回转式空气预热器的结构
回转式空气预热器热力计算过程

回转式空气预热器热力计算过程回转式空气预热器冷段结构特性名称转子内径芯轴外径预热器台数分隔仓数量烟气冲刷面积份额空气冲刷面积份额受热元件当量直径考虑传热元件占据面积的有效流通面积系数装载受热元件的环形面积烟气流通截面积空气流通截面积冷段高度单位体积内受热面积冷段受热面积符号Ddwnn1xxkdKyjSFyFkhlClHl单位mm————m——m2m2m2mm2制造厂给定制造厂给定π/4(Dn2-dw2)nxyKyjKgbSnxkKyjKgbS按结构设计0.95h1C1SKgbn计算公式及数据按结构图纸按结构图纸按锅炉整体设计烟、风仓个11个,密封仓2个按结构设计按结构设计结果10.322.9482240.45830.45830.00760.9010.9676.821160.9160.910.340016814.59Km2/m3制造厂给定回转式空气预热器热段结构特性名称转子内径芯轴外径预热器台数分隔仓数量烟气冲刷面积份额空气冲刷面积份额受热元件当量直径考虑传热元件占据面积的有效流通面积系数装载受热元件的环形面积烟气流通截面积空气流通截面积热段高度单位体积内受热面积热段受热面积符号Dndwnn1xyxkddlKyjSFyFkhrCrHr计算用数据计算燃料消耗量炉膛出口过量空气系数尾部出口过量空气系数炉膛漏风系数制粉系统漏风系数空气预热器漏风系数空气预热器冷段漏风系数空气预热器热段漏风系数保热系数烟气总容积(标态)Bja"1apyΔa1ΔazfΔakyΔaky·lΔaky·rφVykg/s———————%1-q5/(η+q5)Nm3/kga=1.34B-(1-Q4/100)给定给定见制粉系统计算47.631.21.40.050.10.120.060.060.9986.6021单位mm————m——m2m2m2mm2计算公式及数据按结构图纸按结构图纸按锅炉整体设计烟、风仓个11个,密封仓2个按结构设计按结构设计强化型蓄热板制造厂给定制造厂给定π/4(Dn2-dw2)nxyKyjKgbSnxkKyjKgbS按结构设计0.95h1C1SKgbn结果10.322.9482240.45830.45830.009320.9010.9676.821160.9160.911.9395########Kgbm2/m3制造厂给定理论空气量水蒸气份额V0rH20Nm3/kga=1.344.54340.101回转式空气预热器冷段校核热力计算排烟温度排烟焓冷段入口空气温度(暖风器出口风温)冷段入口风量比冷段入口理论空气焓冷段出口空气温度冷段出口理论空气焓冷段出口风量比冷段对流吸热量烟气入口焓入口烟气温度平均烟气温度平均空气温度大温差小温差传热温压烟气流速空气流速传热元件平均壁温烟气对壁面放热系数受热面对空气放热系数利用系数考虑非稳定换热的影响系数传热系数冷段传热量偏差θpyIpyt'β'I0k't"I0k"β"QdkI'yθ'θpjΘpjtpjTpjΔtdΔtxΔtωyωktbTbayakξcKQ ctΔQ℃℃—℃—按热平衡计算,按锅炉整体设计假定β'-1/2Δaky1591542.5601.17359.581207211.11412.01881922.