03-02 空间问题的四面体单元
空间问题的四面体单元

第三章 轴对称、三维和高次单元§ 3-2空间问题的四面体单元空间问题的有限单元法,和平面问题及轴对称问题的有限单元法的原理和分析过程完 全相同。
由于空间问题应采用三维坐标系,因此单元的自由度、刚度矩阵的元素个数,方 程组内方程个数等要较平面问题和轴对称问题多,所以空间问题的规模一般比轴对称问题 和平面问题大得多。
它要求计算机的内存大,且计算时间长,费用高。
这些问题都给三维 有限单元法的具体运用带来许多困难。
和平面问题一样,空间有限单元法采用单元 也是多种多样的,其中最简单的是四节点四面体 单元。
采用四面体单元和线性位移模式来处理空 间问题,可以看作平面问题中三角形单元的推广。
在采用四面体单元离散化后的空间结构物 中,一系列不相互重叠的四面体之间仅在节点处 以空间铰相互连接。
四节点四面体单元仅在四个 顶点处取为节点,其编号为i,j,m,p 。
每个单元的 计算简图如图3-7所示。
在位移法中,取节点位移为基本未知量,四 节点四面体单元共有十二个自由度 (位移分量),其节点位移列阵为U i V i W i (i,j,m)相应的节点力列阵为U i Viw i U j V j w jU mTW m U p V p W p其子矩阵图3-7空间四面体单元F i F j F m F p其子矩阵F i U i V i w一、单元法位移函数结构中各点的位移是坐标 X 、y 、z 的函数。
当单元足够小时, 单元内各点的位移可用 简单的线性多项式来近似描述, 即u1 2 X3y 4Zv56 X7y 8Z(3-49)w0 10Xny12Z曰2,…,12是卜二个待定系数,它们可由单元的节点位移和坐标确定。
假定节 点 i,j,m,p 的坐标分别为(x i y i Z i )、、(xj y j z j )、(X m将它们代入 (3-49)式的第一式可得各个节点在X 方向的位移U i1 2X i 3Y i4Zu j1 2X j3Y j4Z jU m 1 2X m 3Y m 4 Z mU p12X p3Y p4 Z p解上述线性方程组,可得到1 ,2 ,3 ,4 , 再代入U6V[(a i bXcy d i Z)U i (a jb j x(a m b m X C m yd m z)U m(a p b p X C(3-50)y d p Z )U p ] 1 X i Y i Z i 1 X j y j Z j 1 X m y m Z m1X PY PZ P(3-52)(3-50)式,得y m Z m)、(X p y p Z p ),5y 3)5 (3-51)式中1 ,其中V 为四面体ijmp 的体积,a,b i ,…,c p ,d P 为系数。
汽车结构有限元分析03单元类型及单元分析

1.一维单元分析
主要有:杆单元、梁单元、管单元等 。
1.1杆单元---最简单的两节点一维单元, 用于杆件承受轴向力分析。
设杆单元横截面积为A,长度为l,轴 向分布载荷q为(x) 。单元2个节点的位移 向量为: e ui u j T
由空间弹性力学几何方程,得应变表达式:
{} [B]{ }e [[B1 ][B2 ][B20 ]]{ }e
由空间弹性力学物理方程,单元内的应力可 以表示成:
[ ] [D][ ] [D][B]{ }e [S]{ }e
单元刚度矩阵为 :
[k]e
[B]T [D][B]dV
[k1e1
[k
e 21
这其中设定单元位移模式,利用虚功 原理建立单元节点力与节点位移关系并组建 单元刚度矩阵的过程,我们将其称为单元分 析。
为了使有限元法的解在单元尺寸逐步趋 小时能够收敛于精确解,所构造的单元位移 函数必须满足以下三方面的条件:
1)位移模式中必须包括反映刚体位移的项;
2)位移模式中必须包括反映常应变的线性位 移项;
这样空间梁单元就由3个节点组成i,,j,k 点必
须在一个平面内,但不能共线。i节点到j节
点为单元坐标系的x轴,y轴(或z轴)在节点i、
j和k构成的平面上且与x轴垂直,应用右手定
则可以确定另一坐标iz, 轴j, k(或y轴)。
三点
确定后,单元坐标系即确定,梁单元的截面
方位也就完全确定下来。所增加的一个用于
] ]
[k1e2 ]
[k
e 22
]
[k1e20
[k
空间四面体的体积公式

