第四章 空间问题有限单元法2 有限单元法与程序设计 教学课件
合集下载
有限元入门ppt课件

有限体积法 (Finite Volume Method)
其基本思路是:将计算区域划分为一系列不重复的控制体积,并使每个网格点周围有一个控制体积;将待解的微分方程对每一个控制体积积分,便得出一组离散方程。其中的未知数是网格点上的因变量的数值。为了求出控制体积的积分,必须假定值在网格点之间的变化规律,即假设值的分段的分布的分布剖面。
1-2 应力的概念
作用于弹性体的外力(或称荷载)可能有两种: 表面力,是分布于物体表面的力,如静水压力,一物体与另一物体之间的接触压力等。单位面积上的表面力通常分解为平行于座标轴的三个成分,用记号 来表示。 体力,是分布于物体体积内的外力,如重力、磁力、惯性力等。单位体积内的体力亦可分解为三个成分,用记号X、Y、Z表示。 弹性体受外力以后,其内部将产生应力。
边界元法 (Boundary Element Method)
边界元法是一种继有限元法之后发展起来的一种新的数值方法,与有限元法不同,边界元法仅在定义域的边界划分单元,用满足控制方程的函数去逼近边界条件。所以边界元与有限元相比具有单元和未知数少、数据准备简单等优点,但边界元法解非线性问题时,遇到同非线性项相对应的区域积分,这种积分奇异点处的强烈的奇异性,使求解遇到困难。边界元法在塑性问题中应用还比较少。
弹性力学 — 区别与联系 — 材料力学 弹性力学与材料力学既有联系又有区别。它们都同属于固体力学领域,但弹性力学研究的对象更普遍,分析的方法更严密,研究的结果更精确,因而应用的范围更广泛。 弹性力学 固有弱点: 由于研究对象的变形状态较复杂,处理的方法又较严谨,因而解算问题时,往往需要冗长的数学运算。但为了简化计算,便于数学处理,它仍然保留了材料力学中关于材料性质的假定:
塑性有限元常用软件
第四章 空间问题有限单元法2 有限单元法与程序设计 教学课件

k0 kc 0
k0c kcc
e
0 c
e
RR0c
e
其中
是单元中需要凝聚掉的自由度,
c
是0 单元中需要保留,也即将
参加总刚集成的自由度。
第六章 杆系结构的有限单元法
四、平面杆件系统
5、内部铰结点的处理
a) 凝聚自由度法
从方程的第二式可得:
c kcc1Rckc00
代回第一式可得:
6l
k e
2l
2
6l
4l
2
0
12EI l3
0
6EI l2 4EI l
EA l 0
0 EA l
0
12E l3
I
6E l2
I
0
12EI l3
0
6EI
l2
2EI
l
0
6E l2
I
4EI
l
第六章 杆系结构的有限单元法
四、平面杆件系统
3、平面杆单元的坐标变换
设局部坐标 x轴和总体坐标 x轴间的夹角为
将位移函数带入总势能方程
EI 2
l 0
d 2w dx2
2
dx
l
q(x)wdx
0
j
Pj wj
k
M
k
dw dx
k
并对势能取驻值得:
[k]e[]e {R}e 0
其中: [k ]e
1 0
EI l3
d2N
d 2
T
d2N
d 2
d
第六章 杆系结构的有限单元法
三、纯弯杆单元
3、单元分析 c)单元平衡方程
1、桁架结构-平面、空间 2、刚架结构-平面、空间 3、拱-特殊的平面刚架
有限元法基础ppt课件

有限单元法
一、数值模拟方法概述 二、有限单元法简介 三、有限单元法分析步骤 四、利用有限元软件进行工程分析
一、数值模拟方法概述
工程技术领域中的许多力学问题和场问题,如固 体力学中的位移场、应力场分析、电磁学中的电磁 分析、振动特性分析、热力学中的温度场分析,流 体力学中的流场分析等,都可以归结为在给定边界 条件下求解其控制方程的问题。