[***********]85928.615.391364090.0 76820.0510210.90.012645410.683-0.32421kJ/kg按θpy=159℃,apy=1.4查温焓表kJ/kg按t'=60℃,查温焓表kJ/kg按t“=120℃,查温焓表kJ/kg(β"+1/2*Δak·l)(I0k"-I0k')kJ/kgQdx/φ+Ipy-Δaky·l(I0k"+I0k')/2℃℃k℃k℃℃℃m/sm/s℃k按a=1.34,I'y=1992.9kJ/kg查温焓表1/2(θ'+θpy)θpj+2731/2(t'+t")tpj+273θpy-t'θ'-t"因为Δtd/Δtx=1.16>1.7,为Δt=θpj-tpjBjVyΘpj/273FyBjV0(β"+1/2Δaky·l)Tpj/273Fk(xyθpj+xktpj)/(xy+xk)tb+2732查图1.6×1.14×1.02×0.04129查图1.6×1.12×1.02×0.02791——参考《原理》式13-27转速n=1.14r/minξc/(1/xkak+1/xyay)kJ/kgKH1Δt/Bj%(Qct-Qdx)/Qdx×100回转式空气预热器热段校核热力计算出口烟气温度(冷段入口烟温)出口烟气焓入口空气温度入口理论空气焓出口空气温度出口理论空气焓热段出口风量比热段漏风系数热段空气对流吸热量烟气入口焓入口烟气温度空气平均温度θ"I"yt'I0k't"I0k"β"Δahy·rQdxI'yθ'θpj℃℃℃——由预热器冷段热力计算由预热器冷段热力计算第一次假定a"l-Δa1-Δazf1/2Δaky2051922.[1**********]892.91.050.061265.73112.67338.7215kJ/kga=1.34kJ/kg按t“=120℃,查温焓表kJ/kg按t“=310℃,查温焓表kJ/kg(β"+1/2*Δak·r)(I0k"-I0k')kJ/kgI"y+Qdx/φ-Δaky·r(I0K"+Iok')/2℃℃按a=1.28,查温焓表1/2(t'+t")烟气平均温度大温差小温差温压烟气平均流速空气平均流速传热元件平均壁温烟气对壁面的放热系数受热元件对空气的放热系数利用系数考虑非稳定换热的影响系数传热系数热段传热量偏差tΔtdΔtΔtωωktbayakξcKQcrΔQ℃℃℃℃m/sm/s℃1/2(θ'+θ")θ"-t'θ'-t"(Δtd-Δtx)/ln(Δtd/Δtx)BV(θ+273)/273FBjV0(β"+1/2Δaky·r)(tpj+273)/273Fy(xyθpj+ xktpj)/(xy+xk)271.858528.751.910.306.86243.4250.0783550.0514370.8510.0120971384.8889.420947查图:1.6×1.05×1.0×0.04664查图:1.6×0.95×1.0×0.03384——转速n=1.14r/min参考《原理》式13-27ξc/(1/xkak+1/xyay)kJ/kgKH1Δt/Bj%(Qcr-Qdx)/Qdx×100要求ΔQ≤2%,需重新假定出口空气温度第二次计算出口空气温度出口理论空气焓热段空气对流吸热量烟气入口焓入口烟气温度空气平均温度烟气平均温度大温差小温差传热温差热段传热量偏差t"I0k"QdxI'yθ'θpjtpjΔtdΔtxΔtQcrΔQ℃第二次假定3302019.11401.93245.455352.4225278.78522.446.941253.689-10.5752kJ/kg按t“=330℃,查温焓表kJ/kg(β"+1/2*Δak·r)(I0k"-I0k')kJ/kgI"y+Qdx/φ-Δaky·r(I0K"+Iok')/2℃℃℃℃℃℃%按a=1.28,查温焓表1/2(t'+t")1/2(θ'+θ")θ"-t'θ'-t"