清华大学版理论力学课后习题答案大全-----第5章点的复合运动分析
理论力学答案第5章点的复合运动分析

第5章 点的复合运动分析5-1 曲柄OA 在图示瞬时以ω0绕轴O 转动,并带动直角曲杆O 1BC 在图示平面内运动。
若d 为已知,试求曲杆O 1BC 的角速度。
解:1、运动分析:动点:A ,动系:曲杆O 1BC ,牵连运动:定轴转动,相对运动:直线,绝对运动:圆周运动。
2、速度分析:r e a v v v += 0a 2ωl v =;0e a 2ωl v v == 01e 1ωω==AO v BC O (顺时针)5-2 图示曲柄滑杆机构中、滑杆上有圆弧滑道,其半径cm 10=R ,圆心O 1在导杆BC 上。
曲柄长cm 10=OA ,以匀角速rad/s 4πω=绕O 轴转动。
当机构在图示位置时,曲柄与水平线交角 30=φ。
求此时滑杆CB 的速度。
解:1、运动分析:动点:A ,动系:BC ,牵连运动:平移,相对运动:圆周运动,绝对运动:圆周运动。
2、速度分析:r e a v v v +=πω401a =⋅=A O v cm/s ; 12640a e ====πv v v BC cm/s5-3 图示刨床的加速机构由两平行轴O 和O 1、曲柄OA 和滑道摇杆O 1B 组成。
曲柄OA 的末端与滑块铰接,滑块可沿摇杆O 1B 上的滑道滑动。
已知曲柄OA 长r 并以等角速度ω转动,两轴间的距离是OO 1 = d 。
试求滑块滑道中的相对运动方程,以及摇杆的转动方程。
解:分析几何关系:A 点坐标 d t r x +=ωϕcos cos 1 (1) t r x ωϕsin sin 1= (2) (1)、(2)两式求平方,相加,再开方,得: 1.相对运动方程trd r d t r d t rd t r x ωωωωcos 2sin cos 2cos 22222221++=+++=将(1)、(2)式相除,得: 2.摇杆转动方程: dt r tr +=ωωϕcos sin tandt r t r +=ωωϕcos sin arctan5-4 曲柄摇杆机构如图所示。
《理论力学》武清玺第五章_点的运动_习题全解

第五章 点的运动 习题全解[习题5-1] 一点按2123+-=t t x 的规律沿直线动动(其中t 要s 计,x 以m 计).试求:(1)最初s 3内的位移;(2)改变动动方向的时刻和所在位置;(3)最初s 3内经过的路程;(4)s t 3=时的速度和加速度;(5)点在哪段时间作加速度,哪段时间作减速运动. 解:(1)求最初s 3内的位移.m x 220120)0(3=+⨯-= m x 723123)3(3-=+⨯-=)(927)0()3(m x x x -=--=-=∆ (动点的位移为9m,位移的方向为负x 方向). (2)求改变动动方向的时刻和所在位置. 改变方向时,动点的速度为零.即: 01232=-==t dtdxv , 亦即:当s t 2=时,动点改变运动方向.此时动点所在的位置为: )(1422122)2(3m x -=+⨯-= (3)求最初s 3内经过的路程.)(23716|)14(7||214|)3~2()2~0()3~0(m S S S =+=---+--=+= (4)求s t 3=时的速度和加速度1232-==t dt dx v )/(151233)3(2s m dt dx v =-⨯== t dtdv a 6== )/(1836)3(2s m a =⨯=(5)求动点在哪段时间作加速度,哪段时间作减速运动.若v 与a 同号,则动点作加速运动; 若v 与a 异号,则动点作减速运动.即: 同号时有:0)2)(2(18)4(18)6)(123(22>+-=-=-=t t t t t t t va0)2)(2(>+-t t t20<<t .即当s t 20<<时,动点作加速动动.Oxy图题25-异号时有:0)2)(2(<+-t t t2>t即当s t 2>时,动点作减速运动.[习题5-2] 已知图示机构中,l AB OA ==,a AC DM CM ===,求出t ωϕ=时,点M 的动动方程和轨迹方程。
理论力学课后习题答案

