三年级数学简单枚举讲义

合集下载

三年级奥数(简单枚举)

三年级奥数(简单枚举)

【专题简析】枚举是一种常见地分析问题、解决问题地方法.一般地,要根据问题要求,一一列举问题解答.运用枚举法解应用题时,必须注意无重复、无遗漏,因此必须有次序、有规律地进行枚举.个人收集整理勿做商业用途运用枚举法解题地关键是要正确分类,要注意以下两点:一是分类要全,不能造成遗漏;二是枚举要清,要将每一个符合条件地对象都列举出来.个人收集整理勿做商业用途【典型例题】【例】从小华家到学校有条路可以走,从学校到岐江公园有条路可以走,从小华家到岐江公园,有几种不同地走法?个人收集整理勿做商业用途【试一试】. 从甲地到乙地,有条公路直达,从乙地到丙地有条铁路可以直达,从甲地到丙地有多少种不同地走法?. 新华书店有种不同地英语书,种不同地数学读物销售,小明想买一种英语书和一种数学读物,共有多少种不同地买法?个人收集整理勿做商业用途【例】把个同样地苹果放在两个同样地盘子里,允许有地盘子空着不放,问共有多少种不同地分法?【试一试】.把个同样地苹果放在两个同样地盘子里,允许有地盘子空着不放,问共有多少种不同地分法?.把个同样地苹果放在三个同样地盘子里,不允许有地盘子空着不放,问共有多少种不同地分法?【例】从~这六个数字中,每次取个数字,这两个数字地和都必须大于,能有多少种取法?【试一试】.从~这九个数字中,每次取个数字,这两个数字地和都必须大于,能有多少种取法?.从~这十九个数字中,每次取个数字,这两个数字地和都必须大于,能有多少种取法?【例】一个长方形地周长是米,如果它地长和宽都是整米数,那么这个长方形地面积有多少种可能值?【试一试】.一个长方形地周长是厘米,如果它地长和宽都是整厘米数,那么这个长方形地面积有多少种可能值?.把个玻璃球分成数量不同地堆,共有多少种不同地分法?【例】有位小朋友,寒假中互相通一次电话,他们一共打了多少次电话?【试一试】.个小队进行排球比赛,每两队比赛一场,共要进行多少次比赛?.有位小朋友,要互通一次电话,他们一共打了多少次电话?【※例】一条铁路,共有个车站,如果每个起点站到终点站只用一种车票(中间至少相隔个车站),那么这样地车票共有多少种?个人收集整理勿做商业用途【※试一试】. 上海、北京、天津三个城市分别设有一个飞机场,它们之间通航一共需要多少种不同地机票?. 一条公路上,共有个站点,如果每个起点到终点只用一种车票(中间至少相隔个车站),那么共有多少种不同地车票?个人收集整理勿做商业用途【※例】在~中,任取两个和小于地数,共有多少种不同地取法?【※试一试】. 在两位整数中,十位数字小于个位数字地共有多少个?. 从~这九个数中,每次取个数,这两个数地和都必须大于,能有多少种取法?课外作业家长签名.小熊有件不同地上衣,条不同地裤子,最多可以搭配多少种不同地装束?.个自然数地乘积是,问由这样地个数所组成地数有多少个?如(,,)就是其中一个,而且数组中数字相同但顺序不同地算作同一数组,如(,,)和(,,)是同一数组.个人收集整理勿做商业用途.明明有件不同地上衣,条不同地裤子,双不同地鞋子,最多可以搭配多少种不同地装束?.个自然数地乘积是,问由这样地个数所组成地数有多少个?如(,,)就是其中一个,而且数组中数字相同但顺序不同地算作同一数组,如(,,)和(,,)是同一数组.个人收集整理勿做商业用途.小芳出席由人参加地联欢会,散会后,每两人都要握一次手,他们一共握了多少次手?※.在长江地某一航线上共有个码头,如果每个起点终点只许用一种船票(中间至少要相隔个码头),那么这样地船票共有多少种?个人收集整理勿做商业用途※.十把钥匙开十把锁,但钥匙放乱了,问最多要试多少次可以找到相应地锁?最多要试多少次才能开相应地锁?个人收集整理勿做商业用途。

三年级奥数(简单枚举)

三年级奥数(简单枚举)