(Δtd-Δtx)/ln(Δtd/Δtx)(Qcr-Qdx)/Qdx×100kJ/kgKH1Δt/Bj第二次计算仍不合格,利用图解法确定t"值第三次计算出口空气温度出口理论空气焓热段空气对流吸热量烟气入口焓入口烟气温度空气平均温度烟气平均温度大温差小温差传热温差热段传热量偏差t"I0k"QdxI'yθ'θpjtpjΔtdΔtxΔtQcrΔQ计算合格℃第三次假定3191949.71327.03172.434344.9219.5274.958525.949.731328.1880.089858kJ/kg按t“=330℃,查温焓表kJ/kg(β"+1/2*Δak·r)(I0k"-I0k')kJ/kgI"y+Qdx/φ-Δaky·r(I0K"+Iok')/2℃℃℃℃℃℃%按a=1.28,查温焓表1/2(t'+t")1/2(θ'+θ")θ"-t'θ'-t" (Δtd-Δtx)/ln(Δtd/Δtx)(Qcr-Qdx)/Qdx×100kJ/kgKH1Δt/Bj。
回转式空气预热器说明书.docx

LAP13494/3883 回转式空气预热器说明书沁北电厂本预热器根据美国C-E 预热器公司技术进行设计和制造。
型号LAP13494/3883 表示容克式空气预热器,转子直径13494 毫米,蓄热元件高度至上而下分别为300、800、800 和300 毫米,冷段300 毫米蓄热元件为低合金耐腐蚀传热元件,其余热段蓄热元件为碳钢,每台预热器金属重量约653 吨,其中转子重量约492 吨(约占总重75%)。
本空气预热器是三分仓形式。
一原理LAP13494/3883 这种三分仓容克式空气预热器是一种以逆流方式运行的再生式热交换器。
加工成特殊波纹的金属蓄热元件被紧密地放置在转子扇形仓格内,转子以0.99 转/ 分的转速旋转,其左右两半部分分别为烟气和空气通道。
空气侧又分为一次风道和二次风道,当烟气流经转子时,烟气将热量释放给蓄热元件,烟气温度降低; 当蓄热元件转道空气侧时,又将热量释放给空气,空气温度升高。
如此周而复始地循环,实现空气和烟气热交换。
它不但是电站锅炉的主要部件,而且也是化工、冶金过程中理想的节约能源、提高效率的热交换器。
转子由置于下梁中心的推力轴承及置于上梁中心的导向轴承支撑,并处在九边形的壳体中,上梁、下梁分别与壳体相连,壳体则坐落在钢架上。
电动机安装在下梁的下部,通过与转子接长轴连接,带动转子旋转。
为防止空气向烟气侧泄漏,在转子上、下端半径方向,外侧轴线方向,以及圆周方向分别设有径向、轴向及旁路密封装置,采用双密封结构以降低漏风率。
此外,预热器上还配有火灾检测消防和清洗系统,吹灰装置、润滑及控制等设备(见图 1 及图2)。
二主要部件1. 转子本空气预热器转子采用模数仓格结构,每个仓格为15 度,为布置双密封结构,每个仓格又分隔为两(见图4),全部蓄热元件分装在24 个模数仓格内,每个模数仓格利用一个定位销和一个固定销与中心筒相连接。
由于采用这种结构,大大减少了工地的安装工作量,并减少转子内焊接应力和热应力。
回转式空气预热器

八、300MW空预器润滑油系统
九、600MW空预器轴承及润滑
• 转子由自调心球面滚子推力轴承支撑,底部轴承箱固定在支撑登板上 。转子的全部旋转重量均由推力轴承支撑。 • 底部轴承采用油浴润滑。轴承箱上装有注油器和油位计,并开有用于 安装测温元件的螺纹孔。 • 顶部导向轴承为球面滚子轴承,安装在一轴套上。轴套装在转子驱动 轴上,并用锁紧盘与之固定。导向轴承和轴套的大部分处于顶部轴承 箱内。 • 顶部轴承采用油浴润滑,顶部轴承箱上有加油孔、注油器、油位计、 呼吸器和放油塞。另外还设有用于安装测温元件的螺纹孔。顶部轴承 箱还配有冷却水系统,冷却水入口温度要求不得高于38℃。
