希尔伯特Hilbert空间演示文稿
第4章 希尔伯特空间 研究生 数值分析 教学课件

范数
n
x (x, x)
xi 2 ,
i 1
则 n 按范数是完备的内积空间,即 Hilbert 空间。
n
n
特别的,在 Rn 中,内积(x, y)
xi yi ,范数 x
xi2 。
i 1
i 1
例 2 在 L2[a,b]中,x(t), y(t) L2[a,b],
b
定义内积 (x, y) a x(t) y(t)dt (满足三条公理)
M {y y M , y U}。
(5)设 M 为 U 的线性子空间,x U , 若x0 M , x1 M ,
使得
x x0 x1
(*)
则称 x0 为 x 在 M 上的正交投影,(*)式称为 x 关于 M 的
正交分解。
2) 性质 (1)设 U 是内积空间, x, y U , 若x y,则
内积 (x, y) xi yi (满足三条公理) i 1
1
范数 x ( xi 2)2 ,
i1
则l 2 是 Hilbert 空间。
例 4 C[a,b]是按范数 x max x(t) 不是内积空间(因为 t[ a ,b ]
不满足平行四边形U 是内积空间,x, y U, M , N U
证: ①当 X 为实赋范线性空间时,定义
(x, y) 1 ( x y 2 x y 2 ) 4
则由平行四边形公式验证其满足内积的三条公理;
② 当 X 为复赋范线性空间时,定义
(x, y) 1 ( x y 2 x y 2 ) i ( x iy 2 x iy 2 )
4
4
则由平行四边形公式验证其满足内积的三条公理。
x 2 2 Re(x, y) y 2
x 2 2 x y y 2 ( x y )2
5 内积空间与希尔伯特空间(讲稿)教学内容

其中的投影定理是一个理论和应用上都极其重要的定理,利用投影
定理可以将内积空间分解成两个字空间的正交和。这是内积看所特
有的性质,这个定理在一般的巴拿赫空间中并不成立(因为巴拿赫
空间中没有正交性的概念)。在实际应用中,投影定理还常被用来
判定最佳逼近的存在性和唯一性。
机动 目录 上页 下页 返回 结束
第11页
许瓦兹不等式 x,y x y. (2) 内积与由内积诱导的范数的等式关系:
x ,y 1 ( x y 2 x y 2 ix i2 y ix i2 y ) 4
(3) 由内积诱导的范数满足范数公理内积空间按照由内积导 出的范数,是线性赋范空间。但反之不然
机动 目录 上页 下页 返回 结束
例3 L2[a,b]空间按照内积 x,ybx(t)y(t)dt是内积空间。 a
L2[a,b]按照由内积导出的范数
x b x(t)2dt12
a
是Banach空间,因而是Hilbert空间。
L2[a,b]中由内积导出的距离为
(x ,y ) x y ,x y bx (t) y (t)2 1 2
机动 目录 上页 下页 返回 结束
第9页
6 内积空间的完备化 定义5 (内积空间的同构) 设X,Y是同一数域K上的内积空间,若存
在映射T: XY,保持线性运算和内积不变,即x,yX, , K,有 (1) T(x+y)=Tx+Ty, (2) <Tx,Ty>=<x,y>
则称内积空间X与Y同构,而称T为内积空间X到Y的同构映射。
定理3 设X是内积空间,则必存在一个Hilbert空间H,使X与H的稠 密子空间同构,而且在同构意义下,满足上述条件的Hilbert空间是 唯一的。
高等量子力学演示文稿1

线性无关
23{Leabharlann 1 , 1 , 2 ,, i 1 , i } 线性相关
{1 , 1 , 2 ,, i 1 , i } 线性相关
现在把 i 去掉,加入 i 1 , 使集合成为
{1 , 1 , 2 ,, i 1 , i 1}