三年级奥数(简单枚举)三年级奥数(简单枚举)【专题简析】枚举是一种常见的分析问题、解决问题的方法。

一般地,要根据问题要求,一一列举问题解答。

运用枚举法解应用题时,必须注意无重复、无遗漏,因此必须有次序、有规律地进行枚举。

运用枚举法解题的关键是要正确分类,要注意以下两点:一是分类要全,不能造成遗漏;二是枚举要清,要将每一个符合条件的对象都列举出来。

【典型例题】【例1】从小华家到学校有3条路可以走,从学校到岐江公园有4条路可以走,从小华家到岐江公园,有几种不同的走法?【试一试】1. 从甲地到乙地,有3条公路直达,从乙地到丙地有2条铁路可以直达,从甲地到丙地有多少种不同的走法?2. 新华书店有3种不同的英语书,4种不同的数学读物销售,小明想买一种英语书和一种数学读物,共有多少种不同的买法?【例2】把4个同样的苹果放在两个同样的盘子里,允许有的盘子空着不放,问共有多少种不同的分法?【试一试】1.把5个同样的苹果放在两个同样的盘子里,允许有的盘子空着不放,问共有多少种不同的分法?2.把7个同样的苹果放在三个同样的盘子里,不允许有的盘子空着不放,问共有多少种不同的分法?【例3】从1~6这六个数字中,每次取2个数字,这两个数字的和都必须大于7,能有多少种取法?【试一试】1.从1~9这九个数字中,每次取2个数字,这两个数字的和都必须大于10,能有多少种取法?2.从1~19这十九个数字中,每次取2个数字,这两个数字的和都必须大于20,能有多少种取法?【例4】一个长方形的周长是22米,如果它的长和宽都是整米数,那么这个长方形的面积有多少种可能值?【试一试】1.一个长方形的周长是30厘米,如果它的长和宽都是整厘米数,那么这个长方形的面积有多少种可能值?2.把15个玻璃球分成数量不同的4堆,共有多少种不同的分法?【例5】有4位小朋友,寒假中互相通一次电话,他们一共打了多少次电话?【试一试】1.6个小队进行排球比赛,每两队比赛一场,共要进行多少次比赛?2.有8位小朋友,要互通一次电话,他们一共打了多少次电话?【※例6】一条铁路,共有10个车站,如果每个起点站到终点站只用一种车票(中间至少相隔5个车站),那么这样的车票共有多少种?【※试一试】1.上海、北京、天津三个城市分别设有一个飞机场,它们之间通航一共需要多少种不同的机票?2. 一条公路上,共有8个站点,如果每个起点到终点只用一种车票(中间至少相隔3个车站),那么共有多少种不同的车票?【※例7】在1~49中,任取两个和小于50的数,共有多少种不同的取法?【※试一试】1.在两位整数中,十位数字小于个位数字的共有多少个?2.从1~99这九个数中,每次取2个数,这两个数的和都必须大于100,能有多少种取法?课外作业家长签名:__________1.小熊有2件不同的上衣,3条不同的裤子,最多可以搭配多少种不同的装束?2.3个自然数的乘积是12,问由这样的3个数所组成的数有多少个?如(1,2,6)就是其中一个,而且数组中数字相同但顺序不同的算作同一数组,如(1,2,6)和(2,6,1)是同一数组。

小学三年级奥数--第七讲--枚举法(一)(学生版)

小学三年级奥数--第七讲--枚举法(一)(学生版)

第七讲枚举法(一)学习内容:用枚举法一一列举可能的情况学习目标:1、做到不重补漏,把复杂的问题简单化2、按照一定的规律,特点去枚举3、从思想上认识到枚举的重要性课题引入枚举法是一种常见的分析问题、解决问题的方法。

一般地,根据问题要求,一一枚举问题的解答,或者为了解决问题的方便,把问题分为不重复、不遗漏的有限种情况,一一枚举各种情况,并加以解决,最终达到解决整个问题的目的。

这种分析问题、解决问题的方法,称之为枚举法。

枚举法是一种常见的数学方法,当然枚举法也存在一些问题,那就是容易遗漏掉一些情况,所以应用枚举法的时候选择什么样的标准尤其重要。

运用枚举法解题的关键是要正确分类,要注意一下两点:一是分类要全,不能造成遗漏;二是枚举要清,要将每一个符合条件的对象都列举出来.知识点拨在数学问题中,有些需要计算总数或种类的趣题,因其数量关系比较隐蔽,很难找到“正统”的方式解答,让人感到无从下手。

