溶胶的制备和电泳

溶胶的制备和电泳
溶胶的制备和电泳

中国石油大学化学原理二实验报告

实验日期:成绩:

班级:学号:姓名:教师:

同组者:

一、实验目的

1.学会溶胶制备的基本原理、并掌握溶胶制备的主要方法;

2.利用界面电泳法测定AgI溶胶的电动位。

二、实验原理

溶胶是溶解度极小的固体在液体中高度分散所形成的胶态体系,其颗粒直径变动在10-7~10-9m范围。

1.溶胶制备

要制备出稳定的溶胶一般需满足两个条件:固体分散相的质点大小必须在胶体分度的范围内;固体分散质点在液体介质中要保持分散不聚结,为此,一般需要加稳定剂。

制备溶胶原则上有两种方法:将大块固体分割到胶体分散度的大小,此法称为分散法;使小分子或粒子聚集成胶体大小,此法称为凝聚法。

(1)分散法

分散法主要有 3 种方式,即机械研磨、超声分散和胶溶分散。

①研磨法:常用的设备主要有胶体磨和球磨机等。胶体磨由两片靠得很近的盘或磨刀,均由坚硬耐磨的合金或碳化硅制成。当上下两磨盘以高速反向转动时(转速约5000-10000rpm),粗粒子就被磨细。在机械磨中胶体研磨的效率较高,但一般只能将质点磨细到 1um 左右。

②超声分散法:频率高于16000Hz的声波称为超声波,高频率的超声波传入介质,在介质中产生相同频率的疏密交替,对分散相产生很大的撕碎力,从而达到分散效果。此法操作简单,效率高,经常用作胶体分散及乳状液制备。

③胶溶法:胶溶法是把暂时聚集在一起的胶体粒子重新分散而成溶胶。例如,氢氧化铁、氢氧化铝等的沉淀实际上是胶体质点的聚集体,由于制备时缺少稳定剂,故胶体质点聚在一起而沉淀。此时若加入少量的电解质,胶体质点因吸附离子而带电,沉淀就会在适当的搅拌下重新分散成胶体。

有时质点聚集成沉淀是因为电解质过多,设法洗去过量的电解质也会使沉淀转化成溶胶。利用这些方法使沉淀转化成溶胶的过程成为胶溶作用。胶溶作用只能用于新鲜的沉淀。若沉淀放置过久,小粒经过老化,出现粒子间的连接或变化成大的粒子,就不能利用胶溶作用来达到重新分散的目的。

(2) 凝聚法

主要有化学反应法及更换介质法,此法的基本原则是形成分子分散的过饱和溶液,控制条件,使形成的不溶物颗粒大小在溶胶分散度内。此法与分散度相比不仅在能量上有限,而且可以制成高分散度的胶体。

①化学反应法:凡能形成不溶物的复分解反应、水化反应以及氧化还原反应等皆可用来制备溶胶。由于离子的浓度对胶体的稳定性有直接的影响,在制备溶胶时要注意控制电解质的浓度。

②改换介质法:此法系利用同一物质在不同溶剂中溶解度相差悬殊的特性,

使溶解于良溶剂中的溶质,在加入不良溶剂后,因其溶解度下降而以胶体粒子的

大小析出,形成溶胶。此法作溶胶方法简便,但得到的溶胶粒子不太细。

(一)溶胶的电泳

在电场的作用下,胶体粒子向正极或负极移动的现象叫电泳。电泳现象证实

胶体粒子的带电性。胶体粒子带电是因为在其周围形成了扩散双电层。按对固体

的关系,扩散双电层离子可沿滑动面分为吸附层离子和扩散层离子两部分,使固

体表面和分散介质之间有电势差,即错误!未找到引用源。 电势。错误!未

找到引用源。电势的大小可通过电泳实验测得。 在外电场的作用下,根据胶体粒子的相对运动速度计算ζ电势的基本公式是:

tv ld

εηξ= (3-1)

式中: 错误!未找到引用源。-胶体粒子的电动电势(V);

η -介质的动力粘度(Pa.s );

d -溶胶界面移动的距离(m);

l -两电极之间的距离(m);

ε -介电常数(F/m);

V -两级间的电位差(V);

t -电泳进行的时间(s)。

水的粘度和介电常数查附录二和附录六。

利用电泳测定电动电势有宏观法和微观法两种。宏观法是观察在电泳管内溶

胶与辅助液间界面在电场作用下的移动速度。微观法借助于超显微镜观察单个胶

体粒子在电场作用下的移动速度。本实验用宏观法测定,所使用的电泳管如图

3-1 所示。

图 3-1 电泳管示意图

1.电极;

2.辅助液;

3.界面;

4.溶胶;

5.活塞

三.仪器与药品

1.仪器

电泳仪,电泳管,秒表,电极2支,100mL 烧杯3个,胶头滴管2支,25,mL 量

筒2个,等

2.药品

0.01mol/L AgNO3溶液, 0.01mol/L KI溶液, 0.005mol/L KCl溶液

四.实验步骤

1.制备AgI溶胶(复分解法)

用25ml量筒量取20mL0.01mol/L的KI溶液,倒入100mL的烧杯中。然后,用另一25mL量筒量取18.7mL0.01mol/L 的AgNO3溶液,用胶头滴管向量取的KI溶液中滴加量取的AgNO3溶液,并不断搅拌,滴加结束即制的AgI负溶胶。

2.辅助夜的制备

先测定溶胶的电导率。用少量溶胶将试管及电导率池洗3次,在试管中加入适量溶胶,插入导电池,测定室温下溶胶电导率。向0.01mol/L KI溶液中家蒸馏水至其电导率与溶胶相同,本实验用的辅助液是浓度约为0.005mol/L的KCl。

3.电势的测定

(1)仔细洗净电泳管,检查活塞是否润滑良好,且不漏。用少量已配好的AgI溶胶将电泳管的漏斗至活塞的支管洗一遍。用滴管由漏斗加入少量溶胶,使活塞孔内充满溶胶,迅速关闭活塞。用辅助液洗涤U型管部分。活塞以上若有溶胶也应洗去。

(2)关闭电泳管活塞,将电泳管垂直固定在铁架台支架上。

(3)用胶头滴管由漏斗向电泳管中加入值得的溶胶至漏斗细支管顶部,然后倒入烧杯中剩于的溶胶。

(4)用烧杯取一定量的KCl辅助液,沿U型管倒入电泳管。若使用长电极,则将辅助液倒入U型管至刻度4;若使用短电极,则将辅助液倒入U型管至刻度9。

(5)将黑色挡板放在U型管后,慢慢打开活塞使溶胶慢慢上升。注意,不要全部打开,一定要慢,否则得不到清晰的溶胶界面。至溶胶上升至刻度线0时,关闭活塞。

(6)将两个电极轻轻插入电泳管的U型管中。整个过程注意保持平稳,不使电泳管受振动。

(7)将电泳仪电泳仪电源开扳下(关),将输出调节旋钮反时针方向旋至输出电压最小位置,接好电源线,,做好开机准备。将两电极引线接在电泳仪上,将电泳仪电源开关扳上(开),指示灯亮,预热5分钟后,调节输出旋钮到电压指示为150V。按电泳仪的开始按钮,同时计时,指示灯显示为R。注意:由于电泳仪输出电压较高,在通电过程中不要接触电极,否则有触电危险。

(8)观察溶胶上升界面清晰后,用秒表测量界面上升0.5、1.0、1.5cm 所需时间。测量完毕,按电泳仪的停止按钮,指示灯灭。拆下电极引线,卸下电泳管,将管内的液体倒入指定的废液杯中。

(9)用钢尺仔细量出U型管的距离,减去U型管的两个半径,即为两电极之间的距离。

(10)实验结束,洗净使用过的所有玻璃仪器。将药品和仪器放回原处。

五、数据处理

1.总结溶胶的制备方法。

制备溶胶原则上有两种方法:分散法和凝聚法。其中分散法主要有 3 种方式,即机械研磨、超声分散和胶溶分散;而凝聚法主要2种方式,即化学反应法及更换介质法。

2.计算 AgI 负溶胶的ξ电势,并取平均值。

表一 实验数据记录表格 以第一组数据为例:

通过查附录二和六得:

错误!未找到引用源。7.096错误!未找到引用源。10-10(F/m)

错误!未找到引用源。10-3(pa.s) t 1=168(s )

L=0.078m

V=200(v )

01600.020*********.7005.0078.0109779.010311=??????==--v t ld εηξ(V )

=2t 342—168=174(s) =3t 606-342=264(s)

同理可得2ξ=0.01544(V) 3ξ=0.0102(V)

故01388.030102

.001544.001600.033

21=++=++=ξξξξ(V )

六.思考题

1.试比较不同溶胶的制备方法有什么共同点和不同点?