空间四面体的体积公式空间四面体是由四个平面构成的立体图形,每个平面都是一个三角形,其中有一个特殊的点,称为顶点,连接顶点和三角形的其他三个点称为底面。
对于空间四面体,确定其位置和大小的参数有四个,分别是三个角度和一个高度。
在计算空间四面体的体积时,需要使用特定的公式来求解。
对于一个空间四面体,其体积可以由底面积和高度来计算。
底面积是指底面的面积,可以通过三角形的边长和高度来计算。
高度是指从顶点到底面的垂直距离,可以通过垂直距离和角度来计算。
假设空间四面体的底面三角形的边长分别为a、b和c,底面面积为S,并且顶点到底面的垂直距离为h。
则空间四面体的体积V可以由以下公式计算:V = (1/3) * S * h其中,1/3是一个常数,用于将底面积和高度的乘积缩小成体积。
S 是底面的面积,可以由底面三角形的边长和海伦公式来计算:S = sqrt(s * (s - a) * (s - b) * (s - c))其中,s是底面三角形的半周长,可以由边长a、b和c计算:s = (a + b + c) / 2通过上述公式,可以计算出空间四面体的体积。
举个例子来说明如何计算空间四面体的体积。
假设底面三角形的边长分别为5、7和8,顶点到底面的垂直距离为6。
首先,可以使用海伦公式计算底面的面积:s = (5 + 7 + 8) / 2 = 20/2 = 10S = sqrt(10 * (10 - 5) * (10 - 7) * (10 - 8)) = sqrt(10 * 5 * 3 * 2) = sqrt(300) ≈ 17.32然后,可以使用空间四面体的体积公式计算体积:V = (1/3) * S * h = (1/3) * 17.32 * 6 = 34.64因此,底面边长分别为5、7和8,顶点到底面的垂直距离为6的空间四面体的体积为34.64。
需要注意的是,上述公式只适用于三维空间中的四面体。
若对应于更高维度的空间,则需要使用相应的公式来计算体积。
03-02_空间问题的四面体单元

第三章轴对称、三维和高次单元§3-2 空间问题的四面体单元空间问题的有限单元法,和平面问题及轴对称问题的有限单元法的原理和分析过程完全相同。
由于空间问题应采用三维坐标系,因此单元的自由度、刚度矩阵的元素个数,方程组内方程个数等要较平面问题和轴对称问题多,所以空间问题的规模一般比轴对称问题和平面问题大得多。
它要求计算机的内存大,且计算时间长,费用高。
这些问题都给三维有限单元法的具体运用带来许多困难。
和平面问题一样,空间有限单元法采用单元也是多种多样的,其中最简单的是四节点四面体单元。
采用四面体单元和线性位移模式来处理空间问题,可以看作平面问题中三角形单元的推广。
在采用四面体单元离散化后的空间结构物中,一系列不相互重叠的四面体之间仅在节点处以空间铰相互连接。
四节点四面体单元仅在四个顶点处取为节点,其编号为i,j,m,p。
每个单元的计算简图如图3-7所示。
在位移法中,取节点位移为基本未知量,四节点四面体单元共有十二个自由度(位移分量),其节点位移列阵为{}[]Tpp p m m m j j j i i ip m j i ew v u w v u w v u w v u =⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧=δδδδδ其子矩阵 {}[]i iii w v u =δ (i,j,m)相应的节点力列阵为{}[]Tp mj ie F F F F F -图3-7 空间四面体单元其子矩阵 {}[]Ti i i i W V U F =一、单元法位移函数结构中各点的位移是坐标x 、y 、z 的函数。
当单元足够小时,单元内各点的位移可用简单的线性多项式来近似描述,即⎪⎭⎪⎬⎫+++=+++=+++=z y x w z y x v z y x u 121110087654321αααααααααααα (3-49) 式中1α,2α,…,12α是十二个待定系数,它们可由单元的节点位移和坐标确定。