对此,我们可以先初步估计其数目的大小。

若数目不是太大,就按照一定的顺序,一一列举问题的可能情况;若数目过大,并且问题繁杂,我们就抓住对象的特征,选择恰当的标准,把问题分为不重复、不遗漏的有限种情形,通过一一列举或计数,最终达到解决目的。

这就是枚举法,也叫做列举法或穷举法。

例题精讲例1、用数字1、3、4可以组成多少个不同的三位数?例2、用0,2,5,9可以组成多少个能被5整除的三位数?例3、从1数到100,一共数了多少个3?例4、有8张卡片,上面分别写着自然数1至8。

从中取出3张,要使这3张卡片上的数字之和为9。

问有多少种不同的取法?例5、现在1分、2分和5分的硬币各4枚,用其中的一些硬币支付2角3分钱,一共有多少种不同的支付方法?1、用数字0,2,5可以组成多少个不同的三位数?2、现有一张1元、两张5元和一张10元的人民币,一共可以组成多少种不同的币值?3、从1至8这8个自然数中,每次取出两个不同的数相加,要使它们的和大于10,共有多少种不同的取法?4、妈妈买来7个鸡蛋,每天至少吃2个,吃完为止,有多少种不同的吃法?1、现有一张1元、两张5元和一张10元的人民币,一共可以组成多少种不同的币值?2、用数字3,8,9可以组成多少个不同的三位数 ?3、从1~10中每次取两个不同的数相加,和大于10的共有多少种取法?4、用3张10元和2张50元一共可以组成多少面币值(组成的钱数)?家长签字:年月日。

计数01讲_三上10_枚举法

计数01讲_三上10_枚举法

三年级上学期第十讲,计数问题第01讲枚举法【内容概述】掌握枚举的一般方法,解决整数的分柝、数字的排列与选取、几何图形剪拚等相关计数问题.注意到有序并按规律进行,做到不重不漏.【典型问题】1.【11001】(郝挺,三上第10讲枚举法,计数问题第1讲★★)数一数,下图中有多少个三角形。

我们将图形的各部分编上号(见下图)单个的三角形有6个:1,2,3,5,6,8。

由两部分组成的三角形有4个:(1,2),(2,6),(4,6),(5,7)。

由三部分组成的三角形有1个:(5,7,8)。

由四部分组成的三角形有2个:(1,3,4,5),(2,6,7,8)。

由八部分组成的三角形有1个:(1,2,3,4,5,6,7,8)。

总共有6+4+1+2+1=14个。

2.【11002】(郝挺,三上第10讲枚举法,计数问题第1讲★★)某单位获得25张奥运门票,把这些票分给4位部门主管,要求每人得到的票数都不一样。

问得到票数最多的一人至少有多少张票?8张。

25÷4=6…1,所以得到票数最多的一人至少有7张。

但每人票数不同,且7+6+5+4=22 < 25,所以7张不对。

由于25=8+7+6+4,所以得票最多的一人至少有8张票。

3.【11003】(郝挺,三上第10讲枚举法,计数问题第1讲★★)某综艺节目把艺人分成甲、乙两个队比赛,比赛依次进行下列六项:对联,乒乓球,层层叠,吃寿司,知识问答,柔道。

