生产函数和成本函数
生产函数决定成本函数(英文版)

Production Function Determines Cost Function In economics, the concept of production function plays a crucial role in determining the cost function of a firm. The production function represents the relationship between inputs and outputs in the production process, while the cost function measures the cost of producing a given level of output. This article will explore the relationship between the production function and the cost function and how the former determines the latter.Understanding the Production FunctionThe production function is a mathematical representation of the relationship between inputs and outputs in the production process. It shows how much output can be produced from a given combination of inputs. The most common form of production function is the Cobb-Douglas production function, which is represented as:Q = A * (L^α) * (K^β)Where: - Q represents the quantity of output produced - A is the total factor productivity - L represents the quantity of labor input - K represents the quantity of capital input - α and β are the output ela sticities of labor and capital, respectively The production function assumes that there is a fixed relationship between labor, capital, and output. It implies that as more labor and capital inputs are added, the output increases, but at a diminishing rate.The Relationship between Production Function and Cost FunctionThe cost function, on the other hand, represents the relationship between the cost of production and the level of output. It measures how much it costs to produce a given quantity of output. The cost function is influenced by various factors, such as input prices, technology, and production function.To understand how the production function determines the cost function, we need to introduce the concept of input prices. Input prices represent the cost of labor and capital inputs to the firm. The cost of labor is generally represented by the wage rate, while the cost of capital is represented by the rental rate.Using the production function, we can derive the cost function by multiplying the input prices by the quantities of inputs used. For example, the cost function can be represented as:C = w * L + r * KWhere: - C represents the total cost of production - w represents the wage rate - r represents the rental rate - L represents the quantity of labor input - K represents the quantity of capital inputThe cost function shows the minimum cost of producing a given level of output. It reflects the cost of labor and capital inputs required to produce that level of output, based on the given input prices.Impact of Changes in Production Function on Cost Function Changes in the production function can have a significant impact on the cost function. If the production function changes, it alters the relationship between inputs and outputs, which in turn affects the cost of production.For example, if there is an improvement in technology, it increases the total factor productivity (A) in the production function. As a result, more output can be produced for a given combination of inputs, reducing the cost of production. This, in turn, shifts the cost function downwards, reflecting lower costs for the same level of output.Similarly, changes in the output elasticities (α and β) can also impact the cost function. If there is an increase in the output elastici ty of labor (α), it implies that labor becomes more productive and can produce more output with the same quantity of inputs. This leads to a decrease in the cost of labor and, subsequently, a downward shift in the cost function for the same level of output.On the other hand, an increase in the output elasticity of capital (β) would lower the cost of capital and cause a downward shift in the cost function.ConclusionIn conclusion, the production function serves as the basis for determining the cost function in economics. It shows the relationship between inputs and outputs in the production process. The cost function, on the other hand, measures the cost of producing a given level of output. By understanding the production function and its impact on the cost function, firms can make informed decisions about their production processes and cost management strategies.。
生产函数与成本

不同等成本线与投入品组合 Y
与B国相比,A国
要素稀缺度与相对价
格不同:X(资本或
土地?)要素价格较
YA
贵,Y(劳动?)比
较便宜,因而选择“
劳动密集型”的生产
技术,而B国则相反
。
YB
A国(地、时) 等成本线
等产量线
B国(地、时) 等成本线
0 XA
X XB
长期与短期假定
经济学家用短期和长期(Short term and long term) 来 表示微观经济主体调节行为的受时间限制程度:短期表示 受到调整限制而无法完成全部调整的时间周期。如在短期 内厂商很容易对于劳动,原料投入数量进行调节,却难以 迅速调节设备及厂房等投入;长期则指厂商有充分调节所 有投入的时间周期。如通过固定资本投资来改变企业最大 产出能力通常只能在较长的时间中解决。不同行业不同企 业的“长期”对应的具体时间长度有显著差别。
边际收益递减规律的原因
生产中各要素的使用通常都有一个最佳匹配比例。生 产函数指的就是各要素的投入接近这一比例时将产生的最 大可能产量。当某些要素的投入保持不变而仅增加另一些 要素的投入时,各要素的投入将偏离这那个“最佳匹配比 例”。这样,当某些要素投入的增加使总投入规模增加时 ,由于受到那些投入保持不变的生产要素的牵制,产量的 将不会同步增加。
从经济学家的视角看,企业的成本是所用资源的机 会成本,而不论这些资源是归其他人所有还是归企业自 己所有。因此,经济学家把吸引资源并使其保持在某个 特定生产行业内所需要的所有成本(显性成本和隐性成 本,其中包括正常利润)都归入到生产成本之中。
经济利润 = 总收入
-
所有投入品的 机会成本
对经济学家来说的利润
在只考虑两种投入的情况下,“劳动和资本两种投入 都可以变化”代表了经济分析的长期情况,面对的问题应理 解为投资决策。而仅有一种要素可变则代表了经济分析的 短期情况,其所面对的问题应理解为生产决策。
生产函数与成本分析

