函数的概念(第一课时)解读
函数的概念ppt课件

已学函数的定义域和值域
反比例函数 一次函数
y
k x
(k 0)
y ax b (a 0)
二次函数
y ax2 bx c (a 0)
a> 0
a< 0
图像
y ox
y ox
y ox
y ox
定义域 {x| x 0} R 值域 {y| y 0} R
R
R
{y
|
y
4ac 4a
b2}
{y
|
y
4ac 4a
(2) y (x 1)0 2 x 1
(1)
x 1 4 x
0 ,1
0
x
4,定义域是x
1
x
4
(2)
x
2 1
0
,
解得x
1且x
1, 定义域为
x
x 1且x 1
x 1 0
x2 x 12
解析:由题意得x2-x-12≥0,解得x≤-3或x≥4. 定义域为{x|x≤-3或x≥4}
2x2 x 3 0, 2x2 x 3 0, (2x 3)(x 1) 0, 1 x 3
2 y 2x2 x 3 2(x 1)2 25 5 2
484
[0, 5 2 ] 4
2
o12 5 x
4.求下列函数的值域 (1).y 2x x 1
设t x 1,则t 0且x t2 1, 所以y 2(t2 1) t 2(t 1)2 15 ,[15 , )
它对应,就称f: A→B 为从集合A到集合B的一个函数,记作:
a
e
b
f
c
g
…
h …
A
B
f: A→B
y=f(x) , x∈A
第一部分 第2章 2.1 2.1.1 第一课时 函数的概念

返回
[例 4] 求下列函数的值域: (1)y=x+1, x∈{1,2,3,4,5}; (2)y=x2-2x+3, x∈[0,3); 2x+1 (3)y= ;(4)y=2x- x-1. x-3
③定义域和对应法则确定后,函数的值域也就确定了;
④若函数的定义域只有一个元素,则值域也只有一个元 素,反之,当值域只有一个元素时,定义域也只有一个 元素.
返回
解析: 由函数的定义可知函数定义域中的每一个元素在值域 中一定有惟一确定的元素与之对应,故①正确;②函数的定 义域和值域可以为有限集合,如 f(x)= x+ 1,x∈{1,2,3},则 y∈ {2,3,4},故②不对;函数的三要素中,定义域和对应法则 是最重要的,当定义域和对应法则确定后,函数的值域也就 确定了,故③正确;根据函数定义可知,当定义域中只有一 个元素时, 值域也只有一个元素, 但当值域只有一个元素时, 定义域却不一定只有一个元素,如 f(x)= 1, x∈R.
2 则必须 3x-2>0,即 x> , 3 2 故所求函数的定义域为 {x|x> }. 3
返回
1 ③要使函数 y= x+1+ 有意义,则必须 2- x
x+1≥ 0, 2-x≠0. 即 x≥-1 且 x≠2.
故所求函数的定义域为{x|x>- 1 且 x≠ 2}. (2)由-1≤ x- 5≤ 5,得 4≤x≤10,所以函数 f(x-5)的 定义域是[4,10].