440????????对任意都成立??则由关系2可知0???????所以有?????2两条定理定理1若三个右矢和?满足????????????????????则?证用任意左矢与第一式作内积有???????得?????????????????????两边取复共轭两边取复共轭得???????????45?0???????因为为任意右矢所以有?????????0????????定理2若二右矢满足????a?????则必有?????a证用任意左矢与式????作内积有???a????????a?两边取复共轭得????即?????????????aa460????????a因为为任意右矢所以有???a?????0???????a这两条定理建立了左矢空间和右矢空间的对应关系也就是在左
f ( x), g ( x) f * ( x) g ( x)dx
a
b
这样的函数全体构成一个内积空间---函数空间。 不同的函数都是此空间中的矢量。
14
§1.2 正交性和模
一、正交归一性 1. 正交:若干矢量 和 的内积满足关系 则称矢量 和 正交。 2. 模方:矢量 同它自己的内积 ( , )是一个大于0 的实数,称为矢量 的模方。记作
本章中,矢量空间通常指在复数域上的 内积空间。
﹟
7
二、矢量空间的简单性质
1.零矢量是唯一的
[证明]
5 内积空间与希尔伯特空间(讲稿)ppt课件

=||<x,e1>e1||2 +…+||<x,en>en||2=|<x,e1>|2+…+|<x,en>|2
||x||2=||(x-xn)+xn||2=||x-xn||2+||xn||2 ||x-xn||2= ||x||2- ||xn||2
e1,…,en线性无关{e1,…,en,…}是线性独立系。
定理8 (Gram-Schmidt正交化定理)设H是内积空间,{x1,x2,..,xn,…}H 是H中任一个线性独立系,则可将其进行标准正交化,得到一个标准 正交系。
定理8 设H是内积空间,{e1,e2,..,en,…}H是标准正交系, 记 Mn=span{e1,…,en}.
注:1)在一般的内积空间中,若xy,则有勾股定理 ||x+y||2=||x||2+||y||2成立,但反之不然。 事实上, ||x+y||2=||x||2+||y||2+2Re(x,y)
2)在实内积空间中,xy||x+y||2=||x||2+||y||2,即勾股定理成立
定义6 (正交补) 设H是内积空间,MH, 称集合 M={x| xy, yM} 为M在H中的正交补。
(1) 若
则
(2) 若
则
(3) 即为x在Mn上的正交投影。
(最佳逼近定理)
证 (1) <x,ei> =<1e1+…+nen, ei> =i<ei,ei> =i
内积空间和希尔伯特(Hilbert)空间

内积空间是希尔伯特空间的特例
完备的内积空间具有完备的几何结构,使得向量可以 按照内积进行长度和角度的度量,并且存在一个完备 的基底来表示空间中的任意向量。
内积空间是一个具有内积运算的线性空间,其满足正 定性、对称性和线性等性质。希尔伯特空间是内积空 间的特殊情况,它是一个完备的内积空间。
希尔伯特空间是内积空间的推广
Annual Work Summary Report
2021
2022
2023
目录
Байду номын сангаас
O1
引言
coOnte2nts
内积空间的基 本性质
O3
希尔伯特空间 的基本性质
O4
内积空间与希 尔伯特空间的 关系
O5
希尔伯特空间 的几何解释
O6
希尔伯特空间 的应用
#O1
引言
#2022
什么是内积空间
内积运算用于计算向量之间的角度和长度,是线性 代数和泛函分析中的基本概念。 内积空间是一个向量空间,其中定义了一个内积运 算,满足非负性、正交性、对称性和三角不等式等 性质。
希尔伯特空间的例子
$L^2$空间
01
函数空间,其元素是平方可积函数,通常用于描述物理系统的
状态。
$L^2$空间的子空间
02
例如,$L^2(0,1)$的闭子空间,通常用于描述量子力学中的束
缚态。
有限维空间
03
例如,$R^n$(实数向量空间),其具有有限个维度。
#O4
内积空间与希尔 伯特空间的关系
#2022
描述算子
在量子力学中,概率幅可以通过希尔伯 特空间中的内积计算。