结构矩阵分析方法认为:整体结构可以看作是由有限 个力学小单元相互连接而组成的集合体,每个单元的 力学特征可以看作建筑物的砖瓦,装配在一起就能提 供整体结构的力学特性。
结构矩阵分析方法分析的结构本身都明显地由杆件组 成,杆件的特征可通过经典的位移法分析建立。
虽然矩阵位移法整个分析方法和步骤都与有限单元法 相似,也是用矩阵来表达、用计算机来求解,但是它 与目前广泛应用的有限单元法是有本质区别的。
❖ 国际上早在20世纪50年代末、60年代初就投入大量的人力和 物力开发具有强大功能的有限元分析程序。其中最为著名的是 由美国国家宇航局(NASA)在1965年委托美国计算科学公司 和贝尔航空系统公司开发的NASTRAN有限元分析系统。该系 统发展至今已有几十个版本,是目前世界上规模最大、功能最 强的有限元分析系统。
有限元法
既可以分析杆系结构,又分析非杆系的连续 体结构。
三、有限单元法简介
有限单元法的常用术语:
有限元模型 是真实系统理想化的数学抽象。
定义
真实系统
有限元模型
自由度(DOFs- degree of freedoms)
自由度(DOFs) 用于描述一个物理场的响应特性。
UY ROTY
ROTZ UZ
UX ROTX
目前在工程技术领域内常用的数值模拟方法有: 1、有限单元法FEM( Finite Element Method) 2、边界元法BEM(Boundary Element Method ) 3、有限差分法FDM( Finite Difference Method 4、离散单元法DEM(Discrete Element Method) 其中有限单元法是最具实用性和应用最广泛的。
有限元法和应用总结课件

线弹性有限元
线弹性有限元是以理想弹性体为研究对象旳, 所考虑旳变形建立在小变形假设旳基础上。在 此类问题中,材料旳应力与应变呈线性关系, 满足广义胡克定律;应力与应变也是线性关系, 线弹性问题可归结为求解线性方程问题,所以 只需要较少旳计算时间。假如采用高效旳代数 方程组求解措施,也有利于降低有限元分析旳 时间。
平面单元划分原则
• 1.单元形状:常用单元形状有三角形单元、矩形单元和等 参数单元。他们旳特点是单元旳节点数越多,其计算精 度越高,三角形单元与等参数单元可适应任意边界。
• 2.划分原则: • 1)划分单元旳个数,视计算机要求旳精度和计算机容量
而定,单元分得越多,块越小其精度越高,但需要旳计 算机容量越大,所以,须根据实际情况而定。 • 2)划分单元旳大小,可根据部位不同有所不同,在位 移或应力变化大旳部位取得单元要小;在位移或应力变 化小旳部位取得单元要大,在边界比较平滑旳部位,单 元可大。
移,另一部分基本未知量为节点力。
*8.有限元法分析过程(续)
• 有限元位移法计算过程旳系统性、规律性强,尤 其合适于编程求解。一般除板壳问题旳有限元应 用一定量旳混正当外,其他全部采用有限元位移 法。所以,一般不做尤其申明,有限元法指旳是 有限元位移法。
• 有限元分析旳后处理主要涉及对计算成果旳加工 处理、编辑组织和图形表达三个方面。它能够把 有限元分析得到旳数据,进一步转换为设计人员 直接需要旳信息,如应力分布状态、构造变形状 态等,而且绘成直观旳图形,从而帮助设计人员 迅速旳评价和校核设计方案。
• 虚位移原理是平衡方程和力旳边界条件旳等效积 分旳“弱”形式;
• 虚应力原理是几何方程和位移边界条件旳等效积 分“弱”形式。
3.虚功原理(续)
有限单元法原理及应用简明教程

返 回 章 节 目 录
图2-31 铰接三角形
24
第二章 结构几何构造分析
结构的特征是:当它受载荷作用时会产生微小的 位移, 但位移一旦发生后, 即转变成一几何不变结 构,但结构的内力可能为无限大值或不定值,这样的 结构称为瞬变结构。显然,瞬变结构在工程结构设计 中应尽量避免。