回转式空预器介绍
发电部
1
一、空气预热器作用
• 锅炉空预器是利用锅炉尾部的烟气热量来加热空气的设备。 • 利用烟气中的热量加热空气,使空气温度升高,排烟温度降低,减少 了锅炉的排烟损失。另外,空气被加热之后送入炉内,使炉内燃料着 火迅速,燃烧强烈完全,因而也减少了燃料的机械与化学不完全燃烧 损失,提高锅炉效率。 • 提高空气温度,改善燃烧条件。空气通过预热器后再送入炉膛,由于 送入炉内的空气温度提高,可使炉膛温度得到相应的提高,可使燃料 迅速着火,改善或强化燃烧,保证低负荷下着火的稳定性。 • 提高炉膛温度,增强炉膛传热,减少炉内蒸发受热面。炉膛内辐射传 热量与火焰平均温度的四次方成正比。送入炉膛热空气温度提高,使 得火焰平均温度提高,从而增强了炉内的辐射传热。这样,在满足相 同的蒸发吸热量的条件下,就可以减少水冷壁管受热面,节省金属消 耗量。 • 降低烟气温度,改善引风机工作条件,降低风机电耗。
• 与扇形板相对应的空预器外壳上装有三块弧形轴 向密封板,弧形轴向密封板是通过支架、折角板 和调整装置固定在空预器外壳上,可通过调整装 置对轴向密封间隙进行调节。
回转式空预器说明书

回转式空气预热器一. 作用空予器是利用锅炉尾部烟气热量加热燃烧所需空气的一种热交换装置。
空预器可以进一步降低排烟温度,减少排烟热损失;同时提高燃烧所需空气温度,改善燃料着火和燃烧条件,降低各项不完全燃烧损失,提高锅炉机组热效率等。
二. 原理1.本空气预热器型号LAP8650/1900是根据美国ABB-CE预热器公司的技术进行设计和制造。
这种三分仓回转式空气预热器是一种以逆流方式运行的再生式热交换器。
转子直径8650毫米,蓄热元件高度自上而下分别为800、800和300毫米,冷段300毫米,蓄热元件为低合金耐腐蚀的考登钢,其余热段蓄热元件为碳钢。
预热器左右两半部份分别为烟气和空气通道,空气侧又分为一次风道及二次风道。
当烟气流经转子时烟气将热量释放给蓄热元件,烟气温度降低;当受热后的蓄热元件旋转到空气侧时,又将热量释放给空气,空气温度升高。
如此周而复始地循环,实现烟气与空气地热交换。
2.装在壳体上地驱动装置通过转子外围地围带,使转子以1.28转/分的转速旋转。
为了防止空气向烟气侧泄漏,在转子的上、下端半径方向,外侧轴线方向以及圆周方向分别设有径向、轴向及旁路密封装置,此密封装置采用双密封结构以减小漏风。
此外,预热器上还设有火灾监测消防及清洗系统、吹灰装置、润滑及控制等设备。
三. 空气预热器技术特性见下表四. 空气预热器主要构件及性能1.空气预热器为回转再生式三分仓结构,逆流,转动轴垂直,具有气密保温外壳,用以从烟气流中有效地回收热量。
设计时应考虑预热器低温端的防腐问题。
回转式空气预热器的设计应满足二次风和一次风的总需求,以保证在燃烧劣质煤和所有负荷情况下,达到所需要的风温。
每台空气预热器应包括一套带二台电机的驱动装置:-一台用于正常运行;-一台用于事故运行,或用于冲洗过程。
每台空气预热器均配有用于火焰检测的热电偶、防火保护、冲洗通道和吹灰器。
空气预热器的外壳上配有门孔,以便在不拆下预热器的情况下检查和更换冷端部件。
空气预热器

转子驱动装置
• 转子驱动装置是由驱动电机与减速箱组成, 减速箱与空预器短轴用鼓型联轴器进行连 接。 • 驱动装置上配置有主电机、附电机、气动 马达,主电机故障备用电机可以自动启动。
