第八讲:尾数和余数问题
五年级尾数与余数111

(2)、9 × 9 × 9 × 9 × …… × 9积的个位数字是几?
61个9 解析:有简单的开始分析找规律: 1个9的个位是9, 2个9的积的个位是1, 3个9的积的个位数字是9, 4个9的积的个位数字是1, 5个9的积的个位数字是9, 6个9的积的个位数字是1, …… 依次这样类推我们不难发现尾数是9,1不断重复 出现的,因此: 61÷2=30……1,余数是1,说明61个9相乘的积 的个位是9.
1个23的个位数字为3, 2个23的积的个位数字为9, 3个23的积的个位数字为7, 4个23的积的个位数字为1, 5个23的积的个位数字为3, 6个23的积的个位数字为9, …… 故我们可以发现末尾数字是以3,9,7,1循环出 现的, 即2000÷4=500 即2000个23的积的个位 数字为1. 故前后两部分的积为8.
100个125 解析: 125的末位数字是5; 125×125的末位数字是5; 125×125×125的末位数字仍是5; 125×125×125×125的末位数字仍是5; …… 故不管多少个125相乘,积的末位数字都是5.
(2)1 ×16)积的尾数是
几?
200个(11 ×16)
每个括号里11×16积的个位是6, 那每个括号里相乘的积的末位数字是6, 200个个位数字都是6的数相乘个位数仍是6.
1、61×61×61×……×61积的尾数是几?
2、1.5×1.5×1.5×……1.5×1.5积的尾数是几?
1000个(12×53)
3、(12×53)×(12×53)×(12×53)×……×(12×53) 积的尾数是几?
例3:写出除213后余3的全部两位数。
213=210+3 210=2 2 2 3 3
×5 ×7 ×5 ×7 × 被除数=商×除数+余数 被除数-余数=商×除数
第八讲 整除特征初步

1. 学会尾数判断法;2. 学会数字和判断法。
1. 尾数判断法(1)能被2, 5整除的数的特征:看个位。
如果一个数的个位能被2或5整除,则这个数就能被2或5整除。
(2)能被4, 25整除的数的特征:看末两位。
如果一个数的末两位能被4或25整除,则这个数就能被4或25整除。
(3)能被8, 125整除的数的特征:看末三位。
如果一个数的末三位能被8或125整除,则这个数就能被8或125整除。
2. 求和判断法能被4, 25整除的数的特征:如果一个数的各位数字之和能被3(或9)整除,则这个数就能被3(或9)整除。
3. 同时满足多个数方法:逐一满足【例 1】 下面6个自然数:152,650,434,4375,9064,24125中, (1)哪些能被2整除?哪些能被5整除?(2)哪些能被4整除?哪些能被25整除?(3)哪些能被8整除?哪些能被125整除?(4)这些数除以4的余数分别是多少?【例 2】(1)修改5679中的一个数字,使这个四位数能被5整除,修改后的四位数是多少?(2)修改675479中的一个数字,使这个六位数能被25整除,修改后的六位数是多少?第八讲 整除特征初步例题精讲知识点拨教学目标()【巩固】(1)修改34575中的一个数字,使这个五位数能被4整除,修改后的五位数是多少?(2)修改675447中的一个数字,使这个六位数能被8整除,修改后的六位数是多少?【例 3】有六个自然数:5762;3105;9631;7953;2945;3281(1)哪些能被3整除?不能被3整除的余数分别是多少?(2)哪些能被9整除?不能被9整除的余数分别是多少?【例 4】AA能被3整除,求A。
(1)四位数31AA能被9整除,求A。
(2)五位数232【巩固】下面每个数中的字母分别是多少时,这个数能被3整除?都有哪些填法呢?B563C618D162A541【例 5】在下面每个数的□里填上一个数字,使它符合所提要求。
(1)能被2整除,又能被3整除。
第08讲-尾数与余数(教)(教案教学设计导学案)

1、【2015•希望杯初赛】9个13相乘,积的个位数字是
【解析】1×13个位是3,13×13个位是9,13×13×13个位是7,13×13×13×13个位是1,发现乘积结果的个位数字(尾数)以3、9、7、1循环,周期为4。9÷4=2……1,所以积的个位数字是3。
所以,第50个数字为循环节的第2个数字,即为1。
5、666…6÷4[100个6] 当商是整数时,余数是几?
【解析】经过试除后发现无论多少个6,余数都是2,所以100个6时,余数仍为2。
6、94×94×94×…×94[102个94]-49×49×…×49[101个49],差的个位是多少?
【解析】4=4,4×4=16,4×4×4=64,4×4×4×4=256,发现若干个94相乘积的尾数以:4、6重复出现,循环周期是2,102 ÷2=51,所以102个94相乘的积尾数是6;同理可知若干个49相乘积的尾数以9、1重复出现,循环周期是2,101÷2=50……1,所以101个49相乘的结果以9为尾数。作差时,个位6-9,不够减,需向前借一位,16-9=7,所以差的个位,及差的尾数是7。
5、888…8÷7[200个8]当商是整数时,余数是几?
【解析】经试除后发现,余数以1、4、6、2、5、2、0,重复循环出现,循环周期是6,200÷6=33……2,所以结果的余数是4。
6、一列数1,2,4,7,11,16,22,29,……。这列数的规律是第二个数比第一个数多1;第三个数比第二个数多2,第四个数比第三个数多3。依次类推,这列数左起第1992个数被5除余数是几?
尾数和余数