答:共同点:都是把分散相的直径变至胶体分散度的大小

不同点:分散法是将大块固体分割到胶体分散度的大小;凝聚法是使小分子或粒子聚集成胶体大小。

2.为什么要求辅助液与溶胶的电导率相同?这对计算电动电势有什么作用。

答:只有当辅助液的电导率与待测溶胶的电导率相等时才能保证辅助液的

移动速度与溶胶相等,可以避免因界面处场强突变而造成两管中界面移动速度不等而产生的界面模糊。若溶胶和辅助液的电导率不同,则电动势的计算公式不同,则须对公式进行修正。

3.注意观察,电泳时溶胶上升界面与下降界面的颜色、清晰程度及移动速度有什么不同。分析产生这些差别的可能原因。

答:溶胶上升界面的颜色较深,上升速度较快,溶胶与辅助液之间的界面比较清晰,下降界面颜色较浅,下降速度较慢,溶胶与辅助液之间的界面不是很清晰。这可能是由于钾离子和氯离子的迁移速率不相等造成的。

4.Fe(OH)3 溶胶渗析的目的是除去什么电解质?有什么办法检测Fe(OH)3溶胶纯化的程度?渗析时是将溶胶中分散的所有离子都除去吗?

答:Fe(OH)3溶胶渗析的目的是除去FeCl3。将制备的Fe(OH)3溶胶倒入火棉胶袋,并挂在盛有蒸馏水的大烧杯中,每隔一定时间换一次蒸馏水,直到用0.1mol/L的AgNO3溶液检验无氯离子时可认为Fe(OH)3溶胶已达到纯净。不是将溶胶中分散介质的离子全部出去。

胶体制备和电泳

胶体制备和电泳 一、实验目的 1、采用水解凝聚法制备Fe(OH)3溶胶; 2、用电泳法测定Fe(OH)3溶胶带电性质及其电动电位。 二、实验原理 胶体制备常用分散法和凝聚法。本实验是用水解凝聚法制备Fe(OH)3溶胶。刚制成的溶胶常含有其它杂质,必须纯化。本实验采用半透膜渗析法,利用胶体与其它物质的分散程度的差异而分离。为了加快渗析速度,可用热渗析和电渗析方法。 由于胶粒表面电离或吸附离子而带电荷,在胶粒周围形成带等量异电荷的溶剂化层。溶剂化层界面与介质内部形成的电位差称电动电势或ζ电势。它是胶粒特征的重要物理量,其数值与胶体性质,介质及溶胶浓度有关。 胶体的ζ电势表达式为: DE u πηζ4= 式中:ζ——介质粘度(泊); u ——相对移动速度(厘米/秒); D ——介质常数; E ——电位梯度(绝对静电单位/厘米)。 由测定界面移动的电泳法: () vtD sl πηζ43002 = 式中:s ——时间t 内胶体和辅助液界面移动距离(厘米); l ——两电极间距离(厘米); v ——电极间电位差(伏特); 300——将伏特换算成绝对静电单位的比例系数。 本实验的测定条件是溶胶与辅助液的电导率必须相等。

三、仪器与药品 电泳仪 1套 稳压电源 1套 停表 1个 铂电极 1根 10%FeCl 3溶液 火棉胶 稀盐酸 烧杯等。 四、实验步骤 1、3)(OH Fe 溶胶的制备:在250 ml 烧杯中,盛蒸馏水100 ml ,加热至沸,在搅拌条件下滴加10%3FeCl 10 ml ,再煮沸 2 min ,即得3)(OH Fe 棕色溶胶。 2、胶体溶液的纯化: 半透膜的制备:在100 ml 干燥的短颈锥形瓶中,倒入几 ml 火棉胶,小心转动,形成均匀的薄膜,倒置流尽火棉胶,并让溶剂挥发至不粘手,然后在瓶口剥开一部分膜,从膜壁注入水,使膜与壁分离,取出成型的膜袋。 溶胶的渗析:将制得的3)(OH Fe 溶胶倒入半透膜中,用线栓住袋口,放入60~70℃的水中渗析,常换水,直至水中不能检出-Cl 或+3Fe 。 3、3)(OH Fe 溶胶的ζ电位测定:洗净电泳管,用滴管注入净化后的3)(OH Fe 溶胶,关闭活塞,用蒸馏水和辅助液依次洗净电泳管上部三次,然后装入辅助液(电导率与溶胶相等的HCl )至支管口。两边插入电极并安装好仪器。调节工作电压为120V ~150V 。打开活塞开始计时,准确记录界面移动0.5cm ,1cm ,1.5cm ,2cm 所需的时间。测定完毕关闭电源,用线测量两电极间的距离l ,计算ζ电势。 五、数据记录与处理 1、由胶体在电泳时的移动方向,确定胶粒所带电荷。 2、由在时间t 内界面移动的距离s 值,求出s/t ,并取平均值(或作s ~t 图,求出斜率)计算ζ电势。 3、求ζ时,η和D 值均用水的相应值代替。水的介电常数D =80—0.4(T —293),T —实验绝对温度。

氢氧化铁胶体制备及电泳

.. Fe(OH)3胶体的制备和电泳 韩丰 郭麟 刘天乙 (大连大学 环境与化学工程学院 化学111,辽宁大连 116622) 指导老师:李艳华 贾颖萍 [摘 要] 文章主要探究氢氧化铁的制备、纯化温度及时间对胶体的影响,并测定的胶体性质,最终确定利用化学法制备,纯化温度介于60℃到70℃,时间控制在2周左右,辅助液选用KCl 溶液并且电导率与胶体相同,电泳电压为60V ,得到Fe(OH)3胶体的ζ 电位为;并且研究了相同阳离子不同价态阴离子的盐对于胶体聚沉的影响,并得到价态越高,聚沉能力越强。 [关 键 词] Fe(OH)3胶体;电泳;ζ 电位;实验;聚沉值 作为物理化学实验中经典实验[1,2] ---胶体的制备及采用电泳方法测定溶胶的电动电势ζ,我们很有必要去认识和学习。但由于溶胶的电泳受诸多因素如:溶胶中胶粒形状、表面电荷数量、辅助液中电解质的种类、温度和所加电压等。根据实验内容主要利用水解Fe(OH)3溶液制备的氢氧化铁胶体,并且通过渗析纯化后使用。另外,根据教材的实验步骤进行电泳实验,经常遇到溶胶与辅助液间有一界模糊和两极间界面移动距离相差较大等问题。为了使这些问题能够得以很好的解决,我们主要是氢氧化铁胶体的制备、Fe(OH)3胶体的纯化时渗析温度及时间的控制、辅助液的选择与其电导率控制、胶体溶液和导电液的正确加入以及适度的电泳电压等方面对这一实验进行了改进研究来探究Fe(OH)3胶体的ζ 电位,通过与理论值相比较,做出合理的误差分析,以此来对胶体电泳最佳实验条件得以确定,以这一实验改进的条件探讨及结果。 1、实验部分 1.1 实验原理 1.1.1 胶体简介 溶胶是一个多相系统;是热力学不稳定系统(要依靠稳定剂使其形成离子或分子吸附层,才能得到暂时的稳定),胶粒(分散相)大小在1~100nm 之间[3] ; 1.1.2制备胶体的原理: 凝胶作用:由于溶剂的作用,使沉淀重新溶解成胶体溶液。 化学凝聚法:通过化学反应使生成物呈过饱和状态,然后粒子再胶合成胶粒。 1.1.3 氢氧化铁溶胶ζ电势的测定计算 实验主要是通过测定一定外加电场强度下胶粒的电泳速度的方法计算胶粒的ζ 电位。采用界面移动法测胶粒的电泳速率。 在电泳仪的两段极施加电位差E 后,在时间t 内,如溶胶界面移动的距离为d ,则胶粒的电泳速率: t d v

