角的大小比较-初中数学知识点
角的比较教案:如何安排课堂讨论,帮助学生学会角的比较方法?

角的比较教案:如何安排课堂讨论,帮助学生学会角的比较方法?在初中数学学习中,角的概念是一个非常重要的内容。
学习角不仅有助于提高孩子的空间想象力,而且还能够为之后的学习奠定坚实的数学基础。
角的比较在数学中也起到了非常重要的作用。
本文将讲解如何通过课堂讨论帮助学生学会角的比较方法。
一、引导学生理解角的大小引导学生理解角的大小对于比较角的大小至关重要。
角的大小是指其张角的大小。
通常我们使用角度制来来表示角大小。
在初中数学中,我们学习到角的基本单位是度,圆周角是360度。
在讨论角的大小时,应让学生通过观察、测量、比较等方式对角度的大小有一个真正意义上的了解。
这样才能更好的进行角的比较。
二、教授比较角大小的方法1.利用角平分线角平分线是一个用于比较两个角的大小的重要工具。
通过画出两个角的平分线,可以将它们分成两个大小相等的角。
通过比较这两个小角的大小来判断原来两个大角的大小关系。
例如,如果两个角的平分线所得到的小角大小相等,则可以判断这两个角的角度大小相等。
2.利用角的组合我们可以利用旋转、翻转、剪接等方法来比较角的大小。
例如,将角A旋转或翻转后与角B 放在一起进行比较。
如果角A能够与角B重合,那么两个角就是大小相等的。
3.利用三角函数三角函数在数学中也是非常重要的一个概念。
通过利用三角函数,我们可以将任意角转化成这个角的一个三角函数值。
通过比较这个三角函数值,我们可以判断两个角的大小。
例如,我们可以利用正弦函数来比较两个角的大小。
如果两个角的正弦值相等,那么这两个角就是大小相等的。
三、课堂讨论的具体步骤在课堂上,老师应该引导学生先理解角的大小概念,然后教授比较角大小的方法。
具体步骤如下:1.引入问题。
展示两个或多个角,让学生通过观察判断它们的大小。
2.分组讨论。
将学生分为小组,让他们通过讨论来得出结论。
老师可以引导学生通过角平分线、角的组合、三角函数等方式来比较角的大小。
3.讨论分享。
让每个小组分享他们的讨论结果,并让其他小组进行评价和核对。
七年级上册数学角的比较和运算

七年级上册数学角的比较和运算角的比较与运算是初中数学的基本知识点之一。
角是一个由两条射线共同确定的图形部分,通常用字母表示。
我们可以通过角度来度量角的大小,角度的单位是度。
下面是一些常见的角的比较与运算知识点:
1.角的比较:当两个角的度数相同时,它们被称为相等角。
如果一个
角的度数比另一个角大,那么它们被称为大小关系。
我们可以使用
符号“<”、“>”、“=”来表示角的大小关系。
2.角的运算:我们可以对角进行加、减、乘、除等运算。
例如,如果
有两个角A和B,我们可以将它们相加得到一个新的角C,记作
C=A+B。
同样地,我们也可以将它们相减、相乘、相除来得到新的
角度。
3.角的平分线:如果一条直线将一个角分成两个大小相等的角,那么
这条直线被称为该角的平分线。
平分线的性质是:它将角分成两个
大小相等的角。
新人教版初中数学七年级上学期《角》知识点讲解及例题解析

《角》知识讲解及例题解析【学习目标】1.掌握角的概念及角的表示方法,并能进行角度的互换;2. 借助三角尺画一些特殊角,掌握角大小的比较方法;3.会利用角平分线的意义进行有关表示或计算;4. 掌握角的和、差、倍、分关系,并会进行有关计算.【要点梳理】要点一、角的概念1.角的定义:(1)定义一:有公共端点的两条射线组成的图形叫做角,这个公共端点是角的顶点,这两条射线是角的两条边.如图1所示,角的顶点是点O,边是射线OA、OB.图1 图2(2)定义二:一条射线绕着它的端点旋转而形成的图形,射线旋转时经过的平面部分是角的内部.如图2所示,射线OA绕它的端点O旋转到OB的位置时,形成的图形叫做角,起始位置OA是角的始边,终止位置OB是角的终边.要点诠释:(1)两条射线有公共端点,即角的顶点;角的边是射线;角的大小与角的两边的长短无关.(2)平角与周角:如图1所示射线OA绕点O旋转,当终止位置OB和起始位置OA成一条直线时,所形成的角叫做平角,如图2所示继续旋转,OB和OA重合时,所形成的角叫做周角.2.