尾数和余数准备题:1、“开放的北京盼奥运开放的北京盼奥运……”像这样依次写下去,第2008个字是什么字?2、有一列数:7,3,4,6,7,3,4,6……(1)第150个数是多少?(2)这150个数相加的和是多少?[例1]写出除213后余3的全部两位数。
练一练:写出除109后余4的全部两位数。
[例2](1)125×125×125×……×125(100个125)积的尾数是几?(2)9×9×9×……×9(51个9)积的个位数字是几?(3)23×23×23×……×23×18×18×18×……×18的个位数字是几?2000个23 2001个18练一练:1、(21×26)×(21×26)×……×(21×26)〔100个(21×26)〕积的尾数是几?2、4×4×4×……×4积的个位数字是几?50个4[例3]444……4(100个4)÷6,当商是整数时,余数是几?练一练:1、555……55(2001个5)÷13,当商是整数时,余数是几?2、888……8(80个8)÷7,当商是整数时,余数是多少?[例4]甲数除以9余7,乙数除以9余5。
(1)甲、乙两数的和除以9余数是几?(2)甲、乙两数的差除以9余数是几?(3)甲、乙两数的积除以9余数是几?练一练:甲数除以5余3,乙数除以5余2,那么甲、乙两数的和除以5余数是几?甲、乙两数的差除以5余数是几?甲、乙两数的积除以5余数是几?感谢您的阅读,祝您生活愉快。
小升初级之金牌奥数暑假15次课程AA

1、小升初金牌奥数:尾数和余数(小升初必考题型)1、教学导如入:估值的意义与方法及思想的引入。
2、知识回顾:3、巩固练习(4题)1、1x1=1,所以尾数是1的数相乘,无论是多少,无论是多少个,积的尾数肯定是1,同样5x5=25,积的尾数肯定是5;6x6=36,积的尾数肯定6.积的尾数,商的小数部分等会出现循环现象,我们称作“周期问题”例如:。
例题一:1、125x125x125x。
125一共是200个125相乘,乘积的尾数是几?2、(11x16)x(11x16)x(11x16)。
x(11x16),一共是200个(11 x16)积的尾数是几?过手训练:61x61 x61。
x61,20个61相乘,积的尾数是几?例题二:1、4 x4 x4 x4。
x4 x4,60个4相乘,积的个数是几?2、9 x9 x9 x9.。
x9,61个9相乘,积的个位数是几?过手训练:24x24 x24.。
x24,2005个24相乘,积的尾数是几?3、写出除以213后余数是3的全部两位数是那些?过手训练:写出除以109后余数是4的全部两位数。
例题四:3÷7商的小数点后面第2005个数字是几?例题五:20022002的个位数字是几?过手训练:20032003的个位数字是几?例题六:有一串数字排成一行,其中第一个数是5,第二个数是8,从第三个数起,每个数恰好是两个数的和,他们是:5,8,13,21,34,55,89,。
那么,在这一串数中,第2004个数被3除后所得的余数是几?过手训练:有一串数排成一行,其中第一个数是4,第二数是5,从第三个数起,每个数恰好是前两个数的和,他们是:4,5,9,14,23,37,60,97,157,那么在这一串数中,第1000个数被3除后所得的余数是几?例题七:按连写100个12得一个自然数: 位20012......121212这个数除以13余数是几?过手训练: 5200155.55555个。
五年级尾数余数ppt课件