有特殊规定:六局中谁先胜四局谁获胜,比赛立即结束;若各胜三局,则谁先胜三局谁获胜。

已知甲队在对联中胜出,但乙队最终获胜。

问:各项比赛的胜负情况有多少种可能?将六场比赛依次记为1,2,3,4,5,6。

乙队可以胜出2,3,4或2,3,5或2,4,5或3,4,5或2,3,4,5或2,3,4,6或2,3,5,6或2,4,5,6或3,4,5,6。

共有9种可能。

4.【11004】(郝挺,三上第10讲枚举法,计数问题第1讲★★)在算盘上,用两颗珠子可以表示多少个不同的四位数?上珠一个表示5,下珠一个表示1。

省重点小学三年级数学一对一个性化辅导教案——简单枚举

省重点小学三年级数学一对一个性化辅导教案——简单枚举

省重点小学三年级数学一对一个性化辅导教案简单枚举一、专题导引枚举是一种常见的分析问题、解决问题的方法。

一般地,要根据问题要求,一一列举问题解答。

运用枚举法解应用题时,必须注意无重复、无遗漏,因此必须有次序、有规律地进行枚举。

运用枚举法解题的关键是要正确分类,要注意以下两点:一是分类要全,不能造成遗漏;二是枚举要清,要将每一个符合条件的对象都列举出来。

二、龙文与你1对1【例1】从小华家到学校有3条路可以走,从学校到岐江公园有4条路可以走,从小华家到岐江公园,有几种不同的走法?【试一试】1. 从甲地到乙地,有3条公路直达,从乙地到丙地有2条铁路可以直达,从甲地到丙地有多少种不同的走法?2. 新华书店有3种不同的英语书,4种不同的数学读物销售,小明想买一种英语书和一种数学读物,共有多少种不同的买法?【例2】把4个同样的苹果放在两个同样的盘子里,允许有的盘子空着不放,问共有多少种不同的分法?【试一试】1.把5个同样的苹果放在两个同样的盘子里,允许有的盘子空着不放,问共有多少种不同的分法?2.把7个同样的苹果放在三个同样的盘子里,不允许有的盘子空着不放,问共有多少种不同的分法?【例3】从1~6这六个数字中,每次取2个数字,这两个数字的和都必须大于7,能有多少种取法?【试一试】1.从1~9这九个数字中,每次取2个数字,这两个数字的和都必须大于10,能有多少种取法?2.从1~19这十九个数字中,每次取2个数字,这两个数字的和都必须大于20,能有多少种取法?【例4】一个长方形的周长是22米,如果它的长和宽都是整米数,那么这个长方形的面积有多少种可能值?【试一试】1.一个长方形的周长是30厘米,如果它的长和宽都是整厘米数,那么这个长方形的面积有多少种可能值?2.把15个玻璃球分成数量不同的4堆,共有多少种不同的分法?【例5】有4位小朋友,寒假中互相通一次电话,他们一共打了多少次电话?【试一试】1.6个小队进行排球比赛,每两队比赛一场,共要进行多少次比赛?2.有8位小朋友,要互通一次电话,他们一共打了多少次电话?三、培优提高看名校【※例1】一条铁路,共有10个车站,如果每个起点站到终点站只用一种车票(中间至少相隔5个车站),那么这样的车票共有多少种?【※试一试】1.上海、北京、天津三个城市分别设有一个飞机场,它们之间通航一共需要多少种不同的机票?2. 一条公路上,共有8个站点,如果每个起点到终点只用一种车票(中间至少相隔3个车站),那么共有多少种不同的车票?四、课后作业1.小熊有2件不同的上衣,3条不同的裤子,最多可以搭配多少种不同的装束?2.3个自然数的乘积是12,问由这样的3个数所组成的数有多少个?如(1,2,6)就是其中一个,而且数组中数字相同但顺序不同的算作同一数组,如(1,2,6)和(2,6,1)是同一数组。

小学三年级奥数专题十六:简单枚举

小学三年级奥数专题十六:简单枚举

小学三年级奥数专题十六:简单枚举
专题简析:一是分类要全,不能造成遗漏;二是枚举要清,必须有次序、有规律地进行枚举。

例题1:从小华家到学校有3条路可走,从学校到文峰公园有4条路可走。

从小华家到文峰公园,有几种不同的走法?
思路:为了帮助理解题意,可以画出示意图。

根据图中可知,从小明家经学校到文峰公园,走①路有4种不同走法,走②路有4种不同走法,走③路也有4种不同走法,共有4×3=12种不同走法。

试一试1:明明有2件不同的上衣,3条不同的裤子,4双不同的鞋子。

最多可搭配成多少种不同的装束?例题2:用红、绿、黄三种信号灯组成一种信号,可以组成多少种不同的信号?
思路:组成的信号有:红绿黄、红黄绿;绿红黄、绿黄红;黄红绿、黄绿红等6种。

可以把组成的信号看成是三个位置:第1个位置有3种选择,第2个位置有2种选择,第3个位置就只有1中选择。

所以排列方法一共有:3×2×1=6(种)
试一试2:用数字1、2、3,可以组成多少个不同的三位数?分别是哪几个数?
例题3:有4位小朋友,寒假中互相通一次电话,他们一共打了多少次电话?
思路1:每个小朋友都节打电话3次。