(a) 瞬变结构
(b) 分离体分析 图2-32 瞬变结构
9
第一章 概述
图1-7 液压管路速度场分布云图
图1-8 磨片热应力云图
图1-9 支架自由振动云图
10
第二章 结构几何构造分析
2.1 结构几何构造的必要性 2.2 结构计算基本知识 2.3 结构几何构造分析的自由度与约束 2.4 自由度计算公式 2.5 结构几何不变结构组成规律
返 回 全 书 目 录
17
第二章 结构几何构造分析
对称结构在正对称载荷下,对称轴截面上只能产生 正对称的位移,反对称的位移为零;对称结构在反对称 载荷下,对称轴截面上只有反对称的位移,正对称的位 移为零。
(1) 具有奇数跨的刚架 ① 正对称载荷作用
2.2.3 结构对称性的利用
(a) 对称刚架
(b) 变形状态分析 图2-22对称性利用示意图
(c) 对称性利用
18
第二章 结构几何构造分析
② 对称刚架承受反对称载荷作用
(a) 对称刚架
(b) 变形状态分析 图2-23 反对称性利用示意图
(c) 反对称性利用
19
第二章 结构几何构造分析
(2) 具有偶数跨的刚架 ① 正对称载荷作用
(a) 变形状态分析
(b) 对称性利用
图2-24对称性利用示意图
规律3 一个几何不变结构( 或刚体 )与另一个几 何不变结构(或刚体)用六根即不平行也不相交于同一 条直线的链杆相联,所组成的结构是几何不变的结构, 且无多余约束。
第四章有限元单元法

¾ ADINA
★ FLUENT
¾ ANSYS
★ SAP
(3) 有限单元法的未来
应用需求:技术革新、设计理论、 制造方法
基础产业:汽车、船舶、冶金、飞机 高新产业:航天、微电系统、纳米器
件:
(3) 有限单元法的未来 待发展的方面
1) 新的材料本构模型和单元型式
2) 结构在复杂环境条件下的全寿命过程响应分析
人类认识自然的得力助手
力学或工程领域求解问题的两大法宝:解 析法和离散法
4.1.1 有限单元法的基本概念
解析法:
它从研究连续体中无限小的微分体入手,得出 描述连续体性质的微分方程。然后根据边界条 件、初始条件可解得一个通解。这个解可给出连 续体内任一点上所求参数的值。 核心是微分方程。 微分方程的建立过程是近似的,而微分方程的 求解过程是精确的。
E
• 长度分别为l1、l2 • 桁架的铰链处受到外力 X1、Y1、X2、Y2、X3、Y3
• 在1点和3点固定铰支 求解内力
铰接桁架
求解过程:
(1). 将结构划分成典型单元的集合——离散化(节点力、节点位移)
--求解过程:
(2).分析每个单元上节点力和节点位移之间的关系 ――单元特性分析
轧机牌坊(三维实体问题,弹性)
稳静态结构问题实例
出钢机部件分析(三维壳体问题,弹性)
稳静态结构问题实例
万向接轴叉头(三维实体问题,弹性)
稳静态结构问题实例
轧钢机刚度(三维实体问题,多体接触)
稳静态结构问题实例
沧州铁狮子(三维不规则实体,弹性)
稳静态结构问题实例
轧制过程仿真(三维实体,弹塑性、接触)
.500E+09
10000
第四章轴对称问题

第四章 轴对称问题的有限单元法
主要内容: 4-1轴对称问题有限单元法 4-2空间问题常应变四面体单元
轴对称结构体可以看成由任意
一个纵向剖面绕着纵轴旋转一周而 形成。此旋转轴即为对称轴,纵向 剖面称为子午面,如图4-1表示一 圆柱体的子午面abcd被分割为若干 个三角形单元,再经过绕对称轴旋 转,圆柱体被离散成若干个三棱圆 环单元,各单元之间用圆环形的铰 链相连接。对于轴对称问题,采用 圆柱坐标较为方便。以弹性体的对 称轴为z轴,其约束及外载荷也都 对称于z轴,因此弹性体内各点的 各项应力分量、应变分量和位移分 量都与环向坐标θ无关,