实验二溶胶的制备与性质实验报告

实验二溶胶的制备与性质实验报告 篇一:Fe3溶胶制备纯化及性质实验报告 溶胶的制备、纯化及稳定性研究 1、实验背景 胶体现象无论在工农业生产中还是在日常生活中,都是常见的问题。为了了解胶体现象,进而掌握其变化规律,进行胶体的制备及性质研究实验很有必要。 氢氧化铁胶体因其制备简单、带有颜色和稳定性好等特点被广泛应用于大学物理化学实验中,并且是高中化学中的一个重要实验。但是采用电泳方法测定溶胶的电动电势(ζ)却是始终是一个难点,因为溶胶的电泳受诸多因素影响如:溶胶中胶粒形状、表面电荷数量、溶剂中电解质的种类、离子强度、PH、温度和所加电压。

2、实验要求 了解制备胶体的不同方法,学会制备Fe3溶胶。 实验观察胶体的电泳现象,掌握电泳法测定胶体电动电势的技术。 探讨不同外加电压、电泳时间、溶胶浓度、辅助液的pH值等因素对Fe3溶胶电动电势测定的影响。 探讨不同电解质对所制备Fe3溶胶的聚沉值,掌握通过聚沉值判断溶胶荷电性质的方法。 二、实验部分 1.实验原理 溶胶的制备方法可分为分散法和凝聚法。分散法是用适当方法把较大的物质颗粒变为胶体大小的质点,如机械法,电弧法,超声波法,胶溶法等;凝聚法是先制成难溶物的分子的过饱和溶液,再使之相互结合成胶体粒子而得到溶胶,如物质蒸汽凝结法、变换分散介质法、化学反应法等。Fe3溶胶的制备就是采用化学反应法使生成物呈过饱和状

态,然后粒子再结合成溶胶。 在胶体分散系统中,由于胶体本身电离,或胶体从分散介质中有选择地吸附一定量的离子,使胶粒带有一定量的电荷。显然,在胶粒四周的分散介质中,存在电量相同而符号相反的对应离子。荷电的胶粒与分散介质间的电位差,称为ξ电位。在外加电场的作用下,荷电的胶粒与分散介质间会发生相对运动。胶粒向正极或负极(视胶粒荷负电或正电而定)移动的现象,称为电泳。同一胶粒在同一电场中的移动速度由ξ电位的大小而定,所以?电位也称为电动电位。 测定ξ电位,对研究胶体系统的稳定性具有很大意义。溶胶的聚集稳定性与胶体的ξ电 位大小有关,对一般溶胶,ξ电位愈小,溶胶的聚集稳定性愈差,当ξ电位等于零时,溶胶的聚集稳定性最差。所以,无论制备胶体或破坏胶体,都需要了解所研究胶体的ξ电位。原则上,任

2019-2020年高中化学必修一说课稿:2-1-1胶体的制备及其性质

2019-2020年人教版高中化学必修一说课稿:2-1-1 胶体的制备及其性质 一、教材分析 本节教学内容选自人教版普通高中课程标准实验教科书必修《化学1》第二章《化学物质及其变化》第一节《物质的分类》。本节课是以学生初中学习的纯净物、混合物、溶液和浊液等知识为基础,提倡学生从原有的知识出发,在介绍了纯净物与混合物的基础上引入胶体的概念。本节的探究学习,既有助于巩固初中所学的内容,也对有效地进行高中阶段的化学学习具有承前启后的作用,在学习和研究化学当中具有不可替代的作用。因此,本节课在全书中占有特殊的地位和具有重要的功能,是高中化学的教学重点之一。 二、学情分析 由于教学对象是刚上高中的专业生,初中知识很薄弱,对化学的要求只是学业考试,从思想上对化学的重视程度不够。 三、设计思路 我准备通过用与生活息息相关的例子激发学生对化学学科的学习兴趣,进而提高学生对化学学科的重视程度,通过鼓励学生主动与教师、同学交流,形成较浓的学习气氛,进而培养学生自主探究合作学习的习惯。 四、教学目标 根据教学大纲的要求和编写教材的意图,结合本节课的特点和学生的实际情况确定了如下教学目标: 知识与技能:(1)了解什么是胶体(2)了解胶体与其它分散系的区别(3)了解胶体的制备、性质与用途 过程与方法:(1)运用观察法、实验探究法学习胶体的性质与用途(2)通过创设问题情境,自由讨论,形成探究、合作的科学学习方式(3)体会分析、归纳、推理的方法在知识学习中的作用 情感态度与价值观:(1)在自主探究过程中,体验活动探究的乐趣,增强学习化学、探究物质变化奥秘的兴趣。(2)重视化学学科与生活实际的联系性,体验化学学

氢氧化铁胶体电动电位的测定(电泳法)

氢氧化铁胶体电动电位的测定 一、目的要求 1、掌握电泳法测定Fe(OH)3溶胶电动电势的原理和方法。 2、通过实验观察并熟悉胶体的电泳现象。 二、实验原理 在胶体溶液中,分散在介质中的微粒由于自身的电离或表面吸附其他粒子而形成带一定电荷的胶粒,同时在胶粒附近的介质中必然分布有与胶粒表面电性相反而电荷数量相同的反离子,形成一个扩散双电层。 在外电场作用下,荷点的胶粒携带起周围一定厚度的吸附层向带相反电荷的电极运动,在荷电胶粒吸附层的外界面与介质之间相对运动的边界处相对于均匀介质内部产生一电势,为ζ电势。 它随吸附层内离子浓度,电荷性质的变化而变化。它与胶体的稳定性有关,ζ绝对值越大,表明胶粒电荷越多,胶粒间斥力越大,胶体越稳定。 本实验用界面移动法测该胶体的电势。在胶体管中,以KCl为介质,用Fe(OH)3溶胶通电后移动,借助测高仪测量胶粒运动的距离,用秒表记录时间,可算出运动速度。 当带电胶粒在外电场作用下迁移时,胶粒电荷为q,两极间的的电位梯度为E,则胶粒受到静电力为f1=Eq 胶粒在介质中受到的阻力为f2=Kπηru 若胶粒运动速率u恒定,则f1=f2 qE=Kπηru (1) 根据静电学原理ζ=q/εr (2) 将(2)代入(1)得u=ζεE/Kπη (3)