• 这种漏风可通过降低转速来实现,转速小 于5转/min时,该项漏风小于总风量的1%。 • 此漏风量很小,对于回转式空预器来说是 不可避免的。 • 这次不做多的说明。
直接漏风原因分析1
• 由于设计原因,致使锅炉膨胀与空预器设 计预留间隙不符,间隙过大造成漏风 • 由于安装质量不好,各部间隙不符合要求。
• 事故情况下可用气动马达进行盘车,或用 驱动装置配置的专用盘车装置进行手动盘 车,以保护空预器转子不受损坏。
附属设备
• • • • 1火灾报警系统 2吹灰系统 3消防系统 4清热器是一种转动机构, 在空预器的转动部分和固定部分之间,总 是存在着一定的间隙。同时,由于流经预 热器的空气(正压)与烟气(负压)之间 有压差,空气就会通过这些间隙漏到烟气 流中,造成较大量的漏风。密封系统能控 制并减少漏风从而减少能量的流失。密封 系统是根据空气预热器转子受热变形而设 计的,它包括径向密封、轴向密封、旁路 密封以及中心筒密封。
径向轴向漏风治理图示
漏风治理2
• 定期吹灰或水冲洗以减少空预器积灰也是 减少空预器漏风的主要措施
漏风治理经济性分析1
• 漏风率降低,可保护锅炉燃烧氧量充足, 减少锅炉不完全燃烧热损失和排烟热损失, 排烟温度降低了(19℃),锅炉效率大致 提高(1%),每年可节约标煤(7200 t)。 同时,热风温度提高了(30 ℃),有力地 保证了贫煤的着火和稳定燃烧。
空气预热器PPT

回转式空气预热器的漏风间隙及动态分析
回转式空气预热器的漏风间隙及动态分析
我们可以清楚地看到,转子下部D处的间隙随着锅炉负荷升高而 逐渐变小;转子圆周F处、E处的间隙也随着锅炉负荷的增加而 趋于变小;转子上部B处的间隙却随着锅炉负荷的增加而逐渐变 大。在上述转子的“蘑菇装”变形中,转子下部和转子圆周处 的漏风量随着锅炉负荷的增加而逐渐减少,而转子上部的漏风 量却随着锅炉负荷的增加而增加。通过空预器转子上部活动式 扇形板上连接的调节杆,可以在一定范围内改变转子在热态时 上部的漏风间隙大小,从而达到调节漏风量的作用。 通过比较,要达到相当的漏风量调节,就必须在热态时使上部 活动式扇形密封板变形大于冷态时的变形量,即使得活动式扇 形密封板更加弯曲才行。
空预器漏风所影响的机组经济效益
以300MW机组为例: 1、漏风率降低,可保护锅炉燃烧氧量充足,减少锅炉不完全燃烧热损失和排烟热损失,排 烟温度降低了19℃,锅炉效率大致提高1%,每年可节约标煤7 200 t。 2、漏风率降低,减少了空气和烟气流量,降低送风机、引风机电耗 300kW· h,每年大约可 节省厂用电180万kW· h,同时也避免了因风机出力不足而影响整台机组的出力。 3、漏风率降低,减少了空预器出口烟气流量,降低了烟气流速,从而使静电除尘器的效率 增加,同时所有在空预器下游的设备磨损降低,其维修、维护量大大减少。 4、对空预器本身,漏风率减小,空气侧漏向烟气侧的流量下降,流速降低,各易磨损件的 寿命也延长,维修、维护工作量减少。
空预器漏风的危害 1. 二次风侧的风外漏至大气,使得与烟气换热的风量减少,排烟温度 上升,排烟损失增大,降低锅炉效率;如果要保持炉膛燃烧所需风量, 就要增大送风机出力,使得厂用电增加,降低锅炉效率; 2 一次风侧外漏入大气与二次风漏入大气影响差不多,同时减少了磨 煤机出力,要保持磨煤机出力就要增大一次风机出力,增加了厂用电; 3 外部空气漏入烟气侧会使引风机入口烟气量增大,为保持炉膛负压, 引风机出力增大,增加了厂用电,降低了锅炉效率;如果是烟气侧热 端漏风会使烟气量增大,换热效率降低,排烟温度升高; 4 风侧漏入烟气侧的影响和上面1、2、3点的综合,会同时使送风机, 一次风机,吸风机出力增大; 5 烟气从热端漏入冷端,使得烟气与空气换热量减少,一二次风温度 降低,降低了燃烧效率,同时使用排烟温度升高,降低锅炉效率; 6 一二次风从冷端漏入热端的影响与第5点一样