3、9×9×9×…×9[91个9]积的个位数是几?
思路导航:只要找出一个9相乘,积的个位是9, 两个9相乘,积的个位是1。三个9相乘,积的个位 是9,就可以发现规律性。
1,444…4÷6[100个4],当商是整数时,余数是几?
7 4 0 7 4 0…
6 4 4 4 4 4 4 4…4
42
24 24
已知,甲数除以9余7,乙数除以9余5,甲数 比乙数大。 (1)甲、乙两数的和除以9余数是几? (2)甲、乙两数的差除以9余数是几? (3)甲、乙两数的积除以9余数是几?
思路导航:1、甲、乙余数的和除以9与甲、乙两数的和除以9余数相同。(5+7) ÷9=1 …3
2、甲、乙两数的差除以9的余数与甲、乙两数余数的差除以9的余数相等。(7-5) ÷9=0 …2
分析:首先对317-2=315,再把315分解质因数: 315=3×3×5×7 ,所有符合条件的两位数再去组合 在一起。
2、写出除349后余4的全部两位数。
思路分析:首先对349-4=345,再把345分解质因数: 345=3×5×23 ,所有符合条件的两位数再去组合 在一起。
3、写出除1095后余3的全部三位数。
一列数
3 10 13 23 36 59 95 154 249 403 652 1055 1707 2762 4469 …
余数
0 1 12 0
2
21
0
1
1
2
0
2
2…
思路:从这列数除以3后的余数中来寻找规律性。从表中可以 发现,这些余数是按照(0、1、1、2、0、2、2、1)顺序出现的。 因为1991÷8=248组…7,即是第249组中的第7个余数是2。
1、61×61×61×…×61[2011个6]积的尾数是几?
小升初五年级数学培优教材(第二期)共四期

目录第1讲小数的运算技巧(一) (2)第2讲小数的运算技巧(二) (6)第3讲相遇问题(二) (11)第4讲平均数应用题 (15)第5讲尾数与余数问题 (19)第6讲包含与排除 (23)第7讲解方程 (27)第8讲列方程解决问题(一) (31)第9讲列方程解决问题(二) (35)第10讲基本图形的面积 (39)第11讲组合图形的面积(一) (43)第12讲组合图形的面积(二) (47)第1讲小数的运算技巧(一)【知识要点】小数运算中常运用的技巧有:(1)等积变形:(运用一个因数扩大若干倍,另一个因数缩小相同的倍数,积不变的性质,可以把几个因数化成相同的数来计算)(2)凑整与拆分;(3)分组与重新组合;(4)乘法分配律及其反用;(5)商不变的性质;(6)用字母代替数字,即代换法。
【例题精讲】例1、计算:0.79×0.46+ 7.9×0.24+11.4×0.079例2、计算:7.5×23+31×2.5例3、计算:(3.6×0.75×1.2)÷(1.5×24×0.18)例4、计算:3.6×42.3÷0.9-12.5×0.423×16例5、计算:(1 + 2.3 + 3.4) ×(2.3 + 3.4 + 6.5)-(1 + 2.3 + 3.4 + 6.5) ×(2.3 + 3.4) 例6、计算: 0.1949×0.19951995-0.1995×0.19491949【基础夯实】1、计算: 7.24×0.1+0.5×72.4+0.049×7242、计算:3.7×15+21×4.53、计算:1)0.9999×0.7+0.1111×2.7 2)99.9 ×22.2+ 33.3×33.44、计算:(3.4×4.8×9.5)÷(1.9×17×2.4)5、(1 + 1.7 + 1.9) × (1.7 + 1.9 + 9.2) - (1 + 1.7 + 1.9 + 9.2) × (1.7 + 1.9)【能力提升】1、大小两数的差是7.02,较小数的小数点向右移动一位就等于较大数,较大数是多少?2、两个数相加,小芳错算成相减了,结果得8. 6,比正确答案小10.4,原数中较大数是多少?3、比较下面两个积的大小A=5.4321×1.2345,B=5.4322×1.2344第二讲小数运算技巧(二)【巩固旧知】1、计算:0.9+9.9+99.9+999.9+9999.92、计算:19.98×37-199.8×1.9+1998×0.82【例题精讲】例1、计算:0.11+0.13+0.15+0.17+……+0.97+0.99例2、一个物体从空中落下来,经过4秒钟落地,已知第一秒下落4.9米,以后每一秒下落的距离都比前一秒多9.8米,这个物体在下落前距地面多少米?例3、计算:(1+1.2)+(2+1.2×2)+(3+1.2×3)+…+(100+1.2×100) 例4、计算:1.999×2003-1.998×2004【基础夯实】1、计算:0.1+0.13+0.16+0.19+...+0.97+12、计算:(1-0.1)+(2-0.2)+(3-0.3)+…+(9-0.9)+(10-1)3、一个物体从空中落下来,第一秒钟下落2.5米,以后每秒多下落9.9米,经过10秒钟落到地面,问物体原来离地面多高?4、12.34+23.45+34.56+45.67+56.78+67.89+78.91+89.12 +91.235、小王和小明两人比赛赛跑,限定时间为10秒,谁跑的距离长谁就获胜。
五年级奥数尾数与余数教案