假定节点i,j,m,p 的坐标分别为(i x i y i z )、(j x j y j z )、(m x m y m z )、 (p x p y p z ),将它们代入(3-49)式的第一式可得各个节点在x 方向的位移⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧+++=+++=+++=+++=p p p p m m m m j j j j i i i i z y x u z y x u z y x u z y x u 4321432143214321αααααααααααααααα (3-50)解上述线性方程组,可得到1α,2α,3α,4α,再代入(3-50)式,得])()()()[(61p p p p p m m m m m jj j j j i i i i i u z d y c x b a u z d y c x b a u z d y c x b a u z d y c x b a Vu +++-+++++++-+++=(3-51) 其中V 为四面体ijmp 的体积,a i ,b i ,…,c p ,d p 为系数。
空间几何中的平行四面体与正四面体知识点

空间几何中的平行四面体与正四面体知识点在空间几何学中,平行四面体和正四面体是两种常见的多面体。
它们具有不同的特点和性质,下面将详细介绍这两种多面体的知识点。
一、平行四面体平行四面体是指四个面中的任意两个面平行的四面体。
它具有以下几个重要的性质:1. 对角线平行性质:平行四面体的任意两条对角线都是平行的。
这是因为平行四面体的两个相对面平行,因此连接相对顶点的对角线也是平行的。
2. 面积比例性质:平行四面体的相邻两个面之间的面积比等于相邻两个对角面的面积比。
具体而言,如果平行四面体的两个相邻面的面积分别为S1和S2,而另外两个对角面的面积分别为S3和S4,则有S1/S2 = S3/S4。
3. 体积计算公式:平行四面体的体积可以通过以下公式计算:V = (1/3) * S * h,其中V表示体积,S表示底面积,h表示底面到顶点的距离。
4. 平行四面体的类型:根据底面形状的不同,平行四面体可以分为正方形底面四面体、长方形底面四面体和菱形底面四面体等多种类型。
二、正四面体正四面体是指四个等边等角的三角形构成的四面体。
它具有以下几个重要的性质:1. 边长和面积:正四面体的边长相等,每个面都是等边三角形。
正四面体的面积可以通过以下公式计算:S = (sqrt(3) * a2) / 4,其中S表示面积,a表示边长。
2. 高度和体积:正四面体的高度可以通过以下公式计算:h = (sqrt(6) * a) / 3,其中h表示高度,a表示边长。
正四面体的体积可以通过以下公式计算:V = (sqrt(2) * a3) / 12,其中V表示体积,a表示边长。
3. 正四面体的特殊点:正四面体有四个特殊的点,分别为顶点、底心、重心和垂心。
顶点是四个面的交点,底心是底面三角形三个高线的交点,重心是四个面重心连线的交点,垂心是底面三角形三条垂线的交点。
4. 对称性:正四面体具有四个三角对称面和六个对称轴。
四个三角对称面将正四面体分为等价的四个部分,而六个对称轴则是通过连接各个面的中点和顶点形成的。
空间几何的性质四面体的性质及其应用

空间几何的性质四面体的性质及其应用四面体是空间中常见的立体图形,它具有一些独特的性质和应用。
本文将介绍四面体的性质及其应用。
一、四面体的定义和性质四面体是由四个三角形面组成的立体图形。
它具有以下性质:1. 定义:四面体是由四个不在同一平面上的点及连接这些点的边组成的立体。
2. 面积和体积:四面体的表面积和体积可以通过一定的公式计算得出。
其中,表面积等于四个三角形面积之和,体积等于底面积乘以高的一半。
3. 棱和顶点:四面体有六条棱和四个顶点。
任意两个顶点之间可以连接一条棱。
4. 高、中线和外接球:四面体的高是从一个顶点到相对的底面的垂直距离。
每个面的中线是连接该面上的两个中点的线段。
四面体还可以围绕外接球,外接球的球心与四面体的顶点都在同一平面上。
二、四面体的分类根据四面体的性质,我们可以将其分为以下几类:1. 正四面体:如果四面体的四个面都是等边三角形,那么它就是正四面体。
正四面体具有对称性,在空间几何学中起到重要作用。
2. 正交四面体:如果四面体的三个互相垂直的棱对同时相等,那么它就是正交四面体。
正交四面体具有一些特殊的性质,常用于计算几何和物理学中。
3. 锐角四面体和钝角四面体:根据四个顶点形成的凸四面体的内角是锐角还是钝角,可以将四面体分为两类。
