小学数学:简单枚举

合集下载

一年级数学重点归纳,小学知识,值得收藏!

一年级数学重点归纳,小学知识,值得收藏!

一、读数、写数1、20以内的数顺数:从小到大的顺序01234567891011121314151617181920倒数:从大到小的顺序20191817······单数:1、3、5、7、9······双数:2、4、6、8、10······(注:0既不是单数,也不是双数,0是偶数。

在生活中说单双数,在数学中说奇偶数。

)2、两位数(1)我们生活中经常遇到十个物体为一个整体的情况,实际上十个“1”就是一个“10”,一个“10”就是十个“1”。

如:A:11里有(1)个十和(1)个一;11里有(11)个一。

12里有(1)个十和(2)个一;12里有(12)个一13里有(1)个十和(3)个一;13里有(13)个一14里有(1)个十和(4)个一;14里有(14)个一15里有(1)个十和(5)个一;15里有(15)个一······19里有(1)个十和(9)个一;或者说,19里有(19)个一20里有(2)个十;20里有(20)个一B:看数字卡片(11~20),说出卡片上的数是由几个十和几个一组成的。

(2)在计数器上,从右边起第一位是什么位?(个位)第2位是什么位?(十位)个位上的1颗珠子表示什么?(表示1个一)十位上的1颗珠子表示什么?(表示1个十)(3)先读11、12、13、14、15、16、17、18、19、20,再写出来。

如:14,读作:十四,写作:14。

个位上是4,表示4个一,十位上数字是1,表示1个十。

二、比较大小和第几1、给数字娃娃排队5、6、10、3、20、17,可以按从大到小的顺序排列,也可以按从小到大的顺序排列。

(注意做题时,写一个数字,划去一个,做到不重不漏。

)2、任意取20以内的两个数,能够用谁比谁大或谁比谁小说一句话。

三年级寒假数学应用题

三年级寒假数学应用题

三年级寒假数学应用题练习册三年级三班颜子越一、周期问题在日常生活中,有一些按照一定的规律不断重复的现象,如:人的是十二生肖,一年有春夏秋冬四个季节,一个星期七天等等。

像日常生活常碰到的有一定周期的问,我们称为简单的周期问题。

这类问题一般要利用余数的知识题来解答。

在研究这些简单周期问题时,我们首先要仔细审题,判断其不断重复出现的规律,也就是找出循环的固定数,然后利用除法算式求出余数,最后根据余数得出正确结果。

1、___10月1日是星期一,问10月25日是星期几?2、___国庆节是星期五,问11月20日颜子越生日是星期几?3、23个3相乘,积的个位数字是几?4、100个2相乘,积的个位数字是几?5、国庆节学校挂彩灯,按“红、黄、蓝、紫”的顺序挂,一共挂了50只彩灯,第50只彩灯什么颜色?红色彩灯需要多少只?6、宽宽摆放围棋子,每两个黑棋子之间摆放5个白棋子,共84个棋子,如果第一个摆的是黑棋子,一共摆了多少个白棋子?7、一列数按“294736294736294......”排列,那么前40个数字之和是多少?8、学校门口要摆一排花。

每两盆菊花之间摆3盆月季花。

共要摆112盆花,如果第一盆花是菊花,那么共需要多少盆月季花?9、爸爸说今天是星期三,再过12天就是春节,请问春节是星期几?10、爷爷要在鱼池边美化环境,鱼池周围长52米,沿周围每隔4米种一棵柳树,颜子越说每两棵柳树间再种三棵花就更好看了,爷爷问颜子越,“你帮爷爷算一算要买多少盆花就够了呢?”聪明的宽宽,学了周期问题后,自己编一道周期问题做一做吧!11、二、数学趣题在日常生活中,常有一些妙趣横生、带有智力测试性质的问题,如:一个小朋友唱一首歌要3分钟,100个小朋友同时唱这首歌要几分钟?哈哈,你一定答对了,再多的人,只要是同时唱,花的时间和一个人唱是一样多的。

类似这样的问题一般不需要较复杂的计算,也不能用常规方法来解决,而需要你的灵感、技巧和机智获得答案。

小学一年级数学学习重难点知识解析

小学一年级数学学习重难点知识解析

小学一年级数学学习重难点知识解析小学一年级数学的学习至关重要,广大小学生朋友们一定要掌握科学的学习方法。

下面小编给大家分享了一些有关小学一年级数学的重点知识,一起来看看吧!小学数学学习重点难点分析1、巧算与速算的基本知识:对于一年级的学生来说,计算是学生学习时遇到的第一个问题。