角的表示法:角的几何符号用“∠”表示,角的表示法通常有以下四种:要点诠释:用数字或小写希腊字母表示角时,要在靠近角的顶点处加上弧线,且注上阿拉伯数字或小写希腊字母.3.角的画法(1)用三角板可以画出30°、45°、60°、90°等特殊角.(2)用量角器可以画出任意给定度数的角.(3)利用尺规作图可以画一个角等于已知角.要点二、角度制及其换算角的度量单位是度、分、秒,把一个周角平均分成360等份,每一份就是1°的角,1°的160为1分,记作“1′”,1′的160为1秒,记作“1″”.这种以度、分、秒为单位的角的度量制,叫做角度制.1周角=360°,1平角=180°,1°=60′,1′=60″.要点诠释:在进行有关度分秒的计算时,要按级进行,即分别按度、分、秒计算,不够减,不够除的要借位,从高一位借的单位要化为低位的单位后再进行运算,在相乘或相加时,当低位得数大于60时要向高一位进位.要点三、角的比较与运算1.角的比较角的大小比较与线段的大小比较相类似,方法有两种.方法1:度量比较法.先用量角器量出角的度数,然后比较它们的大小.方法2:叠合比较法.把其中的一个角移到另一个角上作比较.如比较∠AOB和∠A′O′B′的大小:如下图,由图(1)可得∠AOB<∠A′O′B′;由图(2)可得∠AOB =∠A′O′B′;由图(3)可得∠AOB>∠A′O′B′.2.角的和、差运算如图所示,∠AOB是∠1与∠2的和,记作:∠AOB=∠1+∠2;∠1是∠AOB与∠2的差,记作:∠1=∠AOB-∠2.要点诠释:(1)用量角器量角和画角的一般步骤:①对中(角的顶点与量角器的中心对齐);②重合(一边与刻度尺上的零度线重合);③读数(读出另一边所在线的度数).(2) 利用三角板除了可以做出30°、45°、60°、90°外,根据角的和、差关系,还可以画出15°,75°,105°,120°,135°,150°,165°的角.3.角平分线从一个角的顶点出发,把这个角分成相等的两个角的射线,叫做这个角的平分线.如图所示,OC是∠AOB的角平分线,∠AOB=2∠AOC=2∠BOC,∠AOC=∠BOC =12∠AOB.要点诠释:由角平分线的概念产生的合情推理其思维框架与线段中点的思维框架一样.要点四、方位角在航行和测绘等工作中,经常要用到表示方向的角.例如,图中射线OA的方向是北偏东60°;射线OB的方向是南偏西30°.这里的“北偏东60°”和“南偏西30°”表示方向的角,就叫做方位角.要点诠释:(1)正东,正西,正南,正北4个方向不需要用角度来表示.(2)方位角必须以正北和正南方向作为“基准”,“北偏东60°”一般不说成“东偏北30°”.(3)在同一问题中观察点可能不止一个,在不同的观测点都要画出表示方向的“十字线”,确定其观察点的正东、正西、正南、正北的方向.(4)图中的点O是观测点,所有方向线(射线)都必须以O为端点.要点五、钟表上有关夹角问题钟表中共有12个大格,把周角12等分、每个大格对应30°的角,分针1分钟转6°,时针每小时转30°,时针1分钟转0.5°,利用这些关系,可帮助我们解决钟表中角度的计算问题.【典型例题】类型一、角的概念1. 利用一副三角板上的角,能画出多少个小于180°的角,试一一画出来.【思路点拨】首先发现一副三角板上有30°,45°,60°,90°这样4个不相等的角,利用这些角进行一次和差,可得小于180°的所有角.【答案与解析】解:除了可以画30°,45°,60°,90°外,还可画15°,75°,105°,120°,135°,150°,165°的七个度数的角,画法如图所示.【总结升华】利用一副三角板共可以画出11个度数的角,分别是:30°,45°,60°,90°,15°,75°,105°,120°,135°,150°,165°.举一反三:【变式】下列说法中,正确的是()A.两条射线组成的图形叫做角B.有公共端点的两条线段组成的图形叫做角C.角可以看做是由一条射线绕着它的端点旋转而形成的图形D.角可以看做是由一条线段绕着它的端点旋转而形成的图形【答案】C.类型二、角度制的换算2. 