理论力学课后习题答案理论力学课后习题答案引言:理论力学是物理学的基础课程之一,对于理解和应用物理学的原理和方法具有重要意义。
在学习理论力学的过程中,课后习题是巩固知识、提高能力的重要途径。
本文将针对理论力学课后习题进行解答,帮助读者更好地理解和掌握这门课程。
第一章:牛顿力学1. 一个物体以初速度v0沿直线运动,加速度为a,求物体的位移与时间的关系。
答:根据牛顿第二定律F=ma,可得物体所受合力F=ma=mv/t,其中m为物体的质量,v为物体的速度,t为时间。
由此可得物体的位移s=vt+1/2at^2。
2. 一个质点在重力作用下自由下落,求它在t时刻的速度和位移。
答:在重力作用下,质点的加速度为g,即a=g。
根据牛顿第二定律F=ma,可得质点所受合力F=mg。
根据牛顿第一定律,质点的速度随时间的变化率为v=g*t,位移随时间的变化率为s=1/2gt^2。
第二章:拉格朗日力学1. 一个质点沿半径为R的圆周运动,求它的动能和势能。
答:质点的动能由动能定理可得,即K=1/2mv^2,其中m为质点的质量,v为质点的速度。
质点的势能由引力势能可得,即U=-GmM/R,其中G为引力常数,M为圆周的质量。
2. 一个质点在势能为U(r)的力场中运动,求它的运动方程。
答:根据拉格朗日方程可得,质点的运动方程为d/dt(dL/dv)-dL/dr=0,其中L=T-U,T为质点的动能,U为质点的势能。
第三章:哈密顿力学1. 一个质点在势能为U(x)的力场中运动,求它的哈密顿量和哈密顿运动方程。
答:质点的哈密顿量由哈密顿定理可得,即H=T+U,其中T为质点的动能,U为质点的势能。
质点的哈密顿运动方程为dp/dt=-dH/dx,其中p为质点的动量。
2. 一个质点在势能为U(x)的力场中运动,求它的哈密顿正则方程。
答:质点的哈密顿正则方程为dx/dt=dH/dp,dp/dt=-dH/dx,其中x为质点的位置,p为质点的动量。
结论:通过对理论力学课后习题的解答,我们可以更深入地理解和应用物理学的原理和方法。
清华出版社工程力学答案-第5章 杆件的内力分析与内力图

eBook工程力学习题详细解答教师用书(第5章)2011-10-1范 钦 珊 教 育 教 学 工 作 室FAN Qin-Shan ,s Education & Teaching Studio习题5-1 习题5-2 习题5-3 习题5-4 习题5-5 习题5-6工程力学习题详细解答之五第5章 杆件的内力分析与内力图5-1 试用截面法计算图示杆件各段的轴力,并画轴力图。
5-2 圆轴上安有5个皮带轮,其中轮2为主动轮,由此输入功率80 kW ;1、3、4、5均为从动轮,它们输出功率分别为25 kW 、15 kW 、30 kW 、10 kW ,若圆轴设计成等截面的,为使设计更合理地利用材料,各轮位置可以互相调整。
1. 请判断下列布置中哪一种最好?(A) 图示位置最合理;(B) 2轮与5轮互换位置后最合理; (C) 1轮与3轮互换位置后最合理; (D) 2轮与3轮互换位置后最合理。
2. 画出带轮合理布置时轴的功率分布图。
30kN 20kN10kN20kN10kN 5kNBAD CB A DC BACBA C(a)(b)(c)(d)F NF ACBF N xDACB102030ACF N x210ADCF N -10习题5-1图解: 1. D2. 带轮合理布置时轴的扭矩图如图(b )所示。
5-3 一端固定另一端自由的圆轴承受4个外力偶作用,如图所示。
各力偶的力偶矩数值均示于图中。
试画出圆轴的扭矩图。
固定固定(kN.m)习题5-3图P x (kW)2540(b)习题5-2图5-4 试求图示各梁中指定截面上的剪力、弯矩值。