如果能够在看似无序的算式中寻找到一定的规律,化繁为简,那么学生一定能够增强学习数学的信心,提高学习数学的兴趣。

另外,计算与速算是各种后续问题学习的基础。

学好数学,首先就要过计算这关。

2、认识并学会数各种基本图形:正方形、长方体、圆和立方体等是小学学习中最常见的图形。

通过系统的指导,使一年级的学生能够计算出各种基本图形的个数;使学生建立起有序思维,为建立思维模式打下基础。

3、学习简单的枚举法:枚举法对于一年级的学生来说的确是有一定的困难。

在数学课本中,介绍这一难题时采用数数这种更为直观的方式,将复杂抽象的问题形象化,便于孩子们理解。

枚举法训练的重点在于有序的思维方式,学习之初将抽象问题形象化,能够更好地引导学生去主动思考,建立起自己的思维方式。

4、数字的奇与偶、不等与相等等关于数论的基础知识:数论问题是后续学习中的一个重点,而这学期将要学到的:数字的奇与偶、不等与相等等无疑将会是今后学习的基础,在这里我们把数论问题分解为各种类型逐一讲解,使数学学习更加系统。

二年级是开发孩子智力、形成良好思维习惯的最佳时期,学习数学不仅能够极大地锻炼孩子的思维能力,也能为孩子之后的学习打下坚实的基础,为升学做好前期准备。

对于二年级的学生家长来说,激发孩子对数学的兴趣是最主要的。

同时对学有余力的学生,学生可以考虑适当增加学习难度,为各重点中学培训班的选拔做好准备。

小学一年级数学下册知识点辅导第一重点:认识图形(二)一、图形可分为(1)平面图形;(2)立体图形1. 平面图形:正方形、长方形、三角形、圆、平行四边形2. 立体图形:长方体、正方体、圆柱、球二、图形的拼组1.两个完全一样的三角形可拼成一个平行四边形;两个完全一样的三角形既可以拼成一个平行四边形,也可以拼成一个长方形,还可以拼成一个大三角形。

2024年小学三年级奥数讲解及练习题:简单枚举

2024年小学三年级奥数讲解及练习题:简单枚举
二、精讲精练
从小华家到学校有3条路可走,从学校到文峰公园有4条路可走。从小华家到文峰公园,有几种不同的走法?
为了帮助理解题意,我们可以画出如上示意图。
我们把小华的不同走法一一列举如下:
根据列举可知,从小明家经学校到文峰公园,走①路有4种不同走法,走②路有4种不同走法,走③路也有4种不同走法,共有4×3=12种不同走法。
练习1:
1.从甲地到乙地,有3条公路直达,从乙地到丙地有2条铁路直达。从甲地到丙地有多少种不同走法?
2.新华书店有3种不同的英语书,4种不同的数学读物销售。小明想买一种英语书和一种数学读物,共有多少种不同买法?
3.明明有2件不同的上衣,3条不同的裤子,4双不同的鞋子。最多可搭配成多少种不同的装束?
用红、绿、黄三种信号灯组成一种信号,可以组成多少种不同的信号?
答案与解析:
答案:小华得金牌,小强得银牌,小明得铜牌。
解答过程:
(1)若小明得金牌,华一定“不得金牌”,这与“老师只猜对了一个”相矛盾,不合题意。
(2)若小华得金牌,那么“小明得金牌”与“小华不得金牌”这两句都是错的,那么“小强不得铜牌”应是正确的,那么小强得银牌,小明得铜牌。
本文来源:网络收集与整理,如有侵权,请联系作者删除,谢谢!
小学三年级奥数讲解及练习题:简单枚举 2
在一个圆周上放了1个红球和1994个黄球。一个同学从红球开始,按顺时针方向,每隔一个球,取走一个球;每隔一个球,取走一个球;……他一直这样操作下去,当他取到红球时就停止。你知道这时圆周上还剩下多少个黄球吗?
答案与解析:
根据题中所说的操作方法,他在第一圈的操作中,取走的是排在黄球中第2、4、6、……1994位置上的黄球,这时圆周上除了一个红球外,还剩下1994÷2=997个黄球。

三年级奥数简单枚举

三年级奥数简单枚举

4、简单枚举上图中,整个平面被分成了几个部分?枚举,词典里的意思是“一一列举”顾名思义,“枚举法”就是把所有可能的情况一一列举出来,然后数一下总共有几种情况,虽然枚举法看上去很简单,但当情况复杂时,想要不重漏地枚举出所有情况就有一定难度了,需要同学们有严谨的思维。