计算下列各题:(1)152°49′12″+20.18°; (2)82°-36°42′15″;(3)35°36′47″×9; (4)41°37′÷3.【答案与解析】解:(1)解法一:∵ 20.18°=20°10′48″即:152°49′12″+20.18°=173°.解法二:∵ 152°49′12″=152.82°,∴ 152.82°+20.18°=173°.即:152°49′12″+20.18°=173°.(2)将82°化为81°59′60″,则∴ 82°-36°42′15″=45°17′45″.423″=7′3″, 324′+7′=5°31′,∴ 35°36′47″×9=320°31′3″.∴ 41°37′÷3=13°52′20″.【总结升华】在角度的和、差运算中应先统一单位,都化成度或分、秒表示,然后进行计算;在进行乘法运算时,往往先把度、分、秒分别乘以倍数,将结果满60″进1′,满60′进1°;对于除法运算则是从度开始除,将余数化为分和以前的分数相加再除,将余数再化成秒和以前的秒数相加再除,若除不尽往往四舍五入.举一反三:【变式】计算:(1)23°45′36″+66°14′24″;(2)180°-98°24′30″;(3)15°50′42″×3; (4)88°14′48″÷4.【答案】(1)23°45′36″+66°14′24″=90°;(2)180°-98°24′30″=81°35′30″;(3)15°50′42″×3=47°32′6″;(4)88°14′48″÷4=22°3′42″.类型三、角的比较与运算3. 如图所示表示两块三角板.(1)用叠合法比较∠1,∠α,∠2的大小;(2)量出图中各角的度数,并把图中的6个角从小到大排列,然后用“<”或“=”连接.【答案与解析】解:(1)如图所示,把两块三角板叠在一起,可得∠1>∠α,用同样的方法,可得∠α<∠2.所以∠2=∠1>∠α.(2)用量角器量出图中各个角的度数,分别是∠1=∠2=45°,∠3=90°,∠α=30°,∠β=60°,∠γ=90°,把它们从小到大排列,有∠α<∠1=∠2<∠β<∠3=∠γ.【总结升华】比较角的大小有叠合法和度量法两种:①先将两个角的顶点与顶点重合,一条边与一条边重合再比较.②先量出每个角的度数,然后按它们的度数来比较.举一反三:【变式】如图,∠AOB的平分线OM,ON为∠MOA内的一条射线,OG为∠AOB外的一条射线.某同学经过认真分析,得到一个关系式是∠MON=12(∠BON-∠AON),你认为这个同学得到的关系式正确吗?若正确,请把得到这个结论的过程写出来.【答案】解:正确,理由如下:∵∠AOB的平分线OM,∴∠AOM=∠MOB又∵∠MON=∠AOM-∠AON=∠MOB-∠AON=(∠BON-∠MON) -∠AON 即有∠MON=∠BON-∠MON -∠AON∴ 2∠MON=∠BON-∠AON∴∠MON=12(∠BON-∠AON)4. 如图,∠AOB=90°,∠AOC=30°,且OM平分∠BOC,ON平分∠AOC,(1)求∠MON的度数;(2)若∠AOB=α其他条件不变,求∠MON的度数;(3)若∠AOC=β(β为锐角)其他条件不变,求∠MON的度数;(4)从上面结果中看出有什么规律?【思路点拨】(1)要求∠MON,即求∠COM﹣∠CON,再根据角平分线的概念分别进行计算即可求得;(2)和(3)均根据(1)的计算方法进行推导即可.(4)根据(2)和(3)中的结论进行总结.【答案与解析】解:(1)∵∠AOB=90°,∠AOC=30°,∴∠BOC=120°∵OM平分∠BOC,ON平分∠AOC∴∠COM=60°,∠CON=15°∴∠MON=∠COM﹣∠CON=45°.(2)∵∠AOB=α,∠AOC=30°,∴∠BOC=α+30°∵OM平分∠BOC,ON平分∠AOC∴∠COM=+15°,∠CON=15°∴∠MON=∠COM﹣∠CON=.(3)∵∠AOB=90°,∠AOC=β,∴∠BOC=90°+β∵OM平分∠BOC,ON平分∠AOC∴∠COM=45°+,∠CON=.∴∠MON=∠COM ﹣∠CON=45°. (4)从上面的结果中,发现:∠MON 的大小只和∠AOB 得大小有关,与∠A0C 的大小无关.