zi , z j , zm, ri , rj , rm 及结点位移ui , uj , um, wi , w j , wm代入式(4-4)中,可以 解出六个待定系数 1, 2, 。,再6 将这些待定系数回代到式 (4-4)中,就可以得到由结点位移和形函数所表示的单元内任 一点的位移表达式
u Ni ui N j u j Nmum w Ni wi N j w j Nmwm
bi A1 fi
Si
2 A3 A
A1
bi
A1bi A2ci
fi fi
A1ci
ci
i, j, m
A1ci A2bi
返回
其中
u A1 1 u
,
1 2u
A2 21 u
,
1 uE A3 41 u1 2u
从(4-14)式可知,只有剪应力在单元中是常数,而其他 三个正应力在单元中都不是常数,与坐标r和z有关。同样 采用形心坐标和来代替,每个单元近似地被当作常应力单 元,所求得的应力是单元形心处的应力近似值。
e1
e1
这就是求解结点位移的方程组,写成标准形式
主要内容: 4-1轴对称问题有限单元法 4-2空间问题常应变四面体单元
轴对称结构体可以看成由任意
一个纵向剖面绕着纵轴旋转一周而 形成。此旋转轴即为对称轴,纵向 剖面称为子午面,如图4-1表示一 圆柱体的子午面abcd被分割为若干 个三角形单元,再经过绕对称轴旋 转,圆柱体被离散成若干个三棱圆 环单元,各单元之间用圆环形的铰 链相连接。对于轴对称问题,采用 圆柱坐标较为方便。以弹性体的对 称轴为z轴,其约束及外载荷也都 对称于z轴,因此弹性体内各点的 各项应力分量、应变分量和位移分 量都与环向坐标θ无关,
zi , z j , zm, ri , rj , rm 及结点位移ui , uj , um, wi , w j , wm代入式(4-4)中,可以 解出六个待定系数 1, 2, 。,再6 将这些待定系数回代到式 (4-4)中,就可以得到由结点位移和形函数所表示的单元内任 一点的位移表达式
u Ni ui N j u j Nmum w Ni wi N j w j Nmwm
bi A1 fi
Si
2 A3 A
A1
bi
A1bi A2ci
fi fi
A1ci
ci
i, j, m
A1ci A2bi
返回
其中
u A1 1 u
,
1 2u
A2 21 u
,
1 uE A3 41 u1 2u
从(4-14)式可知,只有剪应力在单元中是常数,而其他 三个正应力在单元中都不是常数,与坐标r和z有关。同样 采用形心坐标和来代替,每个单元近似地被当作常应力单 元,所求得的应力是单元形心处的应力近似值。
e1
e1
这就是求解结点位移的方程组,写成标准形式
有限单元法课件第一章 绪论

风洞 强度与振动
增压风洞的第一阶模态 f=10.36Hz
电机谐响应分析
电机谐响应分析
第一节 有限元法的产生与基本思想
l
x
F
y
微分方程的边值问题
数学问题 求解 解析法 数值法
d2 y F (l x) dx2 EI y 0
x0
dy 0 dx x0
边界条件
差分法 变分法 有限元法
差分法
再由(1-3)中的边界条件,有 y0 d1, yn d2
(1 7)
线性方程组
变分法
变分原理:微分方程边值问题的解等价于相应泛函极值 问题的解.
边值问题的求解
泛函极值的求解
泛函:给定满足一定条件的函数集合A:{y(x)},和实数 集合R。设y(x)是A中的函数,V是R中的变量,若A和V 之间存在一个对应关系,就是A中的每个函数y(x),R 中都有唯一的V值与之对应,则称V是函数y(x)的泛函,
基本思想:用均匀的网格离散求解域,用离散点的差分
代替微分,从而将连续的微分方程和边界条件转化为网 格节点处的差分方程,并用差分方程的解作为边值问题 的近似解.