(a)题解:取1-1截面左段为研究对象,1-1截面处的剪力和弯矩按正方向假设:22222211qa qa qa a qa M M qaF Q =−=⎟⎠⎞⎜⎝⎛⋅−=−= 取2-2截面左段为研究对象,2-2截面处的剪力和弯矩按正方向假设:222222222qa qa qa a qa M M qaqa qa F Q =−=⎟⎠⎞⎜⎝⎛⋅−=−=−−= (b)题解:取1-1截面右段为研究对象,1-1截面处的剪力和弯矩按正方向假设:21P 12322qa a qa a qa M qa qa qa qa F F Q −=⋅−⋅−==+=+= 取2-2截面右段为研究对象,2-2截面处的剪力和弯矩按正方向假设:2222222qa qa a qa a qa M qaF Q −=+⋅−⋅−== (c)题解:(1)考虑整体平衡,可解A 、C 支座约束力0m kN 5.4124m kN 4,0)(=⋅××−×+⋅=∑C i A F F M得 kN 25.1=C F0kN 12,0=×−+=∑C A iyF F F得 kN 75.0=A F(2)取1-1截面左段为研究对象,1-1截面处的剪力和弯矩按正方向假设:BB5kN1 m34AAB(b)(a)(c)(d)习题5-4图0,01=−=∑Q A iyF F F得 kN 75.01=Q F02,0)(11=+×−=∑M F F MQ i A得 m kN 5.11⋅=M(3) 取2-2截面左段为研究对象,2-2截面处的剪力和弯矩按正方向假设:0,02=−=∑Q A iyF F F得 kN 75.02=Q F0m kN 42,0)(22=+⋅+×−=∑M F F M Q i A得 m kN 5.22⋅−=M(4) 取3-3截面右段为研究对象,3-3截面处的剪力和弯矩按正方向假设:0kN 12,03=×−+=∑C Q iyF F F得 kN 75.03=Q F0m kN 1221,0)(23=⋅××−−=∑M F M i C得 m kN 13⋅−=M (5) 取4-4截面右段为研究对象,4-4截面处的剪力和弯矩按正方向假设:0kN 12,04=×−=∑Q iyF F得 kN 24=Q F0m kN 1221,0)(24=⋅××−−=∑M F Mi C得 m kN 14⋅−=M (d)题解:(1)考虑整体平衡,可解A 、B 支座约束力03m kN 2m kN 15,0)(=×+⋅+⋅×−=∑B i A F F M 得 kN 1=B F0kN 5,0=+−=∑B A iyF F F得 kN 4=A F(2)取1-1截面左段为研究对象,1-1截面处的剪力和弯矩按正方向假设:0,01=−=∑Q A iyF F F得 kN 41=Q F01,0)(11=+×−=∑M FF M Ai得 m kN 41⋅=M(3) 取2-2截面左段为研究对象,2-2截面处的剪力和弯矩按正方向假设:0kN 5,02=−−=∑Q A iyF F F得 kN 12−=Q F01,0)(22=+×−=∑M F F M A i得 m kN 42⋅=M(4) 取3-3截面右段为研究对象,3-3截面处的剪力和弯矩按正方向假设:0,03=+=∑B Q iyF F F得 kN 13−=Q F1m kN 2,0)(33=×+⋅+−=∑B iF M F M得 m kN 33⋅=M(5) 取4-4截面右段为研究对象,4-4截面处的剪力和弯矩按正方向假设:0,04=+=∑B Q iyF F F得 kN 14−=Q F1,0)(44=×+−=∑B i F M F M得 m kN 14⋅=M5-5 试写出以下各梁的剪力方程、弯矩方程。
理论力学课后习题与答案解析

第一章习题4-1.求图示平面力系的合成结果,长度单位为m。
解:(1) 取O点为简化中心,求平面力系的主矢:求平面力系对O点的主矩:(2) 合成结果:平面力系的主矢为零,主矩不为零,力系的合成结果是一个合力偶,大小是260Nm,转向是逆时针。
习题4-3.求下列各图中平行分布力的合力和对于A点之矩。
解:(1) 平行力系对A点的矩是:取B点为简化中心,平行力系的主矢是:平行力系对B点的主矩是:向B点简化的结果是一个力R B和一个力偶M B,且:如图所示;将R B向下平移一段距离d,使满足:最后简化为一个力R,大小等于R B。
其几何意义是:R的大小等于载荷分布的矩形面积,作用点通过矩形的形心。
(2) 取A点为简化中心,平行力系的主矢是:平行力系对A点的主矩是:向A点简化的结果是一个力R A和一个力偶M A,且:如图所示;将R A向右平移一段距离d,使满足:最后简化为一个力R,大小等于R A。
其几何意义是:R的大小等于载荷分布的三角形面积,作用点通过三角形的形心。