【总结升华】能够结合图形表示角之间的和差关系,根据角平分线的概念运用几何式子表示角之间的倍分关系.举一反三:【变式】如图,已知O 是直线AC 上一点,OD 平分∠AOB ,OE 在∠BOC 内,且∠BOE =12∠EOC ,∠DOE =70°,求∠EOC 的度数.【答案】解:设∠EOC=x °,则∠BOE =12∠EOC =12x °,根据题意可得:1180127022x xx --+= ,解得: 80x = .∠EOC =2∠BOE =80°. 类型四、方位角5.已知小岛A 位于基地O 的东南方向,货船B 位于基地O 的北偏东50°方向,那么∠AOB 的度数等于 . 【答案】85°. 【解析】解:如图:∵∠2=50°,∴∠3=40°, ∵∠1=45°,∴∠AOB=∠1+∠3=45°+40°=85°, 故答案为:85°.【总结升华】本题主要考查了方位角的概念,根据方位角的概念,画图正确表示出A ,B 的方位,注意东南方向是45度是解答此题的关键. 类型五、钟表上有关夹角问题6. 在7时到7时10分之间的什么时刻,时针与分针成一条直线? 【答案与解析】解:设7时x 分钟,时针与分针成一条直线,由题意得:16302x x -=,5511x =. 答:7时5511分钟时针与分针成一条直线.【总结升华】时钟上的分针与时针绕着中心顺时针均匀转动,在不同时刻,两针之间形成一定的角度.如果把单位时间分针和时针转过的度数当作它们的速度则: ① 分针的速度为36060=6°/分;②时针的速度为3060°分=0.5°/分. 故分针速度是时针速度的12倍. 举一反三:【变式】某人下午6点多外出购物,表上的时针和分针的夹角恰为110°,下午7点前回家时,发现表上的时针和分针的夹角又是110°,试算出此人外出用了多长时间? 【答案】解:设此人外出用了x 分钟,则分针转了6x 度,时针转了0.5x 度.根据题意得:6x-0.5x =110×2,解之得x =40. 答:此人外出购物用了40分钟的时间.。
初中数学知识点精讲精析 角的大小比较

6.6 角的大小比较学习目标1. 理解角的大小比较意义;掌握直角、锐角、钝角的概念。
2. 会估计一个角的大小;会用叠合法和度量法进行角的大小比较;会区别直角、锐角和钝角。
知识详解1. 角的大小比较(1)度量法:先用量角器测量出各角的度数,再按照角的度数比较大小,从而确定两个角的大小关系。
(2)叠合法:两个角比较大小时,把两个角的顶点和一条边分别重合,另一条边放在重合边的同侧,根据另一条边的位置确定角的大小。
如比较∠ABC和∠DEF的大小,可把∠DEF移到∠ABC上,使它的顶点E和∠ABC的顶点B 重合,一边ED和BA重合,另一边EF和BC落在BA的同一侧。
①如果EF和BC重合(如图1),那么∠DEF等于∠ABC,记作∠DEF=∠ABC;②如果EF落在∠ABC的外部(如图2),那么∠DEF大于∠ABC,记作∠DEF>∠ABC;③如果EF落在∠ABC的内部(如图3),那么∠DEF小于∠ABC,记作∠DEF<∠ABC2.角的分类等于90°的角是直角;小于直角的角是锐角;大于直角而小于平角的角是钝角。
【典型例题】例1:如图,求解下列问题:(1)比较∠COD和∠COE的大小;(2)借助三角尺,比较∠EOD和∠COD的大小;(3)用量角器度量,比较∠BOC和∠COD的大小.【答案】(1)由图可以看出,∠COD<∠COE.(2)用三角尺中30°的角分别和这两个角比较,可以发现∠EOD<30°,∠COD>30°,所以∠EOD<∠COD.(3)通过度量可知:∠BOC=46°,∠COD=44°,所以,∠BOC>∠COD.【解析】(1)可用叠合法比较.∠COD和∠COE有一条公共边OC,而OD在∠COE的内部,故∠COD小;(2)我们要选择三角尺的一个角来估算这两个角的度数,就可以达到比较的目的;(3)通过度量容易得出结论。