计算概率幅
在信号处理和图像处理中的应用
高等量子力学第一章希尔伯特空间 PPT课件

完全集 一个矢量空间中的一组完全集,是一个线性
无关的矢量集合 i ,这个空间中的每个矢量都能表为完
全集中矢量的线性叠加,即每一矢量都能写成
i ai
i
的形式,其中ai 是一组复数。
如果一个空间中有一个线性无关的矢量集 1, 2 ,...n ,
但还不是完全集,这时可以把不能表为其线性叠加的一个矢量
命名为 n1,加入这个矢量集。这时 1, 2 ,...n , n1,肯定是
证明: 设在空间中有1和2 ,对所有矢量 都满足 1 , 2
取第一式的 为2 ,第二式中的 为1,分别得 2 1 2,1 2 1
于是,根据条件(1),
2 2 1 1 2 1 即1 2 ,只有唯一的零矢量。
(2)每个矢量的逆元是唯一的。
证明: 若 1,2 都是 的逆元,即
1 , 2
如果 少 多,即 m n ,则把全部 用完后,仍有 未
被顶掉。这就是说,要加上一些 才是完全集 ,与是
完全集相矛盾。所以 m n 是不可能的。
如果 多 少,即 m n,那么把全部 顶掉后,还有一些 没
有用到,这就是说, 中的一部分就是完全集,也与 是完全集
相矛盾。所以 m n也是不可能的。
这是一个复数域上的内积空间。
如果内积定义为:
(l,
m)
l1*
m12
l2*
m
23l
* 3
m34
l 4*
m4
空间是否仍然是一个内积空间?
第四个例子 数学对象为在 a x b 区间定义的实变
量 x 的“行为较好”的复函数 f (x) 的全体,而且都是平方可
积的。所谓“行为较好”是指满足一定数学要求,如单值性、 连续性及导数存在等等,这里我们不去详细讨论。规定加法
hilbert空间

一百年前的数学界有两位泰斗:庞加莱和希尔伯特,而尤以后者更加出名,我想主要原因是他曾经在1900年的世界数学家大会上提出了二十三个著名的希尔伯特问题,指引了本世纪前五十年数学的主攻方向,不过还有一个原因呢,我想就是著名的希尔伯特空间了。
希尔伯特空间是希尔伯特在解决无穷维线性方程组时提出的概念,原来的线性代数理论都是基于有限维欧几里得空间的,无法适用,这迫使希尔伯特去思考无穷维欧几里得空间,也就是无穷序列空间的性质。
大家知道,在一个欧几里得空间R^n上,所有的点可以写成为:X=(x1,x2,x3,...,xn)。
那么类似的,在一个无穷维欧几里得空间上点就是:X= (x1,x2,x3,....xn,.....),一个点的序列。
欧氏空间上有两个重要的性质,一是每个点都有一个范数(绝对值,或者说是一个点到原点的距离),||X||^2=∑xn^2,可是这一重要性质在无穷维时被破坏了:对于无穷多个xn,∑xn^2可以不存在(为无穷大)。
于是希尔伯特将所有∑xn^2为有限的点做成一个子空间,并赋以X*X'=∑xn*xn' 作为两点的内积。
这个空间我们现在叫做l^2,平方和数列空间,这是最早的希尔伯特空间了。
注意到我只提了内积没有提范数,这是因为范数可以由点与自身的内积推出,所以内积是一个更加强的条件,有内积必有范数,反之不然。
只有范数的空间叫做Banach空间,(以后有时间再慢慢讲:-)。
如果光是用来解决无穷维线性方程组的话,泛函就不会被称为现代数学的支柱了。
Hilbert空间中我只提到了一个很自然的泛函空间:在无穷维欧氏空间上∑xn^2为有限的点。
这个最早的Hilbert space叫做l^2(小写的l 上标2,又叫小l2空间),非常类似于有限维的欧氏空间。
数学的发展可以说是一部抽象史。
最早的抽象大概是一个苹果和一头牛在算术运算中可以都被抽象为“一”,也就是“数学”本身的起源(脱离具体物体的数字运算)了,而Hilbert space理论发展就正是如此:“内积+ 线性”这两个性质被抽象出来,这样一大类函数空间就也成为了Hilbert space。
现代分析报告基础结课作业——Hilbert空间性质介绍