利 用界面移动法测量时,测出时间t 时胶体运动的距离S ,两铂极间的电位差Φ和电极间的距离L ,则有 E=Φ/L , u=s/t (4) 代入(3)得 S=(ζΦε/4πηL)·t 作S —t 图,由斜率和已知得ε和η,可求ζ电势。 电泳公式可表示为: 上式中η为分散介质的粘度,ε为介电常数,25℃时,η=0.000894Pa ·S ,ε=78.36,U 为加于电泳测定管两端的电压(V ),l 是两极间的距离(cm ),u 是电泳速度(cm ·s -1)。 三、仪器与试剂 Fe(OH)3胶体,KCl 辅助溶液, 电泳管,直尺,电泳仪 四、实验步骤 1.洗净电泳管,然后在电泳管中加入50ml 的Fe(OH)3胶体溶液,用滴管将KCl 辅助溶液延电泳管壁缓慢加入,以保持胶体与辅助液分层明显,(注意电泳管两边必须加入等量的辅助液)。 2.辅助液加至高出胶体10厘米时即可,此时插入两个铂电极,将电泳管比活塞 辅助液 Fe(OH)3胶体 铂片电极 图2.14.1 电泳仪

氢氧化铁胶体制备及电泳

设计性实验 Fe(OH)3胶体的制备和电泳 韩丰 郭麟 刘天乙 (大连大学 环境与化学工程学院 化学111,辽宁大连 116622) 指导老师:李艳华 贾颖萍 [摘 要] 文章主要探究氢氧化铁的制备、纯化温度及时间对胶体的影响,并测定的胶体性质,最终确定利用化学法制备,纯化温度介于60℃到70℃,时间控制在2周左右,辅助液选用KCl 溶液并且电导率与胶体相同,电泳电压为60V ,得到Fe(OH)3胶体的ζ 电位为;并且研究了相同阳离子不同价态阴离子的盐对于胶体聚沉的影响,并得到价态越高,聚沉能力越强。 [关 键 词] Fe(OH)3胶体;电泳;ζ 电位;实验;聚沉值 作为物理化学实验中经典实验 [1,2] ---胶体的制备及采用电泳方法测定溶胶的电动电势 ζ,我们很有必要去认识和学习。但由于溶胶的电泳受诸多因素如:溶胶中胶粒形状、表面电荷数量、辅助液中电解质的种类、温度和所加电压等。根据实验内容主要利用水解Fe(OH)3溶液制备的氢氧化铁胶体,并且通过渗析纯化后使用。另外,根据教材的实验步骤进行电泳实验,经常遇到溶胶与辅助液间有一界模糊和两极间界面移动距离相差较大等问题。为了使这些问题能够得以很好的解决,我们主要是氢氧化铁胶体的制备、Fe(OH)3胶体的纯化时渗析温度及时间的控制、辅助液的选择与其电导率控制、胶体溶液和导电液的正确加入以及适度的电泳电压等方面对这一实验进行了改进研究来探究Fe(OH)3胶体的ζ 电位,通过与理论值相比较,做出合理的误差分析,以此来对胶体电泳最佳实验条件得以确定,以这一实验改进的条件探讨及结果。 1、实验部分 1.1 实验原理 1.1.1 胶体简介 溶胶是一个多相系统;是热力学不稳定系统(要依靠稳定剂使其形成离子或分子吸附层,才能得到暂时的稳定),胶粒(分散相)大小在1~100nm 之间[3] ; 1.1.2制备胶体的原理: 凝胶作用:由于溶剂的作用,使沉淀重新溶解成胶体溶液。 化学凝聚法:通过化学反应使生成物呈过饱和状态,然后粒子再胶合成胶粒。 1.1.3 氢氧化铁溶胶ζ电势的测定计算 实验主要是通过测定一定外加电场强度下胶粒的电泳速度的方法计算胶粒的ζ 电位。采用界面移动法测胶粒的电泳速率。 在电泳仪的两段极施加电位差E 后,在时间t 内,如溶胶界面移动的距离为d ,则胶粒的电泳速率: t d v

Fe(OH)3溶胶制备纯化及性质实验报告

溶胶的制备、纯化及稳定性研究 1、实验背景 胶体现象无论在工农业生产中还是在日常生活中,都是常见的问题。为了了解胶体现象,进而掌握其变化规律,进行胶体的制备及性质研究实验很有必要。 氢氧化铁胶体因其制备简单、带有颜色和稳定性好等特点被广泛应用于大学物理化学实验中,并且是高中化学中的一个重要实验。但是采用电泳方法测定溶胶的电动电势(ζ)却是始终是一个难点,因为溶胶的电泳受诸多因素影响如:溶胶中胶粒形状、表面电荷数量、溶剂中电解质的种类、离子强度、PH、温度和所加电压。 2、实验要求 (1)了解制备胶体的不同方法,学会制备Fe(OH)3溶胶。 (2)实验观察胶体的电泳现象,掌握电泳法测定胶体电动电势的技术。 (3)探讨不同外加电压、电泳时间、溶胶浓度、辅助液的pH值等因素对Fe(OH)3溶胶电 动电势测定的影响。 (4)探讨不同电解质对所制备Fe(OH)3溶胶的聚沉值,掌握通过聚沉值判断溶胶荷电性质的方法。 二、实验部分 1.实验原理 溶胶的制备方法可分为分散法和凝聚法。分散法是用适当方法把较大的物质颗粒变为胶体大小的质点,如机械法,电弧法,超声波法,胶溶法等;凝聚法是先制成难溶物的分子(或离子)的过饱和溶液,再使之相互结合成胶体粒子而得到溶胶,如物质蒸汽凝结法、变换分散介质法、化学反应法等。Fe(OH)3溶胶的制备就是采用化学反应法使生成物呈过饱和状态,然后粒子再结合成溶胶。 在胶体分散系统中,由于胶体本身电离,或胶体从分散介质中有选择地吸附一定量的离子,使胶粒带有一定量的电荷。显然,在胶粒四周的分散介质中,存在电量相同而符号相反的对应离子。荷电的胶粒与分散介质间的电位差,称为ξ电位。在外加电场的作用下,荷电的胶粒与分散介质间会发生相对运动。胶粒向正极或负极(视胶粒荷负电或正电而定)移动的现象,称为电泳。同一胶粒在同一电场中的移动速度由ξ电位的大小而定,所以 电位也称为电动电位。 测定ξ电位,对研究胶体系统的稳定性具有很大意义。溶胶的聚集稳定性与胶体的ξ电

氢氧化铁胶体电泳

氢氧化铁胶体电泳 (二)实验目的 (1)电泳法测定ξ电势原理与技术; (2)观察胶体的电泳现象,确定胶粒电性; (3)掌握界面移动法的电泳的ξ的电势; (三)实验原理 在外电场作用下.胶体粒子(带固定层)向一圾移动,扩散层中的反离子向另一极移动,这种现象称为电泳。显然,胶粒移动的速度与固定层和介质问的电位差有关。通常把固定层与介质间的电位差称为电动电势(ζ)。由实验直接测出胶体的电泳速度,根据亥姆霍兹方程计算出胶体的电动电势(ζ)。在一般憎液溶胶中,电位数值愈小,则其稳定性众差。当ζ电位等于零时,溶胶的聚集稳定性最差,此时可观察到聚沉的现象。因此,无论制备胶体或破坏胶体,都需要了解所研究胶体的ζ电位。 (四)仪器药品 1.仪器(见实验内容) 2.药品 三氯化铁(20%)硝酸银(0.01mol.dm-3) 火棉胶(质量分数为6%) 硫氰酸钾(0.01mol.dm-3)硝酸钾(1mol.dm-3) 蒸馏水 (五)预习提问

1.什么是ζ电势?对胶体的稳定性有何影响? 2.什么是电泳? 3.在整个实验操作中,应该注意那些问题? 4.要准确测定胶体的电泳速度必须注意那些问题? (六)实验结果要求 宏观法测定Fe(OH)3溶胶的电泳电势(ζ) 1.结果要求:ζ=44+5mV 2.文献值:ζ=44mV (七)影响实验结果的一些因数 (八)实验内容中思考题回答 1.Fe(OH)3胶粒带什么电荷? 答:Fe(OH)3胶粒带正电荷。 2.电泳速度快慢与哪些因素有关? 答:在外电场作用下,胶体粒子在分散介质中定向移动的现象称为电泳。胶体粒子的电泳速度与粒子所带的电量及外加电势梯度成正比,而与介质的粘度及粒子的大小成反比。实验还证明,若溶胶中加入电解质.则对电泳会有显著的影响。随着外加电解质的增加,电泳速度常会降低以至的成零.胶体的电泳速度还与溶剂中电解质的种类、离子强度以及PH值、温度和所加的电压有关.对于两性电解质,如蛋白质,在其等电点处,在外加电扬中位于不移动,不发生电泳现象,而在等电点前后粒子向相反的方向移动。 3.实验中所用的辅助液电导率为什么要与溶胶电导率相等?