习题4-4.求下列各梁和刚架的支座反力,长度单位为m。
解:(1) 研究AB杆,受力分析,画受力图:列平衡方程:解方程组:反力的实际方向如图示。
校核:结果正确。
(2) 研究AB杆,受力分析,将线性分布的载荷简化成一个集中力,画受力图:列平衡方程:解方程组:反力的实际方向如图示。
校核:结果正确。
(3) 研究ABC,受力分析,将均布的载荷简化成一个集中力,画受力图:列平衡方程:解方程组:反力的实际方向如图示。
校核:结果正确。
习题4-5.重物悬挂如图,已知G=1.8kN,其他重量不计;求铰链A的约束反力和杆BC所受的力。
解:(1) 研究整体,受力分析(BC是二力杆),画受力图:列平衡方程:解方程组:反力的实际方向如图示。
习题4-8.图示钻井架,G=177kN,铅垂荷载P=1350kN,风荷载q=1.5kN/m,水平力F=50kN;求支座A的约束反力和撑杆CD所受的力。
清华理论力学课后答案5

第五章点的合成运动习题解答5-1在图a 、b 所示的两种机构中,已知20021==a O O mm ,31=ωrad/s 。
求图示位置时杆A O 2的角速度。
解:(1)取杆A O 1上的A 点为动点,杆A O 2为动系。
1a ωa v =,由r e a v v v +=作速度平行四边形(如题5-1图a 所示),得a v v 1a e 2330cos ω==�,rad/s 5.1212e 2===ωωA O v ,(逆时针)(2)取滑块A 为动点,杆A O 1为动系,1e ωa v =,由r e a v v v +=作速度平行四边形(如题5-1图b 所示),得1ea 3230cos ωa v v ==�,rad/s 23212a 2===ωωA O v .(逆时针)5-2图示曲柄滑道机构中,杆BC 为水平,杆DE 保持铅直。
曲柄长10.OA =m ,并以匀角速度20=ωrad/s 绕O 轴转动,通过滑块A 使杆BC 作往复运动。
求当曲柄水平线的交角分别为0=ϕ、�30、�90时杆BC 的速度。
解:取滑块A 为动点,动系为BCE 杆。
m/s 2OA a =⋅=ϕ̇v .由r e a v v v +=得ϕsin a e v v =当�0=ϕ时,0e =v ;当�30=ϕ时,m/s 1e =v ;当90=ϕ时,m/s 2e =v .5-3图示曲柄滑道机构中,曲柄长r OA =,并以匀角速度ω饶O 轴转动。
装在水平杆上的滑槽DE 与水平线成�60角。
求当曲柄与水平线交角0=ϕ、�30、�60时,杆BC 的速度。
解:取滑块A 为动点,动系为杆BC ,ωωr v =⋅=OA a .作速度矢量图如图示。
题5-2图(a)(b)题5-1图课后答案网ww w.kh da w .c o m题5-3图由正弦定理)30-sin()60-sin(180ea ���ϕv v =,解得)30-sin(32-e �ϕω⋅=r v .当�0=ϕ时,e v r =;当30o ϕ=时,0=e v ;当60o ϕ=时,e v r =(向右).5-4如图所示,瓦特离心调速器以角速度ω绕铅垂轴转动。
理论力学课后答案第五章

第五章思考题5.1虚功原理中的“虚功”二字作何解释?用虚功原理理解平衡问题,有何优点和缺点?5.2 为什么在拉格朗日方程中,a θ不包含约束反作用力?又广义坐标与广义力的含义如何?我们根据什么关系由一个量的量纲定出另一个量的量纲?5.3广义动量a p 和广义速度a q &是不是只相差一个乘数m ?为什么a p 比aq &更富有意义? 5.4既然aq T &∂∂是广义动量,那么根据动量定理,⎪⎪⎭⎫ ⎝⎛∂∂αq T dt d &是否应等于广义力a θ?为什么在拉格朗日方程()14.3.5式中多出了a q T ∂∂项?你能说出它的物理意义和所代表的物理量吗?5.5为什么在拉格朗日方程只适用于完整系?如为不完整系,能否由式()13.3.5得出式()14.3.5?5.6平衡位置附近的小振动的性质,由什么来决定?为什么22s 个常数只有2s 个是独立的?5.7什么叫简正坐标?怎样去找?它的数目和力学体系的自由度之间有何关系又每一简正坐标将作怎样的运动?5.8多自由度力学体系如果还有阻尼力,那么它们在平衡位置附近的运动和无阻尼时有何不同?