MC
AC AVC AFC
因為 AFC = TFC/Q,隨著產量 增加,平均每單位產量所分攤 的固定成本愈少,AFC 線必然 不斷下降。
AC 線 在 任 一 點 的 高 度 , 是 AVC、AFC 兩線對應點高度加 總的結果。
隨著產量增加,AFC 線下降的 趨勢先會主導 AC 線下降,但 當產量增加到一定程度後, MC 的上升會帶動 AC 上升, 使 AC 線呈正斜率,因此 AC 線亦可能呈 U 字形。
A
w /r
0
L0
C0
w
Q0
C 1 勞動
w
長期之中,所有的生產要素 數量均可以調整,因此不需 要區分變動成本與固定成本。
長期生產函數 Q = f (L, K) 可 以用等產量線在 L-K 平面上 刻劃;同理,我們可以用等 成本線在 L-K 平面上表現要 素組合與成本間的關係。
等成本線的概念與消費者的 預算線相近;在同一條等成 本線上的任意 L-K 組合,具 有相同的成本水準。
5-15
產量分析-長期分析 (三)
邊際技術替代率的另一種表示法:
MPL :勞動邊際產量。 MPK :資本邊際產量。 邊際技術替代率可以刻劃兩種要素在生產上的替代關係, 如果邊際技術替代率愈高,表示兩種要素在生產上的替 代性愈強。 隨著某種生產要素使用量的增加,用這種生產要素替代 另一種要素的可能性會愈來愈弱,這表示邊際技術替代 率具有遞減的特性。
數量的增加而增加,當勞
動數量增加到一定程度後,
AP
MP 開始遞減,甚或可能
出現負值。
隨著勞動雇用量的增加,勞
MP
動的邊際產量終會出現遞減
圖 5.1 總產量、平均產量與邊際產量的範例 的現象,現象稱為邊際報酬 遞減法則 (law of diminishing
第三章(89)--生产函数与成本

第三章 生产函数与成本一、名词解释1.边际报酬递减规律; 2.等产量线; 3.边际技术替代率; 4.产出弹性; 5.生产力弹性; 6.替代弹性; 7.规模报酬; 8.生产函数;二、判断题(正确的在括号内画T ,错误的画F)1.在只有一种可变投入的条件下,当边际产量下降时,总产量也下降。
( )2.边际报酬递减规律反映了生产的投入和产出关系,适用于一切生产过程。
( )3.根据对一种可变投入要素生产过程的三阶段划分,厂商可以确定一个生产体系中投入 要素的最佳投入量。
( )4.当边际产量递增时,总产量将以递减的速率上升。
( )5.等产量线的斜率是负斜率,并且都凸向原点。
( )6.边际技术替代率递减规律的存在是因为边际报酬递减法则在发挥作用。
( )7.用来进行经济决策分析的成本通常是指厂商在生产过程中按市场价格直接支付的一切 费用。
( )8.经济学中所说的“短期”具体包括两个条件:一是厂商的要素规模不变;二是行业内 厂商的数量不变。
( )9.生产函数与成本函数具有对偶关系,AP 增加与AC 和A VC 下降相对应。
( )10.MC 、A VC 、VC 曲线都呈U 形,当MC 曲线下降时,A VC 和VC 曲线也下降;当 MC 曲线开始上升时,A VC 和VC 曲线也上升。
( )11.利用生产扩展线可以推导出厂商的LTC 曲线。
( )12.产出既定成本最小的两种可变投入要素组合的均衡条件是:两种要素的边际技术替代 率等于两种要素的价格之比。
( )13.当企业生产扩大、总成本增加时,正常要素增加,而劣质要素则减少。
( )14.LAC 曲线分别与各个SAC 曲线的最低点相切。
( )15.在LAC 曲线与SAC 曲线切点所对应的产量水平上,LMC 曲线和SMC 曲线相交。
( )16.规模经济、规模报酬、边际报酬都是长期概念。
( )17.当边际成本大于平均成本,平均成本有可能上升,也可能下降。
( )18.脊线界定了厂商有效生产与无效生产的范围。
成本函数知识点总结