Hilbert空间性质介绍摘要在这篇文章中,主要是为了介绍Hilbert空间的一些性质,并且把线性分析中各个空间的性质进行了描述,这也是为了更好的描述Hilbert空间及其性质做好基础,并且把各个空间的性质关系进行了讲述,总结了在线性分析基础这门课程中的收获与感悟。
引言学习了线性分析基础的课程之后,我对于空间的理解有个更加深刻的认识,同时也对各种空间的应用与关系有着许多的困惑与不解,老师的课程十分精彩,介绍了许多原来没有接触过的知识,同时我感觉到了线性分析基础这门课程的重要性。
在接下来的文章中,我们主要想对Hilbert空间及其性质进行介绍,在介绍Hilbert空间之前,必须把Hilbert建立的基础进行描述,甚至文章的一大部分都在描述可测空间、测度空间、赋线性空间和Banach空间等,但是这些空间的性质也在Hilbert空间中得以体现,可以认为Hilbert空间是这些空间基础上比较特殊的一类空间,它在满足这些空间所具有的性质的同时也有着自己特殊的性质以及应用。
Hilbert空间是在一个复向量空间H上的给定的积并导出一种数,如果其对于这个数来说是完备的,那么这个复向量空间就是希尔伯特空间。
这里已经说明了希尔伯特空间是一个积空间,其上有距离和角的概念(及由此引伸而来的正交性与垂直性的概念),可以根据它的特点和性质来进行扩展,得到我们想要得到的可以加以利用的空间。
另外,希尔伯特空间还是一个完备的空间。
在下面的文章中,我们将详细的对所学的知识进行整理和阐释。
关键词可测测度空间数完备性Banach空间积空间Hilbert空间1.可测空间及其性质首先我们要对拓扑空间进行一定的了解。
假设X是一个集合,如果有一个子集族,我们定义为τ,满足以下的几点性质:(1).空集ø和集合X是在子族集当中。
(2)在这个子集族τ的元素满足交运算封闭。
(3) τ中元素族集的并运算封闭。
那么我们称τ为X上的一个拓扑,称X为拓扑空间,而τ中的元素成为拓扑的开集,在X中,如果一个集合是这个开集的余集,那么称为闭集。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
5)举例
例 1 在 n ——n 维(实或复数)向量空间中,
x (x1, x2, , xn ), y ( y1, y2, , yn ) n , 定义
n
内积 (x, y) xi yi (满足三条公理) i 1
范数
n
x (x, x)
xi 2 ,
i 1
则 n 按范数是完备的内积空间,即 Hilbert 空间。
希尔伯特Hilbert空间演示文稿
优选希尔伯特Hilberቤተ መጻሕፍቲ ባይዱ空间ppt
在第 3 章中,我们建立了赋范线性空间,给向量赋 予了范数,即向量的长度,它是 Rn 中向量长度在抽象空 间中的推广。但在 Rn 中向量还有一个很重要的特征—— 向量之间的夹角、正交等概念。特别是有了正交概念以 后,由它可以得到勾股定理、正交投影定理,这是建立 某些数值算法的重要理论。本章将这些概念抽象推广到 一般的赋范线性空间,建立了内积空间和 Hilbert 空间。
即当 xn x, yn y (按范数)时,数列 (xn, yn ) (x, y)
4)希尔伯特(Hilbert)空间 定义 完备的内积空间 U 称为 Hilbert 空间,记作 H
(即内积空间 U 按距离 (x, y) x y (x y, x y) 是 完备的,亦是 Banach 空间)
§4.1 内积空间和Hilbert空间
1)定义(内积空间) 设 U 是数域 K(实或复数域) 上的线性空间,若x, y U ,存在唯一的数 (x, y) K , 满足下列三条(内积公理):
① 对第一变元的线性性:
( x y, z) (x, z) ( y, z), z U
② 共轭对称性: (x, y) ( y, x)
1
范数 x ( xi 2)2 ,
i1
则l 2 是 Hilbert 空间。
例 4 C[a,b]是按范数 x max x(t) 不是内积空间(因为 t[ a ,b ]