能否列出它们的微分方程?5.9 dL 和L d 有何区别?a q L ∂∂和aq L ∂∂有何区别? 5.10哈密顿正则方程能适用于不完整系吗?为什么?能适用于非保守系吗?为什么?5.11哈密顿函数在什么情况下是整数?在什么情况下是总能量?试祥加讨论,有无是总能量而不为常数的情况?5.12何谓泊松括号与泊松定理?泊松定理在实际上的功用如何?5.13哈密顿原理是用什么方法运动规律的?为什么变分符号δ可置于积分号内也可移到积分号外?又全变分符号∆能否这样?5.14正则变换的目的及功用何在?又正则变换的关键何在?5.15哈密顿-雅可比理论的目的何在?试简述次理论解题时所应用的步骤.5.16正则方程()15.5.5与()10.10.5及()11.10.5之间关系如何?我们能否用一正则变换由前者得出后者?5.17在研究机械运动的力学中,刘维定理能否发挥作用?何故?5.18分析力学学完后,请把本章中的方程和原理与牛顿运动定律相比较,并加以评价.第五章思考题解答5.1 答:作.用于质点上的力在任意虚位移中做的功即为虚功,而虚位移是假想的、符合约束的、无限小的.即时位置变更,故虚功也是假想的、符合约束的、无限小的.且与过程无关的功,它与真实的功完全是两回事.从∑⋅=ii i r F W ρρδδ可知:虚功与选用的坐标系无关,这正是虚功与过程无关的反映;虚功对各虚位移中的功是线性迭加,虚功对应于虚位移的一次变分.在虚功的计算中应注意:在任意虚过程中假定隔离保持不变,这是虚位移无限小性的结果.虚功原理给出受约束质点系的平衡条件,比静力学给出的刚体平衡条件有更普遍的意义;再者,考虑到非惯性系中惯性力的虚功,利用虚功原理还可解决动力学问题,这是刚体力学的平衡条件无法比拟的;另外,利用虚功原理解理想约束下的质点系的平衡问题时,由于约束反力自动消去,可简便地球的平衡条件;最后又有广义坐标和广义力的引入得到广义虚位移原理,使之在非纯力学体系也能应用,增加了其普适性及使用过程中的灵活性.由于虚功方程中不含约束反力.故不能求出约束反力,这是虚功原理的缺点.但利用虚功原理并不是不能求出约束反力,一般如下两种方法:当刚体受到的主动力为已知时,解除某约束或某一方向的约束代之以约束反力;再者,利用拉格朗日方程未定乘数法,景观比较麻烦,但能同时求出平衡条件和约束反力.5.2 答 因拉格朗日方程是从虚功原理推出的,而徐公原理只适用于具有理想约束的力学体系虚功方程中不含约束反力,故拉格朗日方程也只适用于具有理想约束下的力学体系,αθ不含约束力;再者拉格朗日方程是从力学体系动能改变的观点讨论体系的运动,而约束反作用力不能改变体系的动能,故αθ不含约束反作用力,最后,几何约束下的力学体系其广义坐标数等于体系的自由度数,而几何约束限制力学体系的自由运动,使其自由度减小,这表明约束反作用力不对应有独立的广义坐标,故αθ不含约束反作用力.这里讨论的是完整系的拉格朗日方程,对受有几何约束的力学体系既非完整系,则必须借助拉格朗日未定乘数法对拉格朗日方程进行修正.广义坐标市确定质点或质点系完整的独立坐标,它不一定是长度,可以是角度或其他物理量,如面积、体积、电极化强度、磁化强度等.显然广义坐标不一定是长度的量纲.在完整约束下,广义坐标数等于力学体系的自由度数;广义力明威力实际上不一定有力的量纲可以是力也可以是力矩或其他物理量,如压强、场强等等,广义力还可以理解为;若让广义力对应的广义坐标作单位值的改变,且其余广义坐标不变,则广义力的数值等于外力的功由W q r F s i ni i δδθδααα==⋅∑∑==11ρρ知,ααδθq 有功的量纲,据此关系已知其中一个量的量纲则可得到另一个量的量纲.若αq 是长度,则αθ一定是力,若αθ是力矩,则αq 一定是角度,若αq 是体积,则αθ一定是压强等.5.3 答 αp 与αq &不一定只相差一个常数m ,这要由问题的性质、坐标系的选取形式及广义坐标的选用而定。
理论力学第五章习题答案

& = ak sin kt y
得
积分得 s = 4a (1 − cos
kt ) 2
5.3
根据下列点在极坐标系中的轨迹方程