在实际应用中,这些分类有助于确定四面体的稳定性和结构特征。
三、四面体的应用四面体不仅具有美学价值,还在许多领域有实际应用:1. 建筑与工程学:在建筑设计和工程施工中,四面体的结构特性可以用于设计和计算支撑结构的强度和稳定性。
2. 化学与结晶学:在化学和结晶学研究中,四面体被广泛用于分子和晶体的描述和分析。
3. 三维造型与动画:计算机图形学中,四面体被用于表示和生成三维模型和动画效果。
4. 数学与几何学:四面体是数学和几何学中研究的重要对象之一,对于解决空间几何问题和推导数学定理有重要意义。
总结:四面体是空间几何中重要的立体图形,具有独特的性质和应用。
空间问题的四面体单元

第三章 轴对称、三维和高次单元§3-2 空间问题的四面体单元空间问题的有限单元法,和平面问题及轴对称问题的有限单元法的原理和分析过程完全相同。
由于空间问题应采用三维坐标系,因此单元的自由度、刚度矩阵的元素个数,方程组内方程个数等要较平面问题和轴对称问题多,所以空间问题的规模一般比轴对称问题和平面问题大得多。
它要求计算机的内存大,且计算时间长,费用高。
这些问题都给三维有限单元法的具体运用带来许多困难。
和平面问题一样,空间有限单元法采用单元也是多种多样的,其中最简单的是四节点四面体单元。
采用四面体单元和线性位移模式来处理空间问题,可以看作平面问题中三角形单元的推广。
在采用四面体单元离散化后的空间结构物中,一系列不相互重叠的四面体之间仅在节点处以空间铰相互连接。
四节点四面体单元仅在四个顶点处取为节点,其编号为i,j,m,p 。
每个单元的计算简图如图3-7所示。
在位移法中,取节点位移为基本未知量,四节点四面体单元共有十二个自由度(位移分量),其节点位移列阵为{}[]Tpp p m m m j jj i i ip m j i ew v u w v u w v u w v u =⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧=δδδδδ其子矩阵 {}[]i ii i w v u =δ (i,j,m)相应的节点力列阵为{}[]Tp m j ie F F F F F -图3-7 空间四面体单元其子矩阵 {}[]Ti i i i W V U F =一、单元法位移函数结构中各点的位移是坐标x 、y 、z 的函数。
当单元足够小时,单元内各点的位移可用简单的线性多项式来近似描述,即⎪⎭⎪⎬⎫+++=+++=+++=z y x w z y x v z y x u 121110087654321αααααααααααα (3-49) 式中1α,2α,…,12α是十二个待定系数,它们可由单元的节点位移和坐标确定。
假定节点i,j,m,p 的坐标分别为(i x i y i z )、(j x j y j z )、(m x m y m z )、 (p x p y p z ),将它们代入(3-49)式的第一式可得各个节点在x 方向的位移⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧+++=+++=+++=+++=p p p p m m m m j j j j i i i i z y x u z y x u z y x u z y x u 4321432143214321αααααααααααααααα (3-50)解上述线性方程组,可得到1α,2α,3α,4α,再代入(3-50)式,得])()()()[(61p p p p p m m m m m jj j j j i i i i i u z d y c x b a u z d y c x b a u z d y c x b a u z d y c x b a Vu +++-+++++++-+++=(3-51) 其中V 为四面体ijmp 的体积,a i ,b i ,…,c p ,d p 为系数。
空间几何中的四面体与四面体的性质

空间几何中的四面体与四面体的性质四面体是空间几何中的一个基本几何体,它由四个面组成,每个面都是一个三角形。
四面体的性质十分有趣,它们在数学和几何中有广泛的应用。
本文将介绍四面体的定义、特征以及一些重要的性质。
一、四面体的定义和构造四面体的定义很简单:它是一个具有四个面的立体,且每个面都是一个三角形。