[例 2] (1)求下列函数的定义域 -x 4x+ 8 ① y= 2 ;② y= ; 2x - 3x- 2 3x- 2 1 ③ y= x+ 1+ . 2- x (2)已知函数 f(x)的定义域为[- 1,5], 则 f(x- 5)的定义 域为 ________. 3
函数的概念函数的概念与性质优秀课件

一二3.一个函数的构成有哪些要素?起决定作用的是哪些?为什么
一
二
6.判断正误:(1)对应关系与值域都相同的两个函数是相等函数.( )(2)函数的值域中每个数在定义域中都只存在一个数与之对应.( )答案:(1)× (2)×
三
一二6.判断正误:三公开课课件优质课课件PPT优秀课件PPT
一
二
二、区间的概念及表示1.阅读教材P64相关内容,关于区间的概念,请填写下表:设a,b∈R,且a<b,规定如下:
探究一探究二探究三探究四思想方法随堂演练函数的定义公开课课件
探究一
探究二
探究三
探变式训练 1集合A={x|0≤x≤4},B={y|0≤y≤2},下列不表示从A到B的函数的是( )答案:C
探究一探究二探究三探究四思想方法随堂演练变式训练 1集合A=
探究一
探究二
探究三
探究四
思想方法
随堂演练
探究一探究二探究三探究四思想方法变式训练4下列各组函数: ④
探究一
探究二
探究三
探究四
思想方法
解析:①f(x)与g(x)的定义域不同,不是同一个函数;②f(x)与g(x)的解析式不同,不是同一个函数;③f(x)=|x+3|,与g(x)的解析式不同,不是同一个函数;④f(x)与g(x)的定义域不同,不是同一个函数;⑤f(x)与g(x)的定义域、值域、对应关系都相同,是同一个函数.答案:⑤
随堂演练
探究一探究二探究三探究四思想方法变式训练 2(1)集合{x|
探究一
探究二
探究三
探究四
思想方法
求函数的定义域例3求下列函数的定义域:分析:观察函数解析式的特点→列不等式(组)→求自变量的取值范围
3.1.1函数概念(第1课时)教学设计.docx

3.1.1函数的概念(第一课时)(人教A版普通高中教科书数学必修第一册第三章)一、教材地位本节课是普通高中课程标准实验教科书人教A版第三章第一节第一课时(第60~64页).1.概念本身角度:函数是高中数学最抽象的概念,初中曾用运动变化的观点给出函数的描述性定义,并把函数看作两个变量间的依赖关系,但这一定义有一定的阶段性和局限性.2.学科角度:函数是高中数学的核心概念,是整个高中函数知识体系的基石,它不仅将函数概念由“对应论”发展到“集合论”,更承上启下,为后继研究基本初等函数,比如指数函数、对数函数、幂函数、三角函数以及函数的性质等提供研究方法和理论依据,让我们体会到重要概念对数学发展和数学学习的巨大作用;同时,函数的基础知识在日常生活、社会经济、以及等其他学科也有着广泛应用.3.高考角度:函数是高考数学的热点,函数图象性质、函数与代数式方程不等式数列三角解析几何导数的结合问题常考常新,从基础题、中档题到压轴题,每年高考都是绝对重点,高考所考察的五大数学思想中的数形结合思想、函数与方程思想贯穿高中数学学习的全过程.有人说,“得函数者得数学,得数学者得高考”,更是形象的道出了函数在高考中的重要地位.二、学情分析1.从学生知识层面看:通过初中函数相关知识的学习,学生具备了一定的知识经验和基础;通过必修一第一章“集合”的学习,对集合思想的认识也日渐提高,为重新定义函数、从根本上揭示函数的本质提供了知识保证.2.从学生能力层面看:学生已有一定的分析、推理和概括能力,初步具备了运用数形结合思想解决问题的能力,但数形结合的意识和思维的深刻性还有待进一步加强.3.从学生情感培养方面看:多数学生对教学新内容的学习有很高学习兴趣和积极性,但探究能力以及合作交流等能力仍需要通过课堂主渠道加以培养和提高.三、教学目标1.知识与技能:会用集合与对应的语言来刻画函数,理解函数的概念;理解函数符号y=f(x)的含义;了解函数的三要素;会求一些简单函数的定义域.(重点)2.过程与方法:让学生亲身经历函数概念的形成过程,经历从具体到抽象、从特殊到一般、从感性到理性的认知过程,培养学生抽象概括能力,让学生学会数学表达和交流,激发数学学习兴趣,发展数学应用意识.