试写出点的直角坐标轨迹方程
式中 p
e 均为正的常数
1
ρ=
p 1 + e cos ϕ p 1 − e cos ϕ p 1 − cos ϕ
e <1
2
ρ=
e >1
3 解
ρ=
直角坐标与极坐标有以下关系:
与 前 题 相 比 仅
e 差 一 符 号
→ (1 − e 2 ) x 2 + y 2 − 2 pex − p 2 = 0
3
ρ=பைடு நூலகம்
p 1 − cos ϕ
与 前 题 相 比
只 要 令 前 题 中 e =1 即 可
→ y 2 − 2 px − p 2 = 0
5.4 加速度 解
试以直角坐标及其导数表示 x = a ( kt − sin kt ) 切向加速度 法向加速度以及轨迹的曲率半径
sin γ = Rω / v
则由式 (**) 得 ρ = v / Rω = R / sin γ
2
2
2
5.8
如图所示
飞机 P 在任一时刻的经度为 ψ (t )
纬度为 λ (t )
高度为 h(t )
其在
地心坐标系中的球坐标运动方程为
r = R + h(t )
其中 R 是地球半径
θ = π / 2 − λ (t )
5.1 解
试写出点的柱坐标与球坐标之间的关系式 质点柱坐标系为 ρ
ϕ
z 球坐标为 r θ
ϕ
两者的 ϕ 坐标是相同的
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第5章 点的复合运动分析5-1 曲柄OA 在图示瞬时以ω0绕轴O 转动,并带动直角曲杆O 1BC 在图示平面内运动。
若d 为已知,试求曲杆O 1BC 的角速度。
解:1、运动分析:动点:A ,动系:曲杆O 1BC ,牵连运动:定轴转动,相对运动:直线,绝对运动:圆周运动。
2、速度分析:r e a v v v += 0a 2ωl v =;0e a 2ωl v v == 01e 1ωω==AO v BC O (顺时针)5-2 图示曲柄滑杆机构中、滑杆上有圆弧滑道,其半径cm 10=R ,圆心O 1在导杆BC 上。
曲柄长cm 10=OA ,以匀角速rad/s 4πω=绕O 轴30=φ。
求此时滑转动。
当机构在图示位置时,曲柄与水平线交角杆CB 的速度。
解:1、运动分析:动点:A ,动系:BC ,牵连运动:平移,相对运动:圆周运动,绝对运动:圆周运动。
2、速度分析:r e a v v v += πω401a =⋅=A O v cm/s ; 12640a e ====πv v v BC cm/s5-3 图示刨床的加速机构由两平行轴O 和O 1、曲柄OA 和滑道摇杆O 1B 组成。
曲柄OA 的末端与滑块铰接,滑块可沿摇杆O 1B 上的滑道滑动。
已知曲柄OA 长r 并以等角速度ω转动,两轴间的距离是OO 1 = d 。
试求滑块滑道中的相对运动方程,以及摇杆的转动方程。
解:分析几何关系:A 点坐标 d t r x +=ωϕcos cos 1 (1) t r x ωϕsin sin 1= (2) (1)、(2)两式求平方,相加,再开方,得: 1.相对运动方程 将(1)、(2)式相除,得: 2.摇杆转动方程:5-4 曲柄摇杆机构如图所示。
已知:曲柄O 1A 以匀角速度ω1绕轴O 1转动,O 1A = R ,O 1O 2 =b ,O 2O = L 。
试求当O 1A 水平位置时,杆BC 的速度。
解:1、A 点:动点:A ,动系:杆O 2A ,牵连运动:定轴转动,相对运动:直线,绝对运动:圆周运动。
1a ωR v A =;221222a e R b R R b R v v A A +=+=ω 2、B 点:动点:B ,动系:杆O 2A ,牵连运动:定轴转动,相对运动:直线,绝对运动:直线。
5-5 如图示,小环M 套在两个半径为r 的圆环上,令圆环O '固定,圆环O 绕其圆周上一点A 以匀角速度ω转动,求当A 、O 、O '位于同一直线时小环M 的速度。
解:1、运动分析:动点:M ,动系:圆环O ,牵连运动:定轴转动,相对运动:圆周运动,绝对运动:圆周运动。
2、速度分析:r e a v v v +=5-6 图a 、b 所示两种情形下,物块B 均以速度B υ、加速度a B 沿水平直线向左作平移,从而推动杆OA 绕点O 作定轴转动,OA = r ,ϕ= 40°。