溶胶的制备及电泳实验报告记录

溶胶的制备及电泳实验报告记录

————————————————————————————————作者:————————————————————————————————日期:

浙江万里学院生物与环境学院 化学工程实验技术实验报告 实验名称:溶胶的制备及电泳 姓名成绩 班级学号 同组姓名实验日期 指导教师签字批改日期 年月日

一、实验预习(30分) 1.实验装置预习(10分)2015年12月28日 指导教师______(签字)成绩 2.实验仿真预习(10分)2015年12月28日 指导教师______(签字)成绩 3.预习报告(10分) 指导教师______(签字)成绩 (1)实验目的 1.掌握电泳法测定Fe(OH)3及Sb2S3溶胶电动电势的原理和方法。 2.掌握Fe(OH)3及Sb2S3溶胶的制备及纯化方法。 3.明确求算ζ公式中各物理量的意义。 (2)实验原理 溶胶的制备方法可分为分散法和凝聚法。分散法是用适当方法把较大的物质颗粒变为胶体大小的质点;凝聚法是先制成难溶物的分子(或离子)的过饱和溶液,再使之相互结合成胶体粒子而得到溶胶。Fe(OH)3溶胶的制备是采用的化学法即通过化学反应使生成物呈过饱和状态,然后粒子再结合成溶胶,其结构式可表示为{m[Fe(OH)3]n FeO+(n-x)Cl-}x+x Cl-。 制成的胶体体系中常有其它杂质存在,而影响其稳定性,因此必须纯化。常用的纯化方法是半透膜渗析法。 在胶体分散体系中,由于胶体本身的电离或胶粒对某些离子的选择性吸附,使胶粒的表面带有一定的电荷。在外电场作用下,胶粒向异性电极定向泳动,这种胶粒向正极或负极移动的现象称为电泳。荷电的胶粒与分散介质间的电势差称为电动电势,用符号ζ表示,电动电势的大小直接影响胶粒在电场中的移动速度。原则上,任何一种胶体的电动现象都可以用来测定电动电势,其中最方便的是用电泳现象中的宏观法来测定,也就是通过观察溶胶与另一种不含胶粒的导电液体的界面在电场中移动速度来测定电动电势。电动电势ζ与胶粒的性质、介质成分及胶体的浓度有关。在指定条件下,ζ的数值可根据亥姆霍兹方程式计算。

胶体电泳深度解析

一、胶体的结构是怎样的? 关于胶体的结构,一般认为在胶体粒子的中心,是一个由许多分子聚集而成的固体颗粒,叫做胶核。在胶核的表面常常吸附一层组成类似的、带相同电荷的离子。当胶核表面吸附了离子而带电后,在它周围的液体中,带相反电性的离子会扩散到胶核附近,并与胶核表面电荷形成扩散双电层。扩散双电层由两部分构成: (1)吸附层 胶核表面吸附着的离子,由于静电引力,又吸引了一部分带相反电荷的离子(简称反离子),形成吸附层。 (2)扩散层 除吸附层中的反离子外,其余的反离子扩散分布在吸附层的外围。距离吸附层的界面越远,反离子浓度越小,到了胶核表面电荷影响不到之处,反离子浓度就等于零。从吸附层界面(图中虚线)到反离子浓度为零的区域叫做扩散层。 吸附层的离子紧挨着胶核,跟胶核吸附得比较牢固,它跟随胶核一起运动。扩散层跟胶核距离远一些,容易扩散。通常把胶核和吸附层共同组成的粒子称为胶粒,把胶核、吸附层和扩散层统称为胶团。 二、胶体为什么会带电? 胶体带电的原因,是由于胶体是高分散的多相体系,具有巨大的界面(总表面积),因而有很强的吸附能力。它能有选择地吸附介质中的某种离子,而形成带电的胶粒。 这里以AgI胶体为例来说明。包围着AgI胶核的是扩散双电层(吸附层和扩散层),胶核和吸附层构成了胶粒,胶粒和扩散层形成的整体为胶团,在胶团中吸附离子的电荷数与反离子的电荷数相等,因此胶粒是带电的,而整个胶团是电中性的。 式中的m是AgI分子数,m的值常常很大,n的数值比m小得多;(n-x)是包含在吸附层中的反离子数;x为扩散层中的反离子数。 由于胶核对吸附层的吸引能力较强,对扩散层的吸引能力弱,因此在外加电场(如通直流电)作用下,胶团会从吸附层与扩散层之间分裂,形成带电荷的胶粒而发生电泳现象。带电的胶粒向一极移动,带相反电荷的反离子向另一极极移动。因此,胶团在电场作用下的行为跟电解质相似。 三、胶体应该带什么电? 胶体粒子吸附溶液中的离子而带电,当吸附了正离子时,胶体粒子荷正电,吸附了负离子则荷负电。不同情况下胶体粒子容易吸附何种离子,与被吸附离子的本性及胶体粒子表面结构有关。法扬斯规则表明:

溶胶的制备和电泳

中国石油大学化学原理(Ⅱ)实验报告 实验日期:2014年10月22日 成绩: 班级:石工(实验)1202 学号: 姓名: 教师: 耿杰 同组者: 实验三 溶胶的制备和电泳 一.实验目的 1.学会溶胶制备的基本原理、掌握溶胶制备的主要方法; 2.利用界面电泳法测定AgI 的电动电位。 二.实验原理 溶胶是溶解度极小的谷底在液体中高度分散所形成的胶态体系,其颗粒直径变动在10-7~10-9m 范围内。 1.溶胶制备 要制备溶胶一般要满足两个条件:固体分散相的质点大小必须在胶体分度范围内;固体分散质点在液体介质中不聚结,为此,一般要加稳定剂。 制备胶体有两种方法:分散法和凝聚法。 (1) 分散法:将大块固体分割到交替分散度的大小。 主要有3种方式,即机械磨损、超声分散和胶溶分散。 (2)凝聚法:使小分子或离子聚集成胶体大小。 主要有化学反应法和介质交换法。 2.溶胶的电泳 在电场作用下,胶体粒子向正极或负极移动的现象叫电泳。点用现象证实胶体粒子的带电性。按对固体的关系,扩散双电层离子可沿滑动面分为吸附层离子和扩散层离子两部分,使固体表面和分散介质之间有电势差,即ξ电势。 计算ξ电势的基本公式是: tv ld εηξ= 式中:ξ--胶体粒子的电动电势(V ); η—介质的动力粘度(Pa.s );

d—溶胶界面移动的距离(m); l—两电极之间的距离(m); ε—介电常数(F/m); V—两级间的电位差(V); t—电泳进行的时间(s)。 利用电泳测定电动电势有宏观法和微观法两种。宏观法是观察在电泳管内溶胶与辅助液间界面在电场作用下的移动速度。微观法借助于超显微镜观察单个胶体粒子在电场作用下的移动速度。 使用的电泳管如图所示。 1 2 3 4 5 1.电极; 2.辅助液; 3.界面; 4.溶胶; 5.活塞 三. 仪器与药品 1.仪器。 电泳仪,电泳管,秒表,电极2支, 100mL烧杯3个,25mL量筒2个 2.药品。 0.01mol/L KI;0.01mol/L AgNO3;0.005 mol/L KCl。 四.实验步骤 AgI溶胶的电泳 1.AgI负溶胶的制备 在100mL的烧杯中用量筒加入20mL,0.01mol/L的KI溶液,在玻璃棒搅拌下用滴管