对于简单的题目,直接按题意一条条地枚就可以了,由于情况较少,枚举出所有情况还是比较容易的,先来看一道简单的题目。

例题1小明、小红、小亮三个人去看电影,他们买了3个相邻座位的票,他们三人的座位顺序一共有多少种不同的安排方法?分析:如果小明在最左边的话,有几种安排方法?练习1、(1)用0、1、2这三个数字各一次,一共能组成多少个不同的三位数?(2)用3、5、6、7这四个数字各一次,一共能组成多少个不同的三位数?当满足条件的方法数较多时,为了达到不重不漏的目的,往往会按照一定的顺序来枚举,可能是“从前往后”、“从大到小”等等。

例题2(1)老师给了小红14个相同的练习本,如果小红把这些本子全都分给了小李和小高,并且每人都要分到练习本,共有几种不同的分法?(2)老师给了小红14个相同的练习本,如果小红只需要把这些本子分成2堆,又有多少种分法?分析:仔细审题,两个小题之间有什么区别?在例题2中,同样是把练习本分成两部分,第(1)小题中给小李10本,小高4本是一种情况,而给小李4本,小高10本又是另一种情况,但到了第(2)小题里,一堆10本、一堆4本和一堆4本,一堆10本是同一种情况,我们可以说第(1)小题是“有顺序”的情况,而第(2)小题是“无顺序”,在枚举时尤其要注意这一点,究竟什么时候是“有顺序”,什么时候是“无顺序”。

练习2、老师把9颗糖分给阿呆阿瓜两个人,每人都有糖,那么一共有多少种不同的分法?(1)小明买回了一袋糖豆,他数了一下,一共有10个,现在他要把这些糖豆分成3堆,一共有多少种不同的分法?(2)如果小明有两袋糖豆,每袋10个,要把这两袋糖豆分成3堆,每堆最少要有5个,那么一共有多少种不同的分法?分析:(1)本题属于“有顺序”还是“无顺序”的情况?(2)每堆至少有5个,那么先在每堆中放上5个,还剩几个糖豆?练习3、阳阳有12颗巧克力,要把这些巧克力分成3堆,并且一堆里的巧克力不能超过8块,有几种不同的分法?要把一个数分成3份,可以先确定其中一份,于是问题就变为把剩下的部分分成2份的问题了这种简化问题的思想在数学中经常运用,最后来看两个较为复杂的问题。

小学数学小升初数学所有类型计数问题(枚举法加法原理排列组合)07

小学数学小升初数学所有类型计数问题(枚举法加法原理排列组合)07

详解
小升初数学专项复习
典型例题
例题2:一本书共100页,在排页码时要用多少个数字
铅字?
思路分析:
①1~9页,共9页,共用1×9=9个; ②10~99页,共90页,共用2×90=180个; ③第100页,只有1页,共用3个铅字. 所以这本书的页码共用:9+180+3=192个铅字.
详解
小升初数学专项复习
小升初数学专项复习
典型例题
例题1:在所有三位数中,各位数字之和不超过4的共
有多少个?
思路分析:一一列举从百位1开始
101、102、103、110、111、112、120、121、130;共9个 200、201、202、210、211、220;共6个 300、301、310;共3个 400;共1个 总数9+6+3+1=19个
字的四位偶数,则0不能排在首位,末位必须为0,2,4其中之 一. 所以可分两类,,则其它位没限制,从剩下的5个数中任取3个, 再进行排列即可,共有 即:5x4x3 =60个 第二类,末位不排0,又需分步,第一步,从2或4中选一个来 排末位,有C21=2种选法,第二步排首位,首位不能排0,从剩 下的4个数中选1个,有4种选法,第三步,排2,3位,没有限制, 从剩下的4个数中任取2个,再进行排列即可,共有12种. 把三步相乘,共有2×4×12=96个 最后,两类相加,共有60+96=156个
在解包含与排除问题时,要善于使用形象的图示帮助理解题意,搞清数 量关系的逻辑关系。有些语言不易表达清楚的关系,用了适当的图形就 显得很直观、很清楚,因而容易进行计算。
【例题1】五年级96名学生都订了报纸,有64人订了少年报, 有48人订了小学生报。两种报纸都订的有多少人?