(难点)3.情感、态度与价值观:培养学生细心观察、认真分析、严谨表达的良好思维习惯,养成用函数模型描述和解决现实世界中蕴含的规律,培养学生提出问题的能力,培养创新意识.四、教学重点用集合语言和对应关系刻画函数的概念.五、教学难点对函数概念的理解.六、教学过程1.函数概念的形成1.1创设情境,引发思考思考1:(1)若正方形的边长为1,则其周长l= ;(2)若正方形的边长为2,则其周长l= ; (3)若正方形的边长为x ,则其周长l= ;【预设答案】(1)4(2)8(3)4x【设计意图】通过具体的例子复习函数的概念,让学生再次体会函数高度“抽象”的作用.思考2:初中学习的函数的概念是什么?【预设答案】设在一个变化过程中有两个变量x 和y ,如果对于x 的每一个值,y 都有唯一的值与它对应,那么就说y 是x 的函数.其中x 叫自变量,y 叫因变量.【设计意图】复习初中函数概念,强调函数是一种特殊的对应.思考3:请同学们考虑以下两个问题【设计意图】从初中的概念来看,这两组中的两个函数没什么不同,但我们有感觉它们是不同函数.让学生体会初中函数概念不够精确,从而有些问题解决不了.1.2探究典例,形成概念问题1: 某“复兴号”高速列车到350km/h 后保持匀速运行半小时.这段时间内,列车行进的路程S (单位:km )与运行时间t (单位:h )的关系可以表示为 S=350t.思考:根据对应关系S=350t ,这趟列车加速到350km/h 后,运行1h 就前进了350km ,这个说法正确吗?44y x l x ==(1)与周长是同一函数吗?22x y x y x==()与是同一函数吗?【预设答案】不正确.对应关系应为S=350t ,其中 }1750|{},5.00|{11≤≤=∈≤≤=∈s s B s t t A t .问题2 :某电气维修告诉要求工人每周工作至少1天,至多不超过6天.如果公司确定的工资标准是每人每天350元,而且每周付一次工资,那么你认为该怎样确定一个工人每周的工资?一个工人的工资w (单位:元)是他工作天数d 的函数吗?【预设答案】是函数,对应关系为w=350d,其中},6,5,4,3,2,1{2=∈A d}2100,1750,1400,1050,700,350{2=∈B w .思考:在问题1和问题2中的函数有相同的对应关系,你认为它们是同一个函数吗?为什么?【预设答案】不是.自变量的取值范围不一样.问题3 :如图,是北京市2016年11月23日的空气质量指数变化图.如何根据该图确定这一天内任一时刻th 的空气质量指数的值I ?你认为这里的I 是t 的函数吗?【预设答案】是,t 的变化范围是}240|{A 3≤≤=t t ,I 的范围是}1500|{I B 3<<=I .问题4: 国际上常用恩格尔系数)总支出金额食物支出金额=r r ( 反映一个地区人民生活质量的高低,恩格尔系数越低,生活质量越高.上表是我国某省城镇居民恩格尔系数变化情况,从表中可以看出,该省城镇居民的生活质量越来越高.你认为该表给出的对应关系,恩格尔系数r 是年份y 的函数吗?思考:上述问题1到问题4中的函数有哪些共同点和不同点?【预设答案】共同点有:(1)都包含两个非空数集,用A ,B 来表示;(2)都有一个对应关系不同点有:(1)(2)是通过解析式表示对应关系,(3)是通过图象,(4)是通过表格【设计意图】通过四个具体的例子,发现要在集合的基础上定义函数会比较准确,同时让学生体会函数对应关系的3种表示形式.函数概念:一般地,设A , B 是非空的实数集,如果对于集合A 中的任意一个数x ,按照某种确定的对应关系f ,在集合B 中都有唯一确定的数y 和它对应,那么就称f :A B →为从集合A 到集合B 的一个函数,记作y =f (x ),x ∈A .其中,x 叫做自变量,x 的取值范围A 叫做函数的定义域;与x 的值相对应的y 值叫做函数值,函数值的集合{}()f x x A |∈叫做函数的值域.函数的三个要素:定义域,对应关系,值域.常见函数的三要素:正比例函数:y kx =的定义域是R ,值域也是R .