南京大学物化实验系列胶体电泳速度的测定

胶体电泳速度的测定 1 实验目的 1.1 掌握凝聚法制备Fe (OH )3溶胶和纯化溶胶的方法 1.2 观察溶胶的电泳现象并了解其电学性质,掌握电泳法测定胶体电泳速度和溶胶ζ 电位的方法。 2 实验原理 溶胶是一个多相体系,其分散相胶粒的大小约在1nm ~1um 之间。由于本身的电离或 选择性地吸附择性地吸附一定量的离子以及其它原因所致,胶粒表面具有一定量的电荷;胶粒周围的介质分布着反离子。反离子所带电荷与 胶粒表面电荷符号相反,数量相等。整个溶胶体 系保持电中性。胶粒周围的反离子由于静电引力 和热扩散运动的结果形成了两部分——紧密层 和扩散层。紧密层约有一两个分子层厚。紧密吸 附在胶核去面上.而扩散层的厚度则随外界条件 (温度,体系中电解质浓度及其离子的价态等)而 改变,扩散层中的反离子符合玻兹曼分布。由于 离子的溶剂化作用,紧密层结合着一定数量的溶 剂分子,在电场的作用下,它和胶粒作为一个整 体移动,而扩散层中的反离子则向相反的电极方 向移动。这种在电场作用下分散相粒子相对于分散介质的运动称为电泳。发生相对移动的界面称为切动面,切动面与液体内部的电位差称为电动电位或ζ电位,而作为带电粒子的胶粒表面与液体内部的电位差称为质点的表面电θ ?。 胶粒电泳速度除与外加电场的强度有关外,还与ζ电位的大小有关。面ζ电位不仅与测 定条件有关,还取决于胶体粒子的性质。 ζ电位是表征胶体特性的重要物理量之一,在研究胶体性质 及其实际应用有着重要意义。胶体体的稳定性与ζ电位有直接关 系,ζ电位绝对值越大,表明胶粒荷电越多,胶粒间排斥力越大, 胶体越稳定。反之则表明胶体越不稳定。当ζ电位为零时.胶体 的稳定性最差,此时可观察到胶体的聚沉。 本实验是在一定的外加电场强度下通过测定Fe(OH)3胶粒的 电泳速度然后计算出ζ电位。实验用拉比诺维奇-付其曼U 形电泳 仪,如图2所示。活塞2、3以下盛待测的溶胶,以上盛辅助液。 在电泳仪两极间接上电位差E (V )后,在t (s )时间内溶胶 界面移动的距离为D(m),即胶粒电泳速度1()U m S - 为: D U t = 相距为l(m)的电极间的电位梯读平均值1 ()H V m - 为:

溶胶的制备与电泳

中国石油大学化学原理二实验报告 实验日期:2014年10月22日成绩: 班级:学号:姓名:教师:耿杰 同组者: 溶胶的制备与电泳 1.实验目的 1、学会溶胶制备的基本原理、并掌握溶胶制备的基本方法。 2、利用界面电泳法测定AgI溶胶的电动电位。 2. 实验原理 溶胶是溶解度极小的固体在液体中高度分散所形成的胶态体系,其颗粒 直径变动在10-7~10-9m 范围。 溶胶制备:要制备出稳定的溶胶一般需满足两个条件:固体分散相的质点大小必须在胶体分度的范围内;固体分散质点在液体介质中要保持分散不聚结,为此,一般需要加稳定剂。制备溶胶原则上有两种方法:将大块固体分割到胶体分散度的大小,此法称为分散法;使小分子或粒子聚集成胶体大小,此法称为凝聚法。 (1)分散法 分散法主要有3种方式,即机械研磨、超声分散和胶溶分散。 ①研磨法:常用的设备主要有胶体磨和球磨机等。胶体磨由两片靠得很近 的盘或磨刀,均由坚硬耐磨的合金或碳化硅制成。当上下两磨盘以高速反向转 动时(转速约5000-10000rpm),粗粒子就被磨细。在机械磨中胶体研磨的效 率较高,但一般只能将质点磨细到1um 左右。 ②超声分散法;频率高于16000H z 的声波称为超声波,高频率的超声波传入 介质,在介质中产生相同频率的疏密交替,对分散相产生很大的撕碎力, 从而达到分散效果。此法操作简单,效率高,经常用作胶体分散及乳状液 制备。 ③胶溶法:胶溶法是把暂时聚集在一起的胶体粒子重新分散而成溶胶。例如,

氢氧 化铁、氢氧化铝等的沉淀实际上是胶体质点的聚集体,由于制备时缺少稳定剂,故胶体 质点聚在一起而沉淀。此时若加入少量的电解质,胶体质点因吸附离子而带电,沉淀就 会在适当的搅拌下重新分散成胶体。 有时质点聚集成沉淀是因为电解质过多,设法洗去过量的电解质也会使沉淀转化成 溶胶。利用这些方法使沉淀转化成溶胶的过程成为胶溶作用。胶溶作用只能用于新鲜的沉淀。若沉淀放置过久,小粒经过老化,出现粒子间的连接或变化成大的粒子,就不能利用胶溶作用来达到重新分散的目的。 (2) 凝聚法 主要有化学反应法及更换介质法,此法的基本原则是形成分子分散的过饱和溶液,控制条件,使形成的不溶物颗粒大小在溶胶分散度内。此法与分散度相比不仅在能量上 有限,而且可以制成高分散度的胶体。 ①化学反应法:凡能形成不溶物的复分解反应、水化反应以及氧化还原反应等皆可 用来制备溶胶。由于离子的浓度对胶体的稳定性有直接的影响,在制备溶胶时要注意控 制电解质的浓度。 ②改换介质法:此法系利用同一物质在不同溶剂中溶解度相差悬殊的特性,使溶解 于良溶剂中的溶质,在加入不良溶剂后,因其溶解度下降而以胶体粒子的大小析出,形 成溶胶。此法作溶胶方法简便,但得到的溶胶粒子不太细。 (一) 溶胶的电泳 在电场的作用下,胶体粒子向正极或负极移动的现象叫电泳。电泳现象证实胶体粒子的带电性。胶体粒子带电是因为在其周围形成了扩散双电层。按对固体的关系,扩 散双电层离子可沿滑动面分为吸附层离子和扩散层离子两部分,使固体表面和分散介质之间有电势差,即ξ 电势。ξ 电势的大小可通过电泳实验测得。 在外电场的作用下,根据胶体粒子的相对运动速度计算ζ电势的基本公式是:tv ld εηξ= 式中: ξ -胶体粒子的电动电势(V); η -介质的动力粘度(Pa.s ); d -溶胶界面移动的距离(m); l -两电极之间的距离(m); ε -介电常数(F/m);

胶体的制备与性质 (全,可做教案)