成本函数知识点总结在经济学中,成本函数通常被用来描述生产过程中所用资源的成本与产出之间的关系。
成本函数的一般形式可以表示为:C = f(x1, x2, ..., xn)其中,C 表示成本总额,x1, x2, ..., xn 分别表示不同的资源投入,f 表示生产函数或成本函数的具体形式。
一般来说,成本函数可以分为总成本函数和平均成本函数两种形式。
总成本函数表示的是生产一定数量的产品所需要的总成本,通常表示为:TC = f(x1, x2, ..., xn, Q)其中,TC 表示总成本,Q 表示产出量,x1, x2, ..., xn 表示各种生产要素的投入量。
总成本函数可以帮助生产者了解在不同产出量下所需要的总成本,从而帮助其做出生产规模的决策。
平均成本函数表示的是单位产出所需要的平均成本,通常表示为:AC = TC / Q其中,AC 表示平均成本,TC 表示总成本,Q 表示产出量。
平均成本函数可以帮助生产者了解在不同产出量下单位产品的平均成本,从而帮助其确定最优的产出量和生产规模。
成本函数的知识点总结包括但不限于以下内容:1. 成本函数的分类:总成本函数和平均成本函数2. 成本函数的形式:通常表示为关于生产要素和产出量的函数3. 成本函数的性质:通常具有经济学意义的性质,如递增成本、递减成本等4. 成本函数的应用:帮助生产者了解生产过程中的成本结构,从而帮助其做出合理的决策成本函数的分类成本函数主要可以分为总成本函数和平均成本函数两种形式。
总成本函数表示的是生产一定数量的产品所需要的总成本,通常表示为:TC = f(x1, x2, ..., xn, Q)其中,TC 表示总成本,Q 表示产出量,x1, x2, ..., xn 表示各种生产要素的投入量。
总成本函数可以帮助生产者了解在不同产出量下所需要的总成本,从而帮助其做出生产规模的决策。
平均成本函数表示的是单位产出所需要的平均成本,通常表示为:AC = TC / Q其中,AC 表示平均成本,TC 表示总成本,Q 表示产出量。
管理经济学-第四章-生产与成本函数分析

2013-9-28
生产与成本函数分析
17
一可变投入生产函数
Q 技术进步引起了总产量 曲线的变动 掩盖了边际 实物报酬递减法则
L
2013-9-28 生产与成本函数分析 18
两可变投入生产函数
三 两种可变投入生产函数 只要考察的时间足够长 就不只一种投入在 变动 两种或两种以上的投入可以变动 甚至 所有的投入都可以变动 如投入的劳动和资本都可以变动, 投入和产出之间的关系 Q = f ( L, K)
2013-9-28
生产与成本函数分析
42
技术进步与生产函数
五. 技术进步与生产函数 以往所研究的生产函数都假定技术水平不变 但技术实际上发生着日新月异的变化 科学技术是生产力 是第一生产力 对生产函 数有着极为重要影响 技术进步意味着较少的投入就可以生产 以前同样的多产品
2013-9-28 生产与成本函数分析 36
两可变投入生产函数
近年的一个趋势: 大公司纷纷收缩业务范围, 卖掉“非核心”, 集中主业, 创造核心技术,构建巨无霸 重要的不是做大,而是做 强。
2013-9-28
生产与成本函数分析
37
经验生产函数
四 经验生产函数 使用的生产函数是经验生产函数, 是从 实际生产的数据中模拟出来 反映了在 一定的技术条件下 投入和平均产出之间 的关系 1. 多次项生产函数
2013-9-28
生产与成本函数分析
34
两可变投入生产函数
不利因素 管理层次增加 带 来管理困难 投入的供给和产 出的销售困难 要适度规模经营
2013-9-28
生产与成本函数分析
35
两可变投入生产函数
不同行业的规模适度是不一样的 不同管理者的规模适度也是不一样的 行业也有一个规模经济与不经济 这又称企 业的外在经济与不经济 实际上一个企业往往不只生产一种产品 而生产多种产品 同时生产多种产品所产 生的节约称作 范围经济 (Economics of scope)
西经第三章企业的生产和成本