例2:已知∠AOB=30°,∠BOC=20°,则∠AOC的角度是__________.【答案】10°或50°【解析】如图,①∠AOC=∠AOB+∠BOC=30°+20°=50°;②∠AOC=∠AOB-∠BOC=30°-20°=10°.例3:如图,解答下列问题:(1)比较图中∠AOB,∠AOC,∠AOD的大小;(2)找出图中的直角、锐角和钝角.【答案】(1)∠AOD>∠AOC>∠AOB;(2)直角有∠AOC,锐角有∠AOB,∠BOC,∠COD,钝角有∠AOD,∠BOD.【解析】(1)角的大小可以观察得出;(2)根据各类角的特征观察得出.【误区警示】易错点1:角的分类1.如图,∠AOB是平角,则图中小于平角的角共有()A.4个B.7个C.9个D.10个【答案】C【解析】小于平角的角为:∠AOC、∠AOD、∠AOE、∠COD、∠COE、∠COB、∠DOE、∠DOB、∠EOB共9个,故选C.易错点2:锐角2.下列4个角的度数中,属于锐角的是()A.70°B.90°C.110°D.180°【答案】A【解析】A、∵0<70°<90°,∴70°的角是锐角,故本选项正确;B、90°的角是直角,不是锐角,故本选项错误;C、90°<110°<180°,是钝角,不是直角,故本选项错误;D、180°的角是平角,不是锐角,故本选项错误.【综合提升】针对训练1.如果一个角是10°,用10倍放大镜观察这个角是度.2.如图,要将角钢(图①)弯成145°(图②)的钢架,在角钢上截去的缺口(图①中的虚线)应为度.3.写出图中所有小于平角的角,它们是1.【答案】10【解析】因为放大镜没有改变顶点的位置和两条射线的方向,所以用10倍放大镜观察这个角还是10度.2.【答案】35【解析】在角钢上截去的缺口(图①中的虚线)应为35度.3.【答案】∠A,∠B,∠ACB,∠ACD【解析】小于平角的角是∠A,∠B,∠ACB,∠ACD.【中考链接】(2014年佛山)若一个60°的角绕顶点旋转15°,则重叠部分的角的大小是()A.15°B.30°C.45°D.75°【答案】C【解析】∵∠AOB=60°,∠BOD=15°,∴∠AOD=∠AOB﹣∠BOD=60°﹣15°=45°课外拓展几何之父欧几里得曾定义角为在平面中两条不平行的直线的相对斜度。
初中数学角的大小比较(含答案)

7.5 角的大小比较课内练习A组1.下列语句中,正确的是()(A)小于钝角的角是锐角;(B)大于直角的角是钝角(C)小于直角的角是锐角;(D)大于锐角的角是直角或钝角2.钝角减去锐角所得的差是()(A)锐角(B)直角(C)钝角(D)都有可能3.已知∠A=50°24′,∠B=50.24°,∠C=50°14′24″,那么下列各式正确的是()(A)∠A>∠B>∠C (B)∠A>∠B=∠C(C)∠B>∠C>∠A (D)∠B=∠C>∠A4.根据图1,完成下列填空:(1)∠BOD=∠BOC+_______;∠AOC=•______+•_______;•∠AOB=•______+•_____+______;∠AOD+∠BOC=_______-______;(2)若∠AOC=90°,∠BOC=30°,则∠AOB=________.(1) (2) (3)5.如图2,∠AOB和∠COD都是直角,则∠AOD+∠BOC=________.6.如图3,∠AOC=50°,∠BOD=40•°,•∠AOD=•60•°,•求∠1=•_____,•∠2=_______,∠3=______.7.读题画图并按题目要求解答:已知∠AOB的外部有∠BOC,OM,ON分别是∠AOB和∠BOC 的平分线,若∠MON=75°,求∠AOC的度数.8.如图,直线AB,CD相交于点O,OB平分∠DOE.如果∠COE=80°,求∠EOB•与∠AOC的度数.9.已知两个角有公共顶点和一条公共边,且一个角为130°,另一个角为40°,那么这两个角的另一条边所成的角为几度?并画图说明.B组10.下列说法,错误..的个数是()①直角都相等②直角大于任何锐角③钝角大于直角④大于直角的角是钝角(A)3个(B)2个(C)1个(D)0个11.OC在∠AOB的内部,下列给出的条件中不能得到OC为∠AOB的平分线的是()(A)∠AOC=12∠BOA (B)∠AOB=2∠BOC(C)∠AOC+∠COB=∠AOB (D)∠AOC=∠BOC12.如图4,射线OC,OD把∠AOB三等分,且∠AOC=10°,•则图中所有角的度数和是()(A)30°(B)90°(C)130°(D)100°(4) (5) (6)13.