但两人之间只需打1次电话,互打就重复了。

因此一共打3×4÷2=6(次)
思路2:第1个小朋友打了3个电话,第2个小朋友打了2个电话,第3个小朋友打了1个电话,第4个小朋友不需要打电话。

因此一共打3+2+1=6(次)
试一试3:
(1)6个小队进行排球比赛,每两队比赛一场,共要进行多少次比赛?
(2)暑假里,三位小朋友互发一封问候邮件,他们一共发了多少封邮件?。

2019-2020年三年级数学奥数讲座枚举法

2019-2020年三年级数学奥数讲座枚举法

2019-2020年三年级数学 奥数讲座 枚举法1. 1. 如图9-19-1,有,有8张卡片,上面分别写着自然数1至8。

从中取出3张,要使这3张卡片上的数字之和为9。

问有多少种不同的取法?。

问有多少种不同的取法?解答:三数之和是9,不考虑顺序。

,不考虑顺序。

1+2+6=91+2+6=91+2+6=9,,1+3+5=91+3+5=9,,2+3+4=9答:有3种不同的取法。

种不同的取法。

2. 2. 从1至8这8个自然数中,每次取出两个不同的数相加,要使它们的和大于1010,共有多,共有多少种不同的取法?少种不同的取法?解答:两数之和大于1010,不考虑顺序。

,不考虑顺序。

,不考虑顺序。

8+78+78+7,,8+68+6,,8+58+5,,8+48+4,,8+3 8+3 7+67+67+6,,7+57+5,,7+4 7+4 6+5 6+5 答:共有9种不同的取法。

种不同的取法。

3. 3. 现在1分、分、22分和5分的硬币各4枚,用其中的一些硬币支付2角3分钱,一共有多少种不同的支付方法?种不同的支付方法?解答:2角3分=23分 5×4+2×1+1×1=23,5×4+1×3=23,5×3+2×4=23,5×3+2×3+1×2=23,5×3+2×2+1×4=23答:一共有5种不同的支付方法。

种不同的支付方法。

4. 4. 妈妈买来7个鸡蛋,每天至少吃2个,吃完为止,有多少种不同的吃法?个,吃完为止,有多少种不同的吃法? 需要考虑吃的顺序不同。

需要考虑吃的顺序不同。

77,5+25+2,,4+34+3,,3+43+4,,3+2+23+2+2,,2+52+5,,2+3+22+3+2,,2+2+3答:有8种不同的吃法。

种不同的吃法。

5.有3个工厂共订300份《吉林日报》,每个工厂最少订99份,最多101份。

最新三年级奥数简单枚举教学提纲

最新三年级奥数简单枚举教学提纲

简单枚举1.从小华家到学校有3条路可以走,从学校到文峰公园有4条路可以走。

从小华家到文峰公园有几种不同的走法?2.从甲地到乙地有3条公路直达,从乙地到丙地有2条铁路直达,从甲地到丙地有多少种不同的走法?3.新华书店有3种不同的英语辅导书、4种不同的数学辅导书在销售,小明想买一本英语辅导书和一本数学辅导书,共有多少种不同的买法?4.明明有2件不同的上衣,3条不同的裤子,4双不同的鞋子,最多可以搭配成多少种不同的装束?5.一个长方形的周长是22米,如果他的长和宽都是整米数,那么这个长方形的面积有多少种可能?6.一个长方形的周长是30厘米,如果它的长和宽都是整厘米数,那么这个长方形的面积有多少种不同的可能?7.把15个玻璃球分成数量不同的4堆,共有多少种不同的分法?8.3个自然数的乘积是18,由这样的3个数所组成的数组有多少个?如(1,2,9)就是其中的一个,而且数组中的数字相同但顺序不同的算作同一数组,如(1,2,9)和(2,9,1)是同一数组。

9.4个小朋友在寒假中相互打一次电话,他们一共打了多少次电话?10.6个小队进行排球比赛,每两队比赛一场,共要进行多少场比赛?11.小芳出席由19人参加的联欢会,散会后每两人都要握一次手,它们一共握了多少次手?12.A,B,C,D,E这5个人一起回答一个问题,结果只有两个人答对了,所有可能的回答情况一共有多少种?13.一条铁路有10个车站。