小学数学推理思想概述和实例评析

小学数学推理思想概述和实例评析

例5 有6支足球队,如果每两支球队要打一场比赛,一共要比 ( )场?
3.小学数学的演绎推理
演绎推理最基本的形式是三段论,它是一个包含大前提、小前 提和结论的论证形式。三段论又有很多种形式,其中最典型的是全 称肯定型。
在小学数学中,有很多地方都涉及演绎推理,比如加法运算的规 则,乘法运算的规则、分数运算的规则、基本平面图形的面积公式 和内角和公式等。
(3)小学阶段数学推理的基本活动
形状相同/相似

度量:长度、角度、周长与面积


图形的分类:依据,类别关系



图形的变换:变与不变



守恒与等价


包含与大小关系

运算运算律与算法

函数关系,递归关系
(4)关于推理的教学活动
活动
进行推理
表示论据
寻找论据
建构活动
教 师
澄清想法 提炼结论 确定论据
——美国NCTM标准(2000)
(2)PISA2021 数学素养测评框架
基本的推理技能(美国)
1. 分析 2. 解释 3. 比较/对比 4. 预测 5. 提出推断或猜想 6. 给出论据 7. 归纳结论 8. 证实结果
9. 检验猜想 10.考察推论 11. 支持论据 12. 判断结果 13. 反思 14. 评估 15. 实施思维与想法 16. 检查结果的合理性
谢谢聆听
2.推理思想的具体表现
(1)化归思想 ① 定义
就是用联系、运动、发展、变化的观点来看待问题,把有待解
决的问题,通过某种转化过程,归结为一类已经解决或容易解决
的问题。
待解问题
(转化) (解决)

奥数-08枚举法+答案

奥数-08枚举法+答案

枚举法我们在课堂上遇到的数学问题,一般都可以列出算式,然后求出结果,但在数学竞赛或生活中却经常会遇到一些有趣的题目,由于找不到计算它们的算式,似乎无从下手。

但是,如果题目所述的情况或满足题目要求的对象能够被一一列举出来,或能被分类列举出来,那么问题就可以通过枚举法获得解决。

所谓枚举法(或称穷举法),就是根据题目要求,将符合要求的结果不重复、不遗漏地一一列举出来,从而找到解决问题的方法。

当可能的结果较少时,可以直接枚举,即将所有结果一一列举出来;当可能的结果较多时,就需要分类枚举。

分类一定要包括所有可能的结果,这样才能不遗漏,并且类与类之间不重叠,这样才能做到不重复。

枚举法的分类:简单枚举法——将各种可能的情况或对象一一列举出来。

字典枚举法——对象已经确定,把对象按顺序进行不同的排列组合。

图形计数枚举法——先按不同的类型进行分类,再进行统计。

数字拆分枚举法——先将对象拆分成若干份,再进行排列组合。

画枚举树枚举法——将各种可能的情况画成树状图形,再进行统计。

【例 1】有一天,丽丽去天天家,而从丽丽家到天天家不能直接到达,必须要经过公园或丁丁家(如右图),找一找,从丽丽家到天天家共有几条路可以走?(简单枚举法)解析:为了便于统计,我们先给每一条线路编号。

采用简单枚举方法——将各种可能的线路一一列举出来,再进行计数。

1+8 2+8 3+5 3+63+7 4+5 4+6 4+7从丽丽家到天天家共有8条路可走。

练习一1、某人要去日本旅游,从家到上海去可以选择的交通工具有地铁、公交和自驾,从上海到日本既可以乘游轮也可以坐飞机,那么他到日本去有几种方案可以选择?2、用0、2、3、4、7、8组成不同的两个三位数,每个数字只能用一次,使它们的和最小。

【例 2】用分别写着7、8、9、0的卡片各一张,可以组成多少个不同的四位数?(字典枚举法)解析:对象已经确定是数字7、8、0、9,然后按顺序进行不同的排列组合,先确定千位上的数字,再确定百位上的数字,以此类推。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

简单枚举
1.小明从家到学校有4条路可以走,从学校到公园有3条路可以走,小明从家经过学校到公
园有几种走法?
2.小强有5件不同的上衣,3条不同的裤子,如果把上衣和裤子搭配,请问小强一共有多少
种不同的穿法?
3.小莉有3件不同的上衣,4条不同的裙子,5双不同的鞋子,最多可搭配成多少种不同的
装束?
4.用数字4、5、6可以组成多少个没有重复数字的三位数?分别是哪几个数?
5.用1、3、5这三个数字可以组成多少个没有重复数字的两位数?
6.有三张数字卡片,分别是3、9、0.从中挑出两张排成一个两位数,一共可以排成多少个不
同的两位数?
7.有四张数字卡片,分别是1、3、0.、7从中挑出三张排成一个三位数,一共可以排成多少
个不同的三位数?
8.假期里有10个同学相约,每两人互通一次电话,问共打了几次电话?如果每两人互通一
次信,问共通信多少封?。

相关文档
最新文档