如图5,将长方形ABCD沿AE折叠,使点D落在BC边上的点F,若∠BAF=60°,则∠DAE=()(A)15°(B)30°(C)45°(D)60°14.若∠AOB=50°,∠BOC=40°,则∠AOC=_____.15.如图6,已知∠AOB=∠BOC=∠COD=∠DOE=30°,图中相加得180•°的两个角共有_________对.16.如图,∠AOB=30°,∠AOC=60°,∠AOD=90°,∠AOE=120°.试问图中哪条射线是哪一个角的角平分线?17.如图,∠AOB ,∠COD 都是直角.(1)图中共有______个角,其中锐角有______个,钝角有______个;(2)比较∠AOC 与∠BOD 的大小.18.如图,OC 是∠AOD 的平分线,OE 是∠BOD 的平分线,且∠AOB=130°.(1)求∠COE 是多少度;(2)如果∠COD=20°,求∠BOE 的度数.课外练习A 组1.一条射线绕它的端点先按逆时针旋转75.5°,再按顺序时针方向旋转15•°30′,则射线后来位置与原来位置所成角的度数是( )(A )90.8° (B )90°35′ (C )60° (D )60.2°2.已知∠AOB=150°,OC 平分∠AOB ,OD 在∠AOB 的内部,且∠AOD=13∠AOB ,则∠COD=( )(A )15° (B )25° (C )35° (D )45°3.点P 在∠MAN 的平面上,现有等式∠PAM=12∠MAN ,∠PAN=12∠MAN ,∠PAM=∠PAN ,•∠MAN=2∠NAP ,其中能表示AP 是角平分线的等式有( )(A )1个 (B )2个 (C )3个 (D )4个4.如图7,∠AOC=∠BOD=90°,下列结论中正确的个数是( )①∠AOB=∠COD ; ②∠AOD=3∠BOC ; ③∠AOD+∠BOC=∠AOC+∠BOD(A )0个 (B )1个 (C )2个 (D )3个(7) (8) (9)5.若∠AOB=75°,∠BOC=60°,OM 平分∠AOB ,ON 平分∠BOC ,则∠MON=_______.6.如图8,在2×2的方格中,连结AB ,AC ,AD ,则∠2=______;∠1+•∠2+•∠3=________. B 组7.已知∠AOB=80°,过O 作射线OC (不同于OA ,OB ),满足∠AOC=35∠BOC ,求∠AOC•的大小.8.如图9所示,将书页斜折过去,使顶角A 落在A ′处,BC 为折痕,然后把BE 边折过去,使之与A ′B 边重合,折痕为BD ,那么两折痕BC ,BD 间的夹角是多少度?9.(1)利用一副三角尺的拼合,分别画出75°,120°,135°,150°的角;(2)利用一副三角形,你能画出几个不同的角(小于180°)?分别是几度的角?•用一副三角尺所画的这些角的大小有什么规律?7.5 角的大小比较答案:课内练习:1.C 2.D 3.B4.(1)∠DOC ∠AOD ∠DOC ∠AOD ∠DOC • •∠COB ∠AOB ∠DOC (2)120°5.180° 6.10° 30° 20° 7.图略,•∠AOC=150°8.∠BOE=50°,∠AOC=50°9.90°或170°图略 10.C 11.C 12.D 13.A 14.90°或10° 15.4 16.OB平分∠AOC,OD平分∠EOC,OC平分∠AOE和∠DOB •17.(1)6,3,1 (2)相等 18.(1)65°(2)45°课外练习:1.C 2.B 3.A 4.C 5.7.5°或67.5°6.45°,135° 7.30°或120° 8.90°9.(1)画图略(2)11个,15°,30°,45°,60°,75°,90°,105°,120°,135°,150°,165°规律:15°的倍数.。
5.4比较角的大小的方法

F
记作∠ABC >∠DEF.
B
东平县初中数学
A
E
D
角的比较方法:叠合法
F C
课中
实施
∠DEF=∠ABC.
E B DA F C E B DA C F
∠DEF>∠ABC. ∠DEF<∠ABC.