y
yi1 yi
y(x)
边值问题为
d1
yi
yi1
d2
y(x) y(x) y(x) f (x) a x b y(a) d1 y(b) d2
1 第一章 绪论 2 第二章 有限元法的基本原理 3 第三章 轴对称问题的有限元解法 4 第四章 杆件系统的有限元法 5 第五章 空间问题的有限元法
6 第六章 动态分析有限元法 7 第七章 热分析有限元法 8 第八章 有限元建模方法 9 第九章 ANSYS分析实例
船体在弯扭联合作用下的结构“应力-变形”有限元分析
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
k0 k c0
k0c k cc
e
0 R0 c Rc
e
e
其中 c是单元中需要凝聚掉的自由度, 参加总刚集成的自由度。
是单元中需要保留,也即将 0
第六章 杆系结构的有限单元法
四、平面杆件系统
5、内部铰结点的处理
l xz l zz 0
0 ui w 0 i i 1 i
l xx l zx 0 l xz l zz 0
(i 1,2)
所以单元坐标转换矩阵为:
T diag
0 cos sin 0 0 sin cos 0 1 0 0 1
i 1 i 1
2
2
e
N N1ຫໍສະໝຸດ N z1 N 2Nz2
形函数矩阵
N1 1 3 2 2 3
N 2 2 l
2 3
N z1 3 2 2 3
N z2 l
3 2
形函数
第六章 杆系结构的有限单元法
三、纯弯杆单元
3、单元分析
0 , (i, j 1,2) b kij
EA 1 1 [k ] l 1 1
12 6l 4l 2 EI 3 l 对 称 12 6l 12
k
eb
EA 0 l 12 EI l3 6l k e 2l 2 6l 2 4l
d 2w 2 dx
d 2w b)物理方程 M EI EI dx2 dM d 3w c)平衡方程 Q EI 3 , dx dx
d)总势能
dQ d 4w EI 4 q( x) dx dx
C1问题
EI 2
l d w dw 2 dx q( x)wdx Pj w j M k 0 dx 0 dx k j k l 2
w2 2
T
2)单元刚度方程-轴向+弯曲
a kij e kij 0
0 , (i, j 1,2) b kij
e
k e kij 22
第六章 杆系结构的有限单元法
四、平面杆件系统
2、局部坐标系下的平面杆单元
ea
a kij e kij 0
u N i ( )ui N
i 1 n e
第六章 杆系结构的有限单元法
一、拉压杆单元
3、单元分析 d)单元平衡方程 将位移函数带入总势能方程,并对势能取驻值得:
[k ]e [ ]e {R}e 0
其中:
2 EA dN dN dN [k ] EA dx 1 d 0 dx dx l
3、平面杆单元的坐标变换
设局部坐标 x轴和总体坐标 x 轴间的夹角为 则x轴的方向余弦为:
lxx cos(x, x ) cos
z轴的方向余弦为:
lxz cos(x, z ) sin lzz cos(x, z ) cos (i 1,2)
lzx cos(z, x ) sin ui lxx ui lxz wi
杆系结构类型:
1、桁架结构-平面、空间
2、刚架结构-平面、空间
3、拱-特殊的平面刚架
第六章 杆系结构的有限单元法
一、拉压杆单元 二、扭转杆单元
三、纯弯杆单元
四、平面杆系结构 五、空间杆系结构
第六章 杆系结构的有限单元法
一、拉压杆单元
图示等截面直杆,其中f(x)是轴向的分布荷载,P1、P2、P3等是轴向的集中荷载
第六章 杆系结构的有限单元法
四、平面杆件系统
5、内部铰结点的处理
a) 凝聚自由度法 对于图中2号杆,凝聚后的单刚:
EA l * k 0 3EI l3 0 3EI l2 3EI l EA l 0 0 EA l 0 3EI l3 3EI 2 l 0 3EI l3 0 0 0 0 0 0
d)总势能
l EA du 0 dx dx 0 f ( x)udx Pju j 2 j l 2
C0问题
第六章 杆系结构的有限单元法
一、拉压杆单元
3、单元分析 a)建立自然坐标