这四个面彼此相邻,共享边。
通过四个顶点,可以唯一地确定一个四面体。
构造四面体有多种方法,下面介绍两种常见的方法。
1. 顶点法构造:选取空间中的四个点作为四面体的顶点,通过连接这四个点,就可以构造出一个四面体。
2. 剖分法构造:将一个三角形沿着一个内部点作剖分,得到四个小三角形。
这四个小三角形的边即为四面体的边,而原来的三角形则成为四面体的底面。
无论是哪种构造方法,生成的四面体都具有相同的性质和特征。
二、四面体的性质1. 顶点、边、面和体积:一个四面体有四个顶点、六条边、四个面。
其中每个面都是一个三角形,每个顶点都是三条边的交点。
四面体的体积可以通过海伦公式来计算,该公式将四面体的面积和边长联系在一起。
设四面体的底面积为S,底面和顶点的距离为h,则四面体的体积V可以通过如下公式求得:V = (1/3) * S * h。
2. 共面性:四面体的四个顶点不共面,也就是说它们不会在同一个平面上。
这个性质使得四面体与其他几何体有所区别。
3. 高度和正交性:对于任意一个面,可以通过顶点引垂线得到一条高。
同时,四面体的相邻面也满足正交关系,即相交直线互相垂直。
4. 对称轴和中线:四面体具有对称轴和中线。
对称轴是通过两个相对的棱的中点连接而成的直线,它可以将四面体分为两个对称的部分。
中线则是通过两个相对的顶点的中点连接而成的直线。
5. 欧拉公式:对于一个凸四面体,其顶点数、边数和面数满足欧拉公式:顶点数 + 面数 = 边数 + 2。
四、特殊类型的四面体1. 正四面体:四个等边三角形组成的四面体称为正四面体。
正四面体具有以下特点:所有边长相等,任意两条边的夹角为60度,底面上的高相等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三章 轴对称、三维和高次单元§3-2 空间问题的四面体单元空间问题的有限单元法,和平面问题及轴对称问题的有限单元法的原理和分析过程完全相同。
由于空间问题应采用三维坐标系,因此单元的自由度、刚度矩阵的元素个数,方程组内方程个数等要较平面问题和轴对称问题多,所以空间问题的规模一般比轴对称问题和平面问题大得多。
它要求计算机的内存大,且计算时间长,费用高。
这些问题都给三维有限单元法的具体运用带来许多困难。
和平面问题一样,空间有限单元法采用单元也是多种多样的,其中最简单的是四节点四面体单元。
采用四面体单元和线性位移模式来处理空间问题,可以看作平面问题中三角形单元的推广。
在采用四面体单元离散化后的空间结构物中,一系列不相互重叠的四面体之间仅在节点处以空间铰相互连接。
四节点四面体单元仅在四个顶点处取为节点,其编号为i,j,m,p 。
每个单元的计算简图如图3-7所示。
在位移法中,取节点位移为基本未知量,四节点四面体单元共有十二个自由度(位移分量),其节点位移列阵为{}[]Tpp p m m m j jj i i ip m j i ew v u w v u w v u w v u =⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧=δδδδδ其子矩阵 {}[]i ii i w v u =δ (i,j,m)相应的节点力列阵为{}[]Tp m j ie F F F F F -图3-7 空间四面体单元其子矩阵 {}[]Ti i i i W V U F =一、单元法位移函数结构中各点的位移是坐标x 、y 、z 的函数。
当单元足够小时,单元内各点的位移可用简单的线性多项式来近似描述,即⎪⎭⎪⎬⎫+++=+++=+++=z y x w z y x v z y x u 121110087654321αααααααααααα (3-49) 式中1α,2α,…,12α是十二个待定系数,它们可由单元的节点位移和坐标确定。