回转式空气预热器的原理及结构

3.12 转子偏摆的成因和危害
定义: 转子偏摆是转子轴线出现不稳定,导致转子偏离设计位置的现象
成因:导向轴承损坏或导向轴承座限位损坏,少数为支承轴承滚子碎裂引起 危害:严重损坏轴向密封、旁路密封,导致漏风率失控
14 漏风率(%)
13
12
11
10
9
8
7
6
5
4
3
2
1
0
0
3
6
携带漏风率(%)
直接漏风率(单道密封)
直接漏风率(单道密封+LCS)
直接漏风率(双道密封)
直接漏风率(双道密封+LCS)
直接漏风率(三道密封)
直接漏风率(三道密封+LCS)
9
12
15
18
21 转子直径(m)
5.2 漏风对锅炉系统的危害
1. 导致通过空预器的烟空气流量上升,阻力增加 2. 导致引风机、送风机、一次风机、脱硫风机电耗增加 3. 影响预热器的换热效率(对小预热器) 4. 导致预热器内部构件磨损损坏
现象:
成因:
1. 箱体渗油、漏油 2. 箱体输入轴轴承处超温 3. 减速箱噪声
4. 电流摆动、下齿轮处振动,噪声大 5. 外置式超越离合器跟转、超温 6. 液力耦合器失效
7. 气马达工作不佳
齿轮箱下表面轴承盖油封不严,进轴油封损坏
轴承润滑油供应不足
输入轴同轴度差,耦合器装配不紧,油粘度偏 低,轴承或齿轮磨损较多
3、转子轴承系统组成
3.1 导向轴承的结构和作用
回转式空气预热器密封选型

回转式空气预热器密封选型摘要:本文分析回转式空预器的漏风原因及对机组经济性的影响,介绍空预器的密封措施,提出密封方式的推荐性意见。
关键词:回转式空气预热器;漏风;密封1.回转式空气预热器结构回转式空气预热器是一种以逆流方式运行的再生式热交换器。
加工成特殊波纹的金属蓄热元件被紧密地放置在转子扇形仓格内,转子以约1转/分钟的转速旋转,其左右两侧分别为烟气和空气通道;空气侧又分为一次风通道及二次风通道。
当烟气流经转子时,烟气将热量释放给蓄热元件,烟气温度降低;当蓄热元件旋转到空气侧时,又将热量释放给空气,空气温度升高。
如此周而复始地循环,实现烟气与空气的热交换。
2.回转式空预器漏风的原因及对经济性的影响2.1回转式空预器漏风的原因回转式空预器产生漏风的主要原因是由于转子热态的“蘑菇型”变形造成的转子表面和扇形板表面的泄漏面积加大引起漏风量增加,另外由于转子长期运行产生径向椭圆变形造成轴向漏风增加。
由于转子的不断转动,转子上表面持续受到热风侧的高温烟气的加热,温度较高;而转子的下表面也连续受到冷风侧一、二次冷风的冷却,温度较低。
使得转子的上部热膨胀大于下部;由于转子下端受到推力轴承、中心驱动装置、支撑横梁的支撑作用,使转子在受热后的热态变形为向下部膨胀。
这种膨胀结果使得转子中心的上表面较冷态时升高,并且由于转子上部的径向膨胀大于下部,使得转子的上部受到的热膨胀径向力矩大于转子下部。
致使转子以下部为原点发生向下、向外的翻转变形。
加之转子的自重力矩,更加速了转子的这种行似“蘑菇型”的热态变形。
“蘑菇型”的热态变形中,空预器转子的外周发生向下的沉降现象,而转子中心发生隆起。