西经第三章企业的⽣产和成本第三章企业的⽣产和成本第⼀节企业本节在简要说明企业类型之后,着重考察企业的利润最⼤化⽬标,以便分析企业的⽣产和成本决策设定⽬标动机。
⼀、企业的类型与消费者⼀样,企业是市场经济活动中的另外⼀个基本单位。
企业的形式多种多样,既可以提供有形产品,也可以提供各种服务。
但它们的共同特征是,使⽤各种投⼊品以制造和销售产品或服务,所以经济学中的企业泛指能够做出统⼀⽣产和供给决策的基本单位。
依照基本的法定形式,企业主要包括个⼈独资企业、合伙制企业和公司三种类型。
个⼈独资企业是单个⾃然⼈投资并所有的企业。
例如,⼤多数杂货店、私⼈诊所等。
在独资企业中,⽆论是⾃⼰经营,还是雇⽤他⼈经营,业主承担与⽣产投⼊有关的成本以及各种税费等经营所需要的成本,并获得全部的利益,⽽且所有⼈对企业负债承担⽆限责任。
合伙制企业是指由两个或两个以上的⾃然⼈共同出资、合伙经营、共享收益、共担责任的企业。
律师事务所⼤多采⽤这种形式。
⼤多数合伙制企业都会以协议的形式规定合资⼈的责任和权益。
企业可以由出资⼈经营,也可以聘⽤他⼈。
同独资企业⼀样,所有⼈对企业的债务承担⽆限连带责任。
公司是按法律程序建⽴起来的企业组织,包括有限责任公司和股份有限公司。
公司是企业法⼈,享有独⽴的法⼈财产权。
公司以其全部财产对公司的债务承担责任,有限责任公司的股东以其认缴的出资额为限、股份有限公司的股东以其认购的股份为限对公司负债承担责任。
公司的典型特点是企业的所有权和经营权分离。
公司股东推举⼀些⼈作为董事,组成董事会以代表股东利益,董事会成员可以是股东也可以不是。
董事会对股东⼤会负责,决定公司重⼤事项,⽇常经营授权经理进⾏管理。
与个⼈独资和合伙制企业相⽐,公司制企业有利于筹集⼤量的资⾦,同时由于股份分散、责任有限,极⼤地降低了单个股东的风险。
但公司制企业的缺点是,所有权与经营权分离,会导致企业不能完全体现股东的利益。
⼆、企业的利润最⼤化⽬标虽然企业⼤⼩不⼀,组织形式也不相同,但其经营都有⼀个基本⽬标,那就是获取利润。
知识点二成本函数

【知识点二】成本函数1.成本函数的含义和类型成本函数就是表示企业总成本与产量之间关系的公式。
分为短期成本函数和长期成本函数。
(1)短期成本函数可分为固定成本与可变成本C=b+f(q),其中b―――――固定成本f(q)―――可变成本C-----------总成本(2)长期成本函数没有固定成本(从长期看一切生产要素都是可变的)C=f(q)【注】短期成本函数和长期成本函数的区别在于是否含有固定成本。
2.短期成本函数分析(1)短期总成本TC =总固定成本TFC +总可变成本TVC①固定成本是指在短期内不随产量增减而变动的那部分成本,如厂房设备的折旧,以及管理人员的工资费用。
②可变成本是随产量变动而变动的那部分成本,如原材料、燃料和动力以及生产工人的工资费用。
【例题10:2008年多选】固定成本包括的项目有()A厂房和设备折旧B管理人员的工资费用C原材料费用D燃料和动力费用E生产工人的工资费用【答案】AB【例题11:2011年多选】下列项目中,从短期来看,属于企业可变成本的有( )。
A.原材料费用B.燃料和动力费用C.厂房和设备折旧D.生产工人的工资E.银行借款利息【答案】ABD(2)平均成本:单位产品成本,是生产每一单位产品的成本,是总成本除以总产量所得之商。
(3)边际成本:边际成本是增加一个单位产量时总成本的增加额【提示】边际成本是产量变动引起的可变成本的变动(因为短期内固定成本不随产量的变化而变化)【例题12:2008年单选题】当某企业的产量为2个单位时,其总成本、总固定成本、总可变成本、平均成本分别为2000元、1200元、800元和1000元;当产量为3个单位时,其总成本、总固定成本、总可变成本、平均成本分别是2100元、1200元、900元和700元,则该企业的边际成本是()元A 0B 150C 100D 300【答案】C【解析】考核边际成本概念的理解。
边际成本是指增加一个单位产量时总成本的增加额,产量由2个单位增加到3个单位,总成本由2000元增加到2100元,所以边际成本是100元。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
生产函数和成本函数:生产函数和成本函数是经济学中两个重要的概念,它们在描述企业的生产行为和成本关系时起着重要的作用。
生产函数表示的是在一定技术条件下,生产要素的投入量与最大可能产出量之间的函数关系。
换句话说,生产函数描述的是企业如何将不同的生产要素(如劳动、资本、土地等)有效地转化为产品或服务。
生产函数的数学表达式通常为Q=f(L,K,N,E),其中Q代表产量,L 代表劳动,K代表资本,N代表土地,E代表企业家才能。
成本函数则描述了在一定的生产技术条件下,生产一定数量的产品所需的最小成本。
成本函数是用来分析企业在生产过程中如何平衡各种生产要素的投入量,以达到最小化成本的目的。
成本函数的数学表达式通常为C=f(Q),其中C代表总成本,Q代表产量。
生产函数和成本函数之间存在密切的关系。
首先,生产函数和成本函数都受到生产要素价格的影响。
当生产要素价格上涨时,企业将面临更高的生产成本,这可能导致企业减少生产要素的投入量,从而降低产量。
其次,生产函数和成本函数在一定条件下可以相互转化。
例如,当企业通过技术创新提高了生产效率时,它可能会在保持产量不变的情况下降低成本,反之亦然。