课题奥数“尾数与余数授课时间:5.29 备课时间: 5.25教学目标重点、难点考点及考试要求教学内容专题简析:自然数末位的数字称为自然数的尾数;除法中,被除数减去商与除数积的差叫做余数。
尾数和余数在运算时是有规律可寻的,利用这种规律能解决一些看起来无从下手的问题。
例题一.写出除333后余3的全部两位数。
思路导航:因为333=330+3,把330分解质因数:330=2×3×5×11,所以,符号题目要求的两位数有2×5=10,2×11=22,3×5=15,3×11=33,5×11=55,2×3×5=30,2×3×11=66,加上11,一共有8个两位数。
例题二. (1)9×9×9×…×9[51个9]积的个位数是几?(2)的积的尾数是几?思路导航:(1)我们先列举前几个9相乘的积,看看个位数在怎样变化,1个9个位就是9;9×9的个位是1;9×9×9的个位是9;9×9×9×9的个位是1……由此可见,积的尾数以“1,9”两个数字在不断重复出现。
51个9相乘时,积的个位是以“9,1”两个数字不断重复,51÷2=25……1,余数是1,说明51个9本乘积的个位是9。
(2)小数乘法的运算,暂时不考虑小数点。
一个3的积,个位数字是3,两个3相乘,积的个位数字是9,三个3相乘,积的个位数字是7,四个3相乘,积的个位数字是1.以此类推,个位数字出现的规律是按“3、9、7、1”的顺序重复。
那么共有204÷4=51个循环,最后一个尾数是1.所以前后两部分相乘,尾数应是1×5=5例题三. 444…4÷6[100个4],当商是整数时,余数是几?思路导航:从竖式中的余数可以看出:每3个4组成的数被6整除。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
◎配套作业: 配套作业:
《小学应用题训练营》P30页 小学应用题训练营》 页 配套训练一。 配套训练一。
五年级(上 五年级 上)
第八讲: 第八讲:尾数和余数问题
★应用题解题思路
找数量,问问题, 找数量,问问题, 正想到推鹊桥会。 正想到推鹊桥会。
★基础知识
自然书末位的数字叫自然数 的尾数.除法算式中 除法算式中,被除数减 的尾数 除法算式中 被除数减 去商与除数的积的差叫做余 数.尾数和余数在运算时是有 尾数和余数在运算时是有 一定规律的,利用这种规律可 一定规律的 利用这种规律可 以解决一些看似无从下手的 问题,解答这类问题 方法如下: 解答这类问题,方法如下 问题 解答这类问题 方法如下
★基本思路
1.根据题目中各数的特点 找出规律, 根据题目中各数的特点,找出规律 根据题目中各数的特点 找出规律 确定周期,根据周期再求问题 根据周期再求问题. 确定周期 根据周期再求问题 2.循环小数的问题 要通过计算得出 循环小数的问题,要通过计算得出 循环小数的问题 商,发现循环节是由哪几个数字组成 发现循环节是由哪几个数字组成 有几位,周期就是几 的,有几位 周期就是几 有几位 周期就是几. 3.求一串数除以某数得到的余数 可 求一串数除以某数得到的余数,可 求一串数除以某数得到的余数 通过试除,看前多少位能被这个数整 通过试除 看前多少位能被这个数整 还余多少,就把这个余下的数除以 除,还余多少 就把这个余下的数除以 还余多少 某数,就直接求出余数了 就直接求出余数了. 某数 就直接求出余数了
(拓展题型) 拓展题型)
这里44号字。
●模仿提升 模仿提升5-2
(拓展题型) 拓展题型)
这里44号字。
例6.
这里44号字 这里 号字. 号字
(拓展题型 拓展题型) 拓展题型
●模仿提升 模仿提升6-1
(拓展题型) 拓展题型)
这里44号字。
●模仿提升 模仿提升6-2
(拓展题型) 拓展题型)
这里44号字。
(基本题型) 基本题型)
这里44号字。
●模仿提升 模仿提升2-2
(基本题型) 基本题型)号字
(变式题型 变式题型) 变式题型
●模仿提升 模仿提升3-1
(变式题型) 变式题型)
这里44号字。
●模仿提升 模仿提升3-2
(变式题型) 变式题型)
这里44号字。
例1.
这里44号字 这里 号字. 号字
(基本题型 基本题型) 基本题型
●模仿提升 模仿提升1-1
(基本题型) 基本题型)
这里44号字。
●模仿提升 模仿提升1-2
(基本题型) 基本题型)
这里44号字。
例2.
这里44号字 这里 号字. 号字
(基本题型 基本题型) 基本题型
●模仿提升 模仿提升2-1
例4.
这里44号字 这里 号字. 号字
(变式题型 变式题型) 变式题型
●模仿提升 模仿提升4-1
(变式题型) 变式题型)
这里44号字。
●模仿提升 模仿提升4-2
(变式题型) 变式题型)
这里44号字。
例5.
这里44号字 这里 号字. 号字
(拓展题型 拓展题型) 拓展题型
●模仿提升 模仿提升5-1