B DA E 东平县初中数学
探索过程
存在两个角∠1和∠2 1
课中
实施
2
判断下列能比较∠1和∠2 大小的做法是( D )
12
A 东平县初中数学 2
∠1 < ∠2
2
1
B
1
12
C D
角的比较方法:
(1)度量法
课中
实施
使用量角器要领: 对中、重合、读数。
(2)重合法
要领:1、顶点重合 2、一边重合 3、另一边落在重合边的同侧
东平县初中数学
课中
实施
C B
A
角的和差
右图中有几个角? 它们之间有什么关系?
O
∠AOC= ∠AOB + ∠BOC ∠AOB= ∠AOC- ∠BOC
问题: ∠AOC - ∠AOB= ?
东平县初中数学
认识角的平分线
问题:如右图,虚线OB 是把 ∠AOC对折,使得 两条边重合 的折痕,那么虚线OB把∠AOC 分成的两个角有什么关系呢?
课中
C
实施
B
∠AOB= ∠BOC
O
A
问题:∠AOC与∠BOC有什么
关系?这个关系怎样用式子来 表示?射线OB叫做什么? ∠AOC= 2∠BOC
东平县初中数学
平分线的定义
初中七年级(初一)数学课件 角的大小比较

∠ AOB < ∠ AOC < ∠ AOD < ∠AOE
(2)图中的直角有∠AOC,∠BOD ,∠ COE;
锐角有∠ AOB, ∠ BOC ,∠ COD, ∠ DOE;
钝角有∠ AOD, ∠ BOE。
四、角的平分线
在一张透明纸上任意画一个角∠ BOC (如
一﹑角的大小比较
图1
图2
思考:你认为图中时针和分针所成的角哪个角大?
度量法
角的大小是指它们的度数的大小,所以比较两个 角的大小,可以量出它们的度数来进行。
C
F
。 60
。 30
B
A
E
D
ABC > DEF
叠 合 法
B (E)
C F
A (D) F
C
ABC> DEF
AB C< DEF
B ( E) B ( E)
CBP
P A
如图,若∠ABC=90°, ∠CBD=30 °, 你能求出哪些角的度数?
若在变式一的条件 下,再添上BP平分∠ ABD,你还能求出哪些 角的度数?
课内练习P167:
1. 根据图形填空: A
(1) ∠ AOB= ∠ AOC+ ( ∠BOC );
(2) ∠ AOD= ∠ AOB—(∠BOD )=(∠AOC )—∠COD;
A ( D)
C(F)
ABC = DEF
A ( D)
C B
角
2
1
的
O
A
( AOC为 1 和 2 的和
和
记作 AOC = 1 + 2
)与Biblioteka B差21C
七年级数学上册《角的大小比较》教案、教学设计

a. 30°和45°
b. 60°和90°
c. 120°和150°
(2)从生活中找出三个例子,说明角的大小比较在实际中的应用。
2.提高拓展题:
(1)运用作辅助线法或角度加减法比较以下角的大小,并简要说明解题思路:
a. ∠ABC和∠DEF,其中∠ABC = 100°,∠DEF = 80°,射线BC和射线EF平行。
(一)教学重点
1.理解并掌握角的定义及角的度量单位。
2.学会运用不同的方法比较角的大小,并能够解决实际问题。
3.建立角的分类概念,理解各类角的特点及其在实际中的应用。
(二)教学难点
1.角度概念的抽象性:角是由两条射线共同确定的图形,对于学生来说,理解这一抽象概念并将其与具体图形联系起来存在一定难度。
2.提出问题:请学生尝试用自己的方法比较两个角的大小,并讨论不同方法之间的优缺点。在此基础上,教师揭示本节课的学习目标——掌握角的大小比较的方法。
(二)讲授新知
1.概念讲解:介绍角的定义,强调由两条射线共同确定的图形。讲解角的度量单位——度,并引导学生理解度数与角度大小的关系。
2.方法讲解:
a.直接比较法:通过观察两个角的大小,直接判断它们的大小关系。
3.设计丰富的教学活动,如角的大小比较游戏、实际情境问题等,让学生在实际操作中运用所学知识,提高解决问题的能力。
4.运用变式和问题驱动的方法,引导学生从不同角度思考问题,培养学生思维的灵活性和创新意识。
(三)情感态度与价值观
1.培养学生对数学学科的兴趣和热情,激发他们主动探索、积极思考的欲望。
2.培养学生严谨、细致的学习态度,使他们认识到在数学学习中,每一个细节都至关重要。
b.作辅助线法:通过作辅助线,将两个角转化为同一直线上的角,从而比较它们的大小。