假定节点i,j,m,p 的坐标分别为(i x i y i z )、(j x j y j z )、(m x m y m z )、 (p x p y p z ),将它们代入(3-49)式的第一式可得各个节点在x 方向的位移⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧+++=+++=+++=+++=p p p p m m m m j j j j i i i i z y x u z y x u z y x u z y x u 4321432143214321αααααααααααααααα (3-50)解上述线性方程组,可得到1α,2α,3α,4α,再代入(3-50)式,得])()()()[(61p p p p p m m m m m jj j j j i i i i i u z d y c x b a u z d y c x b a u z d y c x b a u z d y c x b a Vu +++-+++++++-+++=(3-51) 其中V 为四面体ijmp 的体积,a i ,b i ,…,c p ,d p 为系数。
pppm m m j j j i i i z y x z y x z y x z y x V 1111=(3-52)p p pm m mj j ji z y x z y x z y x a = 111j ji m m p py z b y z y z = p p m m j j i z x z x z x c 111= 111p pm mj ji y x y x y x d = (i,j,m,p) (3-53) 为了使四面体的体积V 不致为负值,单元四个节点的标号i,j,m,p 必须按照一定的顺序:在右手坐标系中,要使得右手螺旋在按照i →j →m 的转向转动时,向p 的方向前进,象图3-1中单元那样。
用同样方法,可以得出其余二个位移分量:])()()()[(61p p p p p m m m m m jj j j j i i i i i v z d y c x b a v z d y c x b a v z d y c x b a v z d y c x b a Vv +++-+++++++-+++=(3-54) ])()()()[(61p p p p p m m m m m jj j j j i i i i i w z d y c x b a w z d y c x b a w z d y c x b a w z d y c x b a Vw +++-+++++++-+++=(3-55) 综合表达式(3-51)、(3-54)及(3-55),可以将位移分量表示成为{}[]{}[]{}ep mj ieTIN IN IN IN N w v uf δδ===][ (3-56)其中I 是三阶的单位矩阵,[N]为形函数矩阵,而各个形函数为⎭⎬⎫+++-=+++=),(6/)(),(6/)(p j Vz d y c x b a N m i V z d y c x b a N i i i i j i i i i i (3-57) 和平面问题相似,(3-49)式中的系数1α,5α,6α代表刚性移动0u ,0v ,0w ;系数2α,7α,12α代表常量的正应变;其余6个系数反映了刚性转动x w ,y w ,z w 和常量剪应变。
这就是说,12个系数充分反映了单元的刚体位移和常量应变。
同时,可以证明:由于位移模式是线性的,两个相邻单元的共同边界在变形过程中 ,始终是相互贴合的,使得离散的模型变形中保持为连续体。
这样,选用的位移函数满足收敛的充分必要条件,保证了有限单元法解答收敛于精确解。
二、载荷移置空间问题的单元载荷移置和平面问题一样,也是根据静力等效原则,将不作用在节点上的集中力、体力、面力移置成作用在节点上的等效节点载荷。
其通用公式的形式和平面问题也是一样的,只不过多出一维空间分量。
1. 集中力设单元上某点(x,y,z)作用有集中力{}Txyz P P P P ⎡⎤=⎣⎦则仍然得到等效节点载荷{}{}P N R T ][= (3-58)这里 {}T p pp m m m j j j i i ieZ Y X Z Y X Z Y X Z Y X R ][=2. 分布体力单元上作用有分布体力{}T Z YXP ][=,则{}{}dV P N R T e ⎰=][ (3-59)其中dV 是单元中的微分体积,对于直角坐标系上式为{}{}dxdydz p N R eT e ⎰⎰⎰=][ (3-60)3. 分布面力单元的某一边界面 S 上作用有一分布面力{}[]TZ YX P =则 {}{}dA P N R T e⎰=][其中dA 是边界面S 上的微分面积。