2 x1 x2 x xc , xc l 2
b)试凑法建立形函数
a) 凝聚自由度法 从方程的第二式可得:
c kcc 1 Rc kc 0 0
代回第一式可得:
k * 0 R0 *
其中:
k * k0 k0c kcc 1 kc 0 R0 * R0 k0c kcc 1Rc
2
T
d 2N 2 d d
12 6l 4l 2 EI 3 l 对 称
12 6l 12
6l 2l 2 6l 4l 2
dN T k M k R 0 N qld N j Pj d l j k k
其中:
[ k ]e
1
0
EI d N 2 3 l d
2
T
d 2N 2 d d
第六章 杆系结构的有限单元法
三、纯弯杆单元
3、单元分析
c)单元平衡方程
[k ]e [ ]e {R}e 0
[k ]
e 1
0
EI d N 2 3 l d
e l T 1
e l T 1 T
T
dN d d
l {R} N f ( x)dx N f ( ) dx 0 1 2
第六章 杆系结构的有限单元法
一、拉压杆单元
3、单元分析 d)单元平衡方程 2结点杆单元的单刚:
EA 1 1 [k ] l 1 1
两种坐标系间,线位移的转换关系为:
wi lzx ui lzz w i
转动位移的转换关系为:
i i
(i 1,2)
第六章 杆系结构的有限单元法
四、平面杆件系统
3、平面杆单元的坐标变换
两种坐标系间,位移的转换关系为:
ui l xx i wi l zx 0 i
0 6 EI l2 4 EI l
EA l 0 0
0 12 EI l3 6 EI 2 l 0 12 EI l3
EA l
6 EI 2 l 2 EI l 0 6 EI 2 l 4 EI l 0
第六章 杆系结构的有限单元法
四、平面杆件系统
第六章 杆系结构的有限单元法
四、平面杆件系统
4、整体坐标系下的单元平衡方程
[k ] [] {R } 0
e e e
其中:
k
e
[T ]T k [T ]
e
R T R
e T
e
第六章 杆系结构的有限单元法
四、平面杆件系统
5、内部铰结点的处理
a) 凝聚自由度法 单元在参加系统集成前,在自身局部坐标 系内的平衡方程可表示为:
第六章 杆系结构的有限单元法
四、平面杆件系统
5、内部铰结点的处理
a) 凝聚自由度法 两端铰接杆,凝聚后的单刚:
GJ 2
l d x 0 dx dx 0 mt ( x) x dx l 2
d)总势能
C0问题
第六章 杆系结构的有限单元法
二、扭转杆单元-自由扭转
2、单元分析 参考拉压杆单元的分析过程,对扭转杆单元进行分 析,并写出2结点杆单元的刚度矩阵
第六章 杆系结构的有限单元法
e 1 T T
第六章 杆系结构的有限单元法
四、平面杆件系统
1、平面杆系结构的特点 1)杆件和荷载都处于同一面内
2)有较明确的传力路径 3)杆件之间可以是铰接也可以是刚接
第六章 杆系结构的有限单元法
四、平面杆件系统
2、局部坐标系下的平面杆单元 1)结点位移-轴向+弯曲
e u1
w1 1 u2
2
第六章 杆系结构的有限单元法
三、纯弯杆单元
3、单元分析 a)结点位移
w1
e
1 w2 2
T
b)广义坐标法建立形函数
dw , i dx i
3
(i 1,2)
2个结点,4个自由度,故在自然坐标下设:
w a1 a2 a3 a4
2
c)单元平衡方程
将位移函数带入总势能方程
l EI d 2 w dw 2 dx q( x)wdx Pj w j M k 0 dx 0 2 dx k j k l 2
并对势能取驻值得:
[k ]e [ ]e {R}e 0
1、计算假定
a)应力在截面上均匀分布
b)原来垂直于轴线的截面变形后仍保持和轴线垂直
三维问题简化为一维问题,只有沿x轴方向的位移u
第六章 杆系结构的有限单元法
一、拉压杆单元
2、基本方程
du du b)物理方程 σ x Eε x E a)几何方程 ε x dx dx d 2u d c)平衡方程 A x f (x) 即: AE 2 f ( x) dx dx
e
3个以上结点的杆单元,内部自由度可以在单元层次凝聚掉,以 提高计算效率
第六章 杆系结构的有限单元法
二、扭转杆单元-自由扭转