如果每个起点站到终点站只用一种车票(中间至少相隔5个车站),那么这样的车票共有多少种?14.上海、北京、天津三个城市分别建有一个飞机场,它们之间通航一共需要多少种不同的机票?15.小王准备从青岛、北京、海南、桂林4个城市中选2个去旅游,有多少种不同的选择方法?如果小王想去其中的3个城市,又有多少种不同的选择方法?16.一条公路上共有8个站点,如果每个起点站到终点站只用一种车票(中间至少相隔3个车站),那么共有多少种不同的车票?17.小悦买了一些大福娃和小福娃,一共不到10个,且两种福娃的个数不一样多。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一对一个性化辅导教案
简单枚举
一、专题导引
枚举是一种常见的分析问题、解决问题的方法。

一般地,要根据问题要求,一一列举问题解答。

运用枚举法解应用题时,必须注意无重复、无遗漏,因此必须有次序、有规律地进行枚举。

运用枚举法解题的关键是要正确分类,要注意以下两点:一是分类要全,不能造成遗漏;二是枚举要清,要将每一个符合条件的对象都列举出来。

二、你1对1
【例1】从小华家到学校有3条路可以走,从学校到岐江公园有4条路可以走,从小华家到岐江公园,有几种不同的走法?
【试一试】
1. 从甲地到乙地,有3条公路直达,从乙地到丙地有2条铁路可以直达,从甲地到丙地有多少种不同的走法?
2. 新华书店有3种不同的英语书,4种不同的数学读物销售,小明想买一种英语书和一种数学读物,共有多少种不同的买法?
【例2】把4个同样的苹果放在两个同样的盘子里,允许有的盘子空着不放,问共有多少种不同的分法?
1.把5个同样的苹果放在两个同样的盘子里,允许有的盘子空着不放,问共有多少种不同的分法?
2.把7个同样的苹果放在三个同样的盘子里,不允许有的盘子空着不放,问共有多少种不同的分法?
【例3】从1~6这六个数字中,每次取2个数字,这两个数字的和都必须大于7,能有多少种取法?
【试一试】
1.从1~9这九个数字中,每次取2个数字,这两个数字的和都必须大于10,能有多少种取法?
2.从1~19这十九个数字中,每次取2个数字,这两个数字的和都必须大于20,能有多少种取法?
【例4】一个长方形的周长是22米,如果它的长和宽都是整米数,那么这个长方形的面积有多少种可能值?
1.一个长方形的周长是30厘米,如果它的长和宽都是整厘米数,那么这个长方形的面积有多少种可能值?
2.把15个玻璃球分成数量不同的4堆,共有多少种不同的分法?
【例5】有4位小朋友,寒假中互相通一次电话,他们一共打了多少次电话?
【试一试】
1.6个小队进行排球比赛,每两队比赛一场,共要进行多少次比赛?
2.有8位小朋友,要互通一次电话,他们一共打了多少次电话?
三、培优提高看名校
【※例1】一条铁路,共有10个车站,如果每个起点站到终点站只用一种车票(中间至少相隔5个车站),那么这样的车票共有多少种?
1.上海、北京、天津三个城市分别设有一个飞机场,它们之间通航一共需要多少种不同的机票?
2. 一条公路上,共有8个站点,如果每个起点到终点只用一种车票(中间至少相隔3个车站),那么共有多少种不同的车票?
四、课后作业
1.小熊有2件不同的上衣,3条不同的裤子,最多可以搭配多少种不同的装束?
2.3个自然数的乘积是12,问由这样的3个数所组成的数有多少个?如(1,2,6)就是其中一个,而且数组中数字相同但顺序不同的算作同一数组,如(1,2,6)和(2,6,1)是同一数组。

3.明明有2件不同的上衣,3条不同的裤子,4双不同的鞋子,最多可以搭配多少种不同的装束?
4.3个自然数的乘积是18,问由这样的3个数所组成的数有多少个?如(1,2,9)就是其中一个,而且数组中数字相同但顺序不同的算作同一数组,如(1,2,9)和(2,9,1)是同一数组。

5.小芳出席由19人参加的联欢会,散会后,每两人都要握一次手,他们一共握了多少次手?
※6.在长江的某一航线上共有6个码头,如果每个起点终点只许用一种船票(中间至少要相隔2个码头),那么这样的船票共有多少种?
※7.十把钥匙开十把锁,但钥匙放乱了,问最多要试多少次可以找到相应的锁?最多要试多少次才能开相应的锁?。

相关文档
最新文档