试问若应用点的复合运动方法求解杆OA 的角速度与角加速度,其计算方案与步骤应当怎样?将两种情况下的速度与加速度分量标注在图上,并写出计算表达式。
解:(a ):1、运动分析:动点:C (B 上);动系:OA ;绝对运动:直线;相对运动:直线;牵连运动:定轴转动。
2、v 分析(图c )B O 2C O v B a v B r习题5-4图习题5-1图AAv 习题5—5图(d)(f) (c)(e) (a)(b)(a) (b)r e v v v +=B (1)ϕsin e B v v = OCv OC v B OA ϕωsin e ==(2) 3、a 分析(图d )C r te n e a a a a a +++=B (3)(3)向a C 向投影,得其中OCv v a B OA ϕω2sin 22r C ==(b ): 1、运动分析:动点:A (OA 上);动系:B ;绝对运动:圆周运动;相对运动:直线;牵连运动:平移。
2、v 分析(图e )3、a 分析(图f ) 上式向a e 向投影,得5-7 图示圆环绕O 点以角速度ω= 4 rad/s 、角加速度α= 2 rad/s 2转动。
圆环上的套管A 在图示瞬时相对圆环有速度5m/s ,速度数值的增长率8m/s 2。
试求套管A 的绝对速度和加速度。
解:1、运动分析:动点:A ,动系:圆环,牵连运动:定轴转动,相对运动:圆周运动,绝对运动:平面曲线。
2、速度:(图a ) 5r =v m/s3.2015cos 2r e 2r 2e a =︒++=v v v v v m/s3、加速度:(图b )︒-︒+︒+=15sin 15cos 15cos t r C n r n e n a a a a a a (1) ︒+︒+︒+=15sin 15sin 15cos n r C t r t e t a a a a a a (2) 代入(1)46.11015sin 815cos 5.116na =︒-︒=a m/s 2 代入(2)04.2915sin 5.5215cos 16t a =︒+︒=a m/s 2114)()(2t a 2n a a =+=a a a m/s 25-8 图示偏心凸轮的偏心距OC = e ,轮半径r =e 3。
凸轮以匀角速0ω绕O 轴转动。
设某瞬时OC 与CA 成直角。
试求此瞬时从动杆AB 的速度和加速度。
解:1.动点:A (AB 上),动系:轮O ,绝对运动:直线,相对运动:圆周,牵连运动:定轴转动。
2.r e a v v v +=(图a ) 0e 2ωe v =,0e a 33230tan ωe v v =︒=(↑),0a r 3342ωe v v ==3.C t r n r e a a a a a a +++=(图b )向n r a 投影,得)33423316(322002020ωωωωe e e -+==292ωe (↓) 5-9 如图所示机构,O 1A =O 2B =r =10cm ,O 1O 2 =AB =20cm 。
在图示位置时,O 1A 杆的角速度ω=1 rad/s ,角加速度α=0.5rad /s 2,O l A 与EF 两杆位于同一水平线上。
EF 杆的E 端与三角形板BCD 的BD 边相接触。
求图示瞬时EF 杆的加速度。
解:1.运动分析:动点:E (EF 上),动系:轮BCD ,绝对运动:直线,相对运动:直线,牵连运动:平移。
2.加速度分析:t e ne r a a a a a ++=沿BC 垂直方向投影:11.7103530tan n et ea -=-=-︒=a a a cm/s2习题5—6图习题5—7图习题5—8图5-10 摇杆OC 绕O 轴往复摆动,通过套在其上的套筒A 带动铅直杆AB 上下运动。
已知l = 30cm ,当θ = 30° 时,ω = 2 rad/s ,α = 3 rad/s 2,转向如图所示,试求机构在图示位置时,杆AB 的速度和加速度。
解:1.运动分析:动点:A ,动系:杆OC ,绝对运动:直线,相对运动:直线,牵连运动:定轴转动。