不满足平行四边形公式)。
§4. 2 正交分解与投影定理
1) 定义(正交性)设 U 是内积空间,x, y U, M , N U
(1)若(x, y) 0 ,称 x 与 y 正交,记作 x y ;
(2)判别定理 若赋范线性空间 X 的范数 满足平行 四边形公式 x y 2 x y 2 2( x 2 y 2 ) ,则 X 可成为 内积空间。
证: ①当 X 为实赋范线性空间时,定义
(x, y) 1 ( x y 2 x y 2 ) 4
则由平行四边形公式验证其满足内积的三条公理;
(x, y)U ,有 x, y x y
验证 x (x, x) 满足范数的三条公理。
① 显然
② x ( x, x) x
③ 因为 x y 2 (x y, x y) (x, x) (x, y) (x, y) ( y, y)
x 2 2 Re(x, y) y 2
x 2 2 x y y 2 ( x y )2
( Re(x, y) (x, y) x y )
故
x y x y
3)内积空间的性质 (1)在内积空间 U 中,按内积导出的范数满足平行四边 形公式
证明:
x y 2 x y 2 2( x 2 y 2 )
x y 2 x y 2 (x y, x y) (x y, x y) x 2 (x, y) ( y, x) y 2 x 2 (x, y) ( y, x) y 2 2( x 2 y 2 )
若 L2[a,b]为复值函数,则定义内积
b
(x, y) a x(t) y(t)dt (满足三条公理)
例 3 在l2 {x x (x1, x2, ), xi2 , xi为复数}中, i 1
x (x1, x2, ), y ( y1, y2, ) l2,定义
内积 (x, y) xi yi (满足三条公理) i 1
③ 正定性:(x, x) 0, (x, x) 0 x 0
则称 (x, y) 为 x, y 的内积,U 为内积空间。
当 K 是实数域时,称 U 为实内积空间;K 为复数 域时,称 U 为复内积空间。通常 U 指的是复内积 空间。
当 U 为内积空间时,推得:x, y, z U,, 有
① (x, y) (x, y) ② (x, y z) (x, y) (x, z)
使得
x x0 x1
(*)
则称 x0 为 x 在 M 上的正交投影,(*)式称为 x 关于 M 的
② 当 X 为复赋范线性空间时,定义
(x, y) 1 ( x y 2 x y 2 ) i ( x iy 2 x iy 2 )
4
4
则由平行四边形公式验证其满足内积的三条公理。
注:若赋范线性空间 X 的范数不满足平行四边形公式, 则 X 不能成为内积空间。
(3)内积的连续性
在内积空间 U 中,内积(x, y) 是两个变元 x, y 的连函数,
(2)若y N, 有(x, y) 0 ,称 x 与 N 正交,记作 x N ;
(3)若x M ,y N, 有(x, y) 0 ,称 M 与 N 正交,
记作 M N ;
(4) U 中与 M 正交的所有元素的全体称为 M 的正交 补,记作 M ,即
M {y y x,x M}。
(5)设 M 为 U 的线性子空间,x U , 若x0 M , x1 M ,
2)内积空间中的范数 在内积空间 U 中,若令
x (x, x) ,即 x 2 (x, x)
可验证满足范数的三条公理,故 U 是按内积导出的赋 范线性空间。进一步也可由范数导出距离
(x, y) x y (x y, x y) ,则 U 也是距离空间。
引理(柯西—许瓦兹不等式 Cauchy—Schwarz):
n
n
特别的,在 Rn 中,内积(x, y)
xi yi ,范数 x
xi2 。
i 1
i 1
例 2 在 L2[a,b]中,x(t), y(t) L2[a,b],
b
定义内积 (x, y) a x(t) y(t)dt (满足三条公理)
范数
x(t)
(
b
x2
(t
)dt
)
1 2
,
a
则 L2[a,b]按范数是完备的内积空间。