故热态时转子下部的三角形漏风间隙和转子圆周的轴向漏风间隙变得比冷态时小,而转子上部的漏风间隙变得比冷态时大;而且随着锅炉负荷的升高,空预器转子换热量的增加,上述“蘑菇状”变形就越明显。
2.2漏风量计算及对机组运行经济性的影响影响漏风的主要因素是漏风系数、间隙面积、空气侧与烟气侧之间的压力差。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
回转式空气预热器的结构
空气预热器结构(如图4-5-3)。
图4-5-3 回转式空气预热器结构部件外壳
回转式空气预热器壳体呈圆柱形,由两块主壳体板、一块侧座架体护板、两块转子外壳组件和一块一次风座架组成。
(如图4-5-4)
主壳体板分别与下梁及上梁连接,通过主壳体板的四个立柱,将预热器的绝大部分重量传给锅炉构架。
主壳体板内侧设有弧形的轴向密封装置,外侧有调节装置对轴向密封装置进行调整。
侧座架体护板与上梁连接,并有两个立柱承受空气预热器部分重量。
转子外壳组件沿圆周方向分成两部分。
图4-5-4空气预热器的壳体
转子
转子是装载传热元件(波纹板)并可旋转的圆筒形部件。
为减轻重量便于运输及有利于提高制造、安装的工艺质量,采用转子组合式结构,主要有转轴、扇形模块框架及传热元件等组成。
轴承
空气预热器轴承有导向轴承和支撑轴承两种(如图4-5-5)。
导向轴承采用双列向心滚子球面轴承,导向轴承固定在热端中心桁架上,导向轴承装置可随转子热胀和冷缩而上下滑动,并能带动扇形板内侧上下移动,从而保证扇形板内侧的密封间隙保持恒定。
导向轴承结构简单,更换、检修方便,配有润滑油冷却水系统,并有温度传感器接口。
空气予热器的支承轴承采用向心球面滚子推力轴承,支承轴承装在冷端中心桁架上,使用可靠,维护简单,更换容易,配有润滑油冷却水系统。
支承轴承和导向轴承均采用油浴润滑。
另外引起油温不正常升高的一般原因是:
1、导向轴承周围空气流动空间有限;
2、油位太低;
3、油装的太满;
4、油受到污染;
5、油的粘度不合适。
a、导向轴承
b、支撑轴承
图4-5-5 空预器支持与导向轴承
二期工程空气预热器是采用三分仓容克式回转空气预热器,其传热元件按烟气流动方向可以分为热端、中层、和冷端层。
传热元件盒均制成较小的组件,检修时热端传热元件盒、中间层传热元件盒、冷端传热元件盒全部抽屉式从侧面检修门孔处抽出,安装、更换非常方便。
传动装置是驱动转子转动的部件,由电动机、液力耦合器、减速器、传动齿轮、传动装置支承。
空气预热器的传动采用中心传动。
中心传动装置包括主电机和备用电机各一
台,主电机通过联轴器及换向器同减速机相连。
备用电机通过联轴器及超速离合器以及换向器同减速机相连。
电机分为高速与低速及检修档三档,其中高速档为正常工作档,低速档为清洗空预器时使用。
高速档时,减速机正常输出轴转速:0.8转/分;转子正常转速0.8转/分;采用变频调速慢速档转子转速0.23转/分。
启动系统之前应先确定高、低速档(速度切换主令开关),按启动按钮,电机将慢速启动,约需60秒系统达到设定频率,电机达到额定转速。
当主电机出现故障时,系统可以自动启动另一台电机。
在任何情况下,当主传动故障,辅助电动机能自动提供驱动力。
整个传动装置具有电气联锁、自动切换功能。
三个传动系统在减速前各自独立,在减速箱中合为一体。
在减速器高速输入轴上装有超速离合器,保证各系统之间互不干扰。
由于减速器结构较复杂,共有三个相互垂直的轴,一个向下输出的轴,保证任何情况下只有一套系统工作。
每炉布置两台三分仓容克式预热器。