2.速度分析(图a ) 3120cos e =⋅=θωl v cm/s80cos e a ===θvv v AB cm/s4030tan e r =︒=v v cm/s3.加速度分析(图b ):C te n e r a a a a a a +++=沿a C方向投影:t e C a 30cos a a a -=︒76.64)30cos 2(32r a =︒-==lv a a AB αωcm/s2 5-11 如图所示圆盘上C 点铰接一个套筒,套在摇杆AB 上,从而带动摇杆运动。
已知:R =0.2m ,h = 0.4m ,在图示位置时 ︒=60θ,ω0=4rad/s ,20s rad/2=α。
试求该瞬时,摇杆AB 的角速度和角加速度。
解:1.运动分析:动点:C ,动系:杆AB ,绝对运动:圆周运动,相对运动:直线,牵连运动:定轴转动。
2.速度分析(图a ) 8.00a ==R v ωm/s3.加速度分析(图b )沿na a 方向投影:2.320t e n a ===R a a ωm/s 2;2t e rad/s 24.932.02.3sin ===θαh a AB(逆时针)5-12 在图示机构中,已知O 1A = OB = r =250mm ,且AB = O 1O ;连杆O 1A 以匀角速度ω = 2 rad/s 绕轴O 1转动,当φ = 60° 时,摆杆CE 处于铅垂位置,且CD = 500mm 。
求此时摆杆CE 的角速度和角加速度。
解:1.运动分析:动点:D ,动系:杆CE ,绝对运动:圆周运动,相对运动:直线,牵连运动:定轴转动。
2.速度分析(图a )501a =⋅==A O v v A ωcm/s325sin a e ==ϕv v cm/s ;866.023e ===CD v CE ωrad/s 25cos a r ==ϕv v cm/s3.加速度分析(图b ):C t e ne r a a a a a a +++=沿a C 方向投影:t e C a cos a a a +=ϕ7.6325502260cos r 2C a t e=-=-=-︒=v ra a a CE ωωcm/s 2 ;2t e rad/s 134.0507.6===CD a CE α5-13 图示为偏心凸轮-顶板机构。
凸轮以等角速度ω绕点O 转动,其半径为R ,偏心距OC = e ,图示瞬C习题5—10图C(a ) (b )习题5-11图(a )习题5-12图习题16-13图 (a)(b) 时ϕ= 30°。
试求顶板的速度和加速度。
解:1.动点:轮心C ,动系:AB 、平移,绝对运动:图周,相对运动:直线。
2.图(a ):r e a v v v += ωϕe v v v AB 23cos a e ===(↑) 3.图(b ):r e a a a a +=22a e 2130sin sin ωωϕe e a a a AB =︒===(↓)5-14 平面机构如图所示。
已知:O 1A =O 2B =R =30cm ,AB =O 1O 2,O 1A 按规律242t πϕ=绕轴O 1转动,动点M沿平板上的直槽(θ =60︒ )运动,BM = 2t +t 3 ,式中φ以rad 计,BM 以cm 计,t 以s 计。
试求 t = 2s 时动点的速度和加速度。
解:1.运动分析:动点:M ,动系:平板,绝对运动:未知,相对运动:直线,牵连运动:平移。
t = 2s 时:︒==306πϕ rad ,6πϕω== rad/s , 12πα= rad/s2 2.速度分析(图a )14322r =+=t v cm/s πω5e ===R v v A cm/s ;7.29145r e a =+=+==πv v v v M cm/s 3.加速度分析(图b ):t e n e r a a a a a a ++==Mπα5.2t e ==R a cm/s 2 ;22n e 65πω==R a cm/s 2 ;126r ==t a cm/s 222.8652n e ===πa a Mx cm/s 2 ;85.19125.2r te =+=+=πa a a My cm/s 25-15 半径为R 的圆轮,以匀角速度ω0绕O 轴沿逆时针转动,并带动AB 杆绕A 轴转动。