对应关系f 把R 中的任意一个数x ,对应到R 中唯一确定的数(0)ax b a +≠.一次函数:(0)y ax b a =+≠的定义域是R ,值域也是R .对应关系f 把R 中的任意一个数x ,对应到R 中唯一确定的数(0)ax b a +≠.二次函数:2(0)y ax bx c a =++≠的定义域是R ,值域是B .当a >0时,244ac b B y y a ⎧⎫-⎪⎪=≥⎨⎬⎪⎪⎩⎭;当a <0时,244ac b B y y a ⎧⎫-⎪⎪=≤⎨⎬⎪⎪⎩⎭.对应关系f 把R 中的任意一个数x ,对应到B 中唯一确定的数2(0)ax bx c a ++≠. 反比例函数:(0)k y k x =≠的定义域为{}0x x ≠,对应关系为“倒数的k 倍”,值域为{}0y y ≠.反比例函数用函数定义叙述为:对于非空数集{}0A x x =≠中的任意一个x 值,按照对应关系f :“倒数(0)k k ≠倍”,在集合{}0B y y =≠中都有唯一确定的数k x 和它对应,那么此时f :A B →就是集合A 到集合B 的一个函数,记作()(0),.k f x k x A x=≠∉2.例题讲解,理解概念例1.判断下列对应是否是函数【预设答案】(1)是(2)是(3)不是【设计意图】让学生体会函数只能是“一对一”或“多对一”,不能“一对多”.例2. 判断下列图象能表示函数图象的是()【预设答案】D【设计意图】让学生体会概念中的“唯一”二字例3 .你能构建一个问题情景,使其中函数的对应关系为y=x(10-x)吗?【预设答案】长方形的周长为20,设一边长为x,面积为y,那么y=x(10-x),其中x的取值范围是A={x|0<x<10},y的取值范围是B={y|0<y≤25}.对应关系f把每一个长方形的边长x,对应到唯一确定的面积x(10-x)【设计意图】让学生体会数学建模,数学应用思想,同时巩固函数概念是建立在集合基础上的.3.课堂练习,巩固新知练习1.若函数y=f(x)的定义域为{x|−3≤x≤8,x≠5},值域为{y|−1≤y≤2,y≠0},则y=f(x)的图象可能是()A. B.C. D.【答案】B练习2.已知函数f(x),g(x)分别由下表给出.则g(f(5))=;f(g(2))=.【答案】4 3练习3.集合A,B与对应关系f,如图所示,f:A→B是否为从集合A到集合B的函数?如果是,那么定义值域与对应关系各是什么?【答案】由图知A中的任意一个数,B中都有唯一确定数,与之对应,所以f:A→B 是从A 到B的函数定义域是A={1,2,3,4,5},值域C={2,3,4,5}4.构建一个问题情景,使其中的变量关系能用解析式y=√x来描述.【答案】正方形的面积为x,其边长为y,则y=√x,其中x的取值范围是A={x|0<x},y的取值范围是B={y|0<y}4.课堂小结,思想升华本节课主要是在集合的基础上重新定义了函数,让函数的概念更加清晰准确.。
函数的概念ppt课件

→s=x 十y;
⑥A={x|—1≤x≤1,x∈R},B={0}, 对应关系f:x→
y=0.
A.①⑤⑥
B.②④⑤⑥
C.②③④
D.①②③⑤
【思维·引】
1.在x 轴上区间[0,2]内作与x 轴垂直的直线,此直线 与函数的图象恰有一个公共点.
2.先看集合A,B 是否为非空数集,再判断非空数集A 中任取一个数,在非空数集 B 中是否有唯一的数与之 对应.
②求f(g(a)): 已 知f(x) 与 g(x), 求 f(g(a)) 的值应遵 循由里往外的原则.
(2)关注点:用来替换解析式中x 的 数a 必须是函数定 义域内的值,否则函数无意义.
习练 ·破
1.若f(x)=ax²—√2,a 为正实数,且f(f(√2))=—√2, 则 a=
2.设f(x)=2x²+2,
函数的定义,所以A 不是函数.B.由 |x—1|+√y²-1=
0得, |x—1|=0,√y²-1=0, 所以x=1,y=±1, 所以
●
( 1 ) 求 f(2),f(a+3),g
—2),g(f(2)). (2)求g(f(x)).
(a)+g(0)(a≠
≠—2),
【加练·固】
若
(