =时,12n a a a 取得最大值6264=.6.【2016高考江苏卷】(本小题满分16分)记{}1,2,100U =…,.对数列{}()*n a n N ∈和U 的子集T ,若T =∅,定义0TS=;若{}12,,k T t t t =…,,定义12+k T t t t S a a a =++….例如:{}=1,3,66T 时,1366+T S a a a =+.现设{}()*n a n N∈是公比为3的等比数列,且当{}=2,4T 时,=30TS.(1)求数列{}n a 的通项公式;(2)对任意正整数()1100k k ≤≤,若{}1,2,k T ⊆…,,求证:1T k S a +<; (3)设,,C D C U D U S S ⊆⊆≥,求证:2C C D D S S S +≥ . 【答案】(1)13n n a -=(2)详见解析(3)详见解析②若C 是D 的子集,则22C C D C C C D S S S S S S +=+=≥ . ③若D 不是C 的子集,且C 不是D 的子集.令U E C D = ð,U F D C = ð则E ≠∅,F ≠∅,E F =∅ . 于是C E C D S S S =+ ,D F C D S S S =+ ,进而由C D S S ≥,得E F S S ≥. 设k 是E 中的最大数,l 为F 中的最大数,则1,1,k l k l ≥≥≠.由(2)知,1E k S a +<,于是1133l k l F E k a S S a -+=≤≤<=,所以1l k -<,即l k ≤. 又k l ≠,故1l k ≤-,从而1121131133222l l k E F l a S S a a a ----≤+++=+++=≤≤, 故21E F S S ≥+,所以2()1C C D D C D S S S S -≥-+ , 即21C C D D S S S +≥+ .综合①②③得,2C C D D S S S +≥ .1.【2015高考重庆,文2】在等差数列{}n a 中,若2a =4,4a =2,则6a = ( ) A 、-1 B 、0 C 、1 D 、6【答案】B【解析】由等差数列的性质得64222240a a a =-=⨯-=,选B .2.【2015高考福建,文8】若,a b 是函数()()20,0f x x px q p q =-+>> 的两个不同的零点,且,,2a b - 这三个数可适当排序后成等差数列,也可适当排序后成等比数列,则p q + 的值等于( )A .6B .7C .8D .9 【答案】D。