4. 常见载荷的移置上列公式是空间问题载荷移置的通用公式。
对于四节点四面体单元,由于其采用线性位移模式,采用直接计算虚功的方法求出节点载荷比较简单。
下面介绍常见的二种载荷的移置。
(1) 重力四面体单元的自重为W ,作用在质心C 处(如图3-8)。
为求得节点载荷X i ,Y i ,Z i ,可分别假想发生1*=i u ,1*=i v 或1*=i w 的虚位移。
在1*=i u 或1*=i v 时,整个单元上各点的均没有z 方向上的虚位移,重力W 不做功,所以X i =Y i =0。
当1*=i w 时,jmp 面上各点的虚位移为零,即0*=b w ,又因bi bc 41=,所以有 41*=c w , 4WZ i -= 对于其余三个节点可得同样结论,于是有{}Tei W R ⎥⎦⎤⎢⎣⎡-=400(i,j,m,p) (3-61)即,对于四节点四面体单元承受的重力载荷,只需要把共41移置到每个节点上即可。
(2) 界面压力设四面体的一个边界面ijm 上受有一线性分布的压力P ,共在三个节点上的强度分别为q i ,0,0。
很容易看出,该力向p 点移置的等效节点力为零。
由水力学知,总压力ijm q P i ∆=31,作用于ijm 面上的d 点,d 点到ij 边和im 边的距离分别为m 到ij 及j 到im 边的距离的1/4。
于是可得{}Tijm i Tei q P P P R ⎥⎦⎤⎢⎣⎡∆=⎥⎦⎤⎢⎣⎡=021211610442(3-62) 所得各节点载荷的方向和分布力的方向相同,要求各节点载荷分量还需乘上相应的方向余弦。
图3-8 重力移置由上述面力移置结果,可求出任意线性分布面的等效节点载荷。
如在ijm 面受有线性分布面力在各点强度分别为q i ,q j ,q m ,时,在i 节点的等效载荷为ijm m j i i q q q P ∆++=)2121(61 (i ,j ,m) (3-63)三、应力应变矩阵空间问题几何方程为{}Tz y x z y x z u x w yw z u x v y u z w y vx u ⎥⎦⎤⎢⎣⎡∂∂+∂∂∂∂+∂∂∂∂+∂∂∂∂∂∂∂∂=⎪⎪⎪⎪⎭⎪⎪⎪⎪⎬⎫⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧=γγγεεεε 将四面体单元之位移表达式(3-52)、(3-54)和(3-55)代入几何方程,即得单元应变。
用节点位移可表示为{}{}[]{}ep mj ie B B B B B δδε--==][ (3-64)式中应变矩阵子矩阵为6×3矩阵:⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡=i ii i i ii i ii b d c d b c d c b V B 00000000061][ (i,j,m,p) (3-65) 由上式可以看出,每一个单元的应变矩阵是一个常量矩阵;因此,采用线性位移模式的四面体单元是常应变单元。
这与平面问题中的三角形单元是一样的。
而与平面问题的不同之处仅在于应变矩阵的阶数不同。
将表达式(3-16)代入空间问题的物理方程,即可得出用单元节点位移表示的单元应力:{}{}[]{}{}eeS B D D δδεσ][][][=== (3-66)式中弹性矩阵[]D 为⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡---------=)1(221000)1(2210000)1(221000111111][μμμμμμμμμμμμ称对D 应力矩阵 []p m j iS S S S ][=S (3-67)令 μμ-=11A , )1(2212μμ--=A则⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡-+-=i ii i i i b A d A c A d A b A V E S 22222i2i i 1i 1i 1i i 1i 1i 1i 000c A d c A b A d A c b A d A c A b )21)(1(6)1(][μμμ (i,j,m,p) (3-68) 显然,式(3-68)中各元素均为常量,应力矩阵[S]是常量矩阵,所以,四面体单元是常应力单元。