胶体的制备与性质 第一节 胶体的制备和净化 胶粒:1—100 nm ,原则上可由原子、分子凝聚成胶体(凝聚法),也可由大块物质分散成胶体(分散法)。 一、胶体制备的一般条件 1. 分散相在介质中的溶解度必须极小,浓度低 OH H C S 52+——真溶液)溶胶(溶解度极小,滴入水中O H S 2/???→? 低溶解度是形成溶胶的必要条件之一,同时还需要反应物的浓度很稀,生成的难溶物晶粒很小而又无长大条件时才能得到胶体。若反应物浓度很大,细小的难溶物颗粒突然生成很多,易形成半固体状的凝胶。 2. 必须有稳定剂存在 分散胶体体系中存在巨大的界面积,属热力学不稳定体系,胶体需要稳定剂作用才能稳定存在。 二、胶体的制备方法 1. 分散法:机械分散、电分散、超声分散和胶溶法 通过不同的能量或作用方式分散大块物体→胶粒 胶溶法是某些新生成的沉淀中加入适量的电解质或置于某一温度下使胶体重新分散成溶胶。 如正电胶MMH (moled metal hydroxide )或MMLHC :mixed metal layered hydroxide compound 在一定比例的AlCl 3·MgCl 2 混合溶液中,加入稀氨水,形成混合金属氢氧化物沉淀(半透明凝胶状),经多次洗涤后(目的在于控制其中的氯离子浓度),置该沉淀于80℃下恒温,凝胶逐渐形成带正电的溶胶。MMH 用途很广——钻井液添加剂、聚沉剂、防沉剂等。 胶溶法:新形成的洗涤过的溶液沉淀加入少量33)(FeCl OH Fe →搅拌→沉淀转化为红棕色的3)(OH Fe 溶胶→机械粉碎——球磨机、振动磨、冲击式粉碎机、胶体磨、离心磨。 研磨过程中,增大增大,S A G S ,颗粒有聚集倾向(颗粒间有吸引力;颗粒增大,S G 减小)。分散?聚集平衡,颗粒不再磨细。要提高研磨效率,防聚可采取溶剂冲稀或加入稳定剂吸附表面——工业SAA ,油漆工业,研磨色料(SAA 保护) 电分散:电弧使金属气化,分散于溶剂中,得到溶胶。 超声波分散:对被分散的物质产生很大的撕碎力。 2. 凝聚法:用物理或化学方法使分子或离子聚集成胶粒。 (1) 还原法——金属溶胶

溶胶的制备和电泳

石工1210 段炼学号12021469 实验三溶胶的制备和电泳 一.实验目的 1.学会溶胶制备的基本原理,掌握溶胶制备的主要方法 2.利用界面电泳法测定AgI溶胶的电动电位 二.实验原理 在电场作用下,胶体粒子向正极或负极移动的现象叫电泳。电泳现象证实了胶体粒子的带电性。胶体粒子带电是因为在它周围形成了扩散双电层。双电层分为吸附层离子和扩散层离子,是固体表面和分散介质之间有电势差,电势大小可由实验测得。 ; 在外电场作用下,根据胶体粒子的相对运动速度计算电势的基本公式如下 利用电泳测定电动电势有宏观法和微观法两种。宏观法师观察在电泳管内溶胶与辅助液间界面在电场作用下的移动速度。微观法借助于超显微镜观察单个胶体粒子在电场作用下的移动速度。本实验采用宏观法。 三.实验仪器与药品 1.仪器 电泳仪,电泳管,秒表,电极2支,100ml烧杯3个,胶头滴管2支,25ml量筒2个,等。 2.药品 0.01mol/LAgNO3溶液,0.01mol/LKI溶液,0.005mol/LKCl溶液 四.实验步骤 1.AgI负溶胶的制备 2.辅助液的制备 3.电势的测定 五.数据处理 电压:200V 室温:14℃ L:7.8cm 1.总结溶胶的制备方法:

(1)取20ml的碘化钾溶液倒入100ml的烧杯中,然后将18.8ml的硝酸银溶液边搅拌边用胶头滴管滴入烧杯中,滴加结束得到白色的碘化银负溶胶。 (2)关闭活塞,将溶胶倒入U形电泳仪的漏斗中 (3)向U形管中加入辅助液,至4ml处 (4)打开活塞,使溶胶缓慢上升到0刻度左右关闭活塞 (5)将电极插入U形管中,注意平稳 (6)打开电泳仪开关,分别记下溶胶界面上升到0.5cm,1.0cm,1.5cm所用的时间 (7)测量U形管之间的间距 (8)根据量取的数据计算电势 (9)实验结束,关闭电源,收拾好仪器 2.计算碘化银负溶胶的电势 根据附录中的数据和实验测得的数据利用公式 (水的介电常数为7.261×10∧-10) (水的介质动力粘度为1.169×10∧-3) 所以带入数据得: §1=1.43×10-2V §2=1.57×10-2V §3=1.35×10-2V 取平均值:§=1.45×10-2V 六.思考题 1.试比较不同溶胶的制备方法有什么共同点和不同点? 答:相同点:用量一定,需要用滴管滴加药剂,需要玻璃棒搅拌,而且加药剂 时要缓慢滴加。不同点:具体步骤不同,注意事项不同,如胶溶发需小火加热, 而改变介质法需剧烈搅拌。 2.为什么要求辅助液与溶胶的电导率相同?这对计算电动电势有什么作用? 答:只有这样电压才会平均分配在溶液与溶胶中,使计算过程方便简单。 2.注意观察,电泳时溶胶上升界面与下降界面的颜色,清晰程度及移动速度有什么不 同。分析产生这些差别的可能原因 答:下降界面的颜色较浅,不太清晰,移动速度快,上升界面则相反。因为电泳开始后,上升界面是AgI在移动,下降界面是Cl离子在移动,Cl离子 的移动速度比AgI要快,所以会发生上面的现象。

胶体化学大汇总 (1)

1.分散体系的分类? 根据被分散物质分散的程度可将分散体系分为粗分散体系、胶体分散体系和分子分散体系。 2.什么是胶体? 颗粒大小在1~1000nm范围内的分散相粒子称为胶体 3.胶体制备一般需具备什么条件?常用的制备方法有哪些,举例说明? 条件:a。固体分散相粒子要足够小,使其有一定的动力学稳定性;b。分散相在分散介质中的溶解度要足够小,形成分散相的反应物浓度低;c。为了使分散相粒子具有抗凝结而保持稳定的性质,体系中必须有第三种物质存在 方法:分散法——机械粉碎法、超声分散法、电分散法、胶溶法 凝聚法——化学凝聚、物理凝聚 胶溶法——吸附溶胶、洗涤沉淀胶溶、表面解离溶胶 例子:洗涤沉淀胶溶法制备普鲁士蓝溶胶、改换介质法制备硫溶胶。 4.什么是单分散溶胶?单分散溶胶制备的原理? 在特定条件下制备的粒子大小、形状、组成均相同的溶胶称为单分散溶胶。 原理:在溶液中产物浓度超过其饱和浓度,并略高于成核浓度时,在短时间内形成全部晶核。晶核形成后,溶液浓度迅速减小,低于成核浓度(仍高于饱和浓度),不再形成新晶核。已形成的晶核在此浓度下以相同速度长大,从而得到单分散胶体粒子。 5.什么是胶体晶体?胶体晶体制备中采用模板剂的作用是什么? 由一种或多种单分散的胶体粒子组装并规整排列的二维或三维有序结构称为胶体晶体,又称合成蛋白石。 作用:引导,组装胶体粒子 6.什么是反渗透? 若在渗透平衡后在浓相一侧施加外压p(p>Π),则浓相的溶剂分子将向稀相迁移,故称反渗透。 7.纳米粒子的特性是什么?产生电动现象的根本原因是什么? 特性:①表面与界面效应②小尺寸效应③量子尺寸效应④宏观量子隧道效应 根本原因:胶体粒子常带有一定符号和数量的电荷。 8.为什么分散相质点在分散介质中表面常会带某种电荷? 当分散相与分散介质接触时,因为分散相质点表面解离或者吸附溶液中某些离子从而使表面带有电荷。 9.界面移动电泳和显微电泳各适用何种体系? 界面移动电泳主要用于蛋白质系统等生物大分子体系,显微电泳主要用于显微镜下可见胶体粒子的体系。 10.什么是临界聚沉浓度,它由哪些参数决定? 临界聚沉浓度是在一定时间内引起疏液体系胶体有明显变化所需要加入惰性电解质的最小浓度。临界聚沉浓度主要由体系中反离子大小和价数、胶体粒子浓度、电解质加入方式和时间等因素决定。 11.江河出口处为什么形成三角洲? 江河携带的泥沙在到达入海口与海水接触时,因海水中大量电解质的作用,使其携带的泥沙上

胶体的制备与性质实验报告

制备氢氧化铁胶体 【实验目的】:制备氢氧化铁胶体,比较其与氯化铁的区别。 【实验要求】:保证安全,尽量不损坏仪器。成功制备氢氧化铁。【实验原理】:FeCl3+6H2O=加热=Fe(OH)3(胶体)+3HCl 【实验设备及环境要求】:铁架台、石棉网、酒精灯、小烧杯、量筒。 要求环境干净整洁,没有极易燃物。 【实验步骤】:准备实验(护目镜等)→组装仪器(由下至上,由左至右)→量取25mL蒸馏水,倒入小烧杯中→点燃酒精灯→将蒸馏水加热至沸腾,滴入饱和氯化铁溶液5-6滴,继续煮沸至溶液呈红褐色→熄灭酒精灯,停止加热→取下小烧杯,观察其与氯化铁外观差异→试验其丁达尔效应→在两只烧杯中分别加入相同量的含有悬浮颗粒物的浑浊污水→向其中的一只烧杯中加入10mL氢氧化铁胶体→静置,比较两只烧杯中液体的澄清程度→拆除清洗所有仪器,结束实验。【实验结果】:(1)氯化铁溶液呈棕色,氢氧化铁胶体呈红褐色。 (2)制备得到的氢氧化铁胶体具有丁达尔效应。 (3)加入了氢氧化铁的颜色深于另一烧杯中液体,但更 澄清。 【讨论和分析】:成功制备出氢氧化铁胶体。 (1)氯化铁的水解反应 FeCl3+6H2O=加热=Fe(OH)3+3HCl。为什么产生的盐酸与氢氧化铁不反应呢?原因大致有二。 一、是因为高温反应时,盐酸挥发成气体,不接触无法反应。

二、是因为氢氧化铁和盐酸反应主要是因为氢氧根负离子和氢正离子结合,但制备的氢氧化铁胶体为带正电的粒子,氢离子也带正电,不反应。 (2)氢氧化铁胶体会出现聚沉现象。因为煮沸时间过长温度高,加剧了胶体粒子的热运动,碰撞几率增大,更容易结合成大粒子聚沉。(3)做净水剂。胶体粒子表面积大,能够吸附更多的悬浮颗粒物,沉降。高铁酸钾是含有FeO42-的一种化合物,其中心原子Fe以六价存在,因此,高铁酸钾具有极强的氧化性,可以对水进行氧化、消毒、杀菌处理。因此,高铁酸钾在饮用水的处理过程中,集氧化、吸附、絮凝、沉淀、灭菌、消毒、脱色、除臭等八大特点为一体的综合性能,被称为多功能水处理剂。 【实验过程反思】 氢氧化铁胶体的制备过程中,反应总体成功,但学生在做实验时没注意观察液体变为红褐色后就停止加热,有的学生制备胶体出现了聚沉现象。因此在今后的实验中注意加热时间不宜过长。

Fe(OH)3溶胶制备纯化及性质实验报告 华师

溶胶的制备、纯化及稳定性研究 一、前言 1、实验背景 胶体现象无论在工农业生产中还是在日常生活中,都是常见的问题。为了了解胶体现象,进而掌握其变化规律,进行胶体的制备及性质研究实验很有必要。 氢氧化铁胶体因其制备简单、带有颜色和稳定性好等特点被广泛应用于大学物理化学实验中,并且是高中化学中的一个重要实验。但是采用电泳方法测定溶胶的电动电势(ζ)却是始终是一个难点,因为溶胶的电泳受诸多因素影响如:溶胶中胶粒形状、表面电荷数量、溶剂中电解质的种类、离子强度、PH、温度和所加电压。 2、实验要求 (1)了解制备胶体的不同方法,学会制备Fe(OH)3溶胶。 (2)实验观察胶体的电泳现象,掌握电泳法测定胶体电动电势的技术。 (3)探讨不同外加电压、电泳时间、溶胶浓度、辅助液的pH值等因素对Fe(OH)3溶胶电动电势测定的影响。 (4)探讨不同电解质对所制备Fe(OH)3溶胶的聚沉值,掌握通过聚沉值判断溶胶荷电性质的方法。 二、实验部分 1.实验原理 溶胶的制备方法可分为分散法和凝聚法。分散法是用适当方法把较大的物质颗粒变为胶体大小的质点,如机械法,电弧法,超声波法,胶溶法等;凝聚法是先制成难溶物的分子(或离子)的过饱和溶液,再使之相互结合成胶体粒子而得到溶胶,如物质蒸汽凝结法、变换分散介质法、化学反应法等。Fe(OH)3溶胶的制备就是采用化学反应法使生成物呈过饱和状态,然后粒子再结合成溶胶。 在胶体分散系统中,由于胶体本身电离,或胶体从分散介质中有选择地吸附一定量的离子,使胶粒带有一定量的电荷。显然,在胶粒四周的分散介质中,存在电量相同而符号相反的对应离子。荷电的胶粒与分散介质间的电位差,称为ξ电位。在外加电场的作用下,荷电的胶粒与分散介质间会发生相对运动。胶粒向正极或负极(视胶粒荷负电或正电而定)移动的现象,称为电泳。同一胶粒在同一电场中的移动速度由ξ电位的大小而定,所以 电位也

氢氧化铁胶体电动电位的测定(电泳法) 实验报告

深圳大学实验报告 课程名称:物理化学实验 实验项目名称:氢氧化铁胶体电动电位的测定(电泳法) 学院:化学与化工学院 专业:食品科学与工程 指导教师:龚晓钟 报告人: 学号:班级: 同组人: 实验时间:2011-4-27 实验报告提交时间:2011-5-18 教务处制

氢氧化铁胶体电动电位的测定(电泳法) 一、目的要求 (1)掌握电泳法测定Fe(OH) 3 溶胶电动电势的原理和方法。 (2)通过实验观察并熟悉胶体的电泳现象。 二、基本原理 在胶体溶液中,分散在介质中的微粒由于自身的电离或表面吸附其他粒子而 形成带一定电荷的胶粒,同时在胶粒附近的介质中必然分布有与胶粒表面电性相反而电荷数量相同的反离子,形成一个扩散双电层。 在外电场作用下,荷点的胶粒携带起周围一定厚度的吸附层向带相反电荷的电极运动,在荷电胶粒吸附层的外界面与介质之间相对运动的边界处相对于均匀介质内部产生一电势,为ζ电势。 它随吸附层内离子浓度,电荷性质的变化而变化。它与胶体的稳定性有关,ζ绝对值越大,表明胶粒电荷越多,胶粒间斥力越大,胶体越稳定。 本实验用界面移动法测该胶体的电势。在胶体管中,以KCl为介质,用 Fe(OH) 3 溶胶通电后移动,借助测高仪测量胶粒运动的距离,用秒表记录时间,可算出运动速度。 当带电胶粒在外电场作用下迁移时,胶粒电荷为q,两极间的的电位梯度为 E,则胶粒受到静电力为 f 1 =Eq 胶粒在介质中受到的阻力为 f 2 =Kπηru 若胶粒运动速率u恒定,则 f 1=f 2 qE=Kπηru (1) 根据静电学原理ζ=q/εr (2) 将(2)代入(1)得 u=ζεE/Kπη (3) 利用界面移动法测量时,测出时间t 时胶体运动的距离S,两铂极间的电位差Φ和电极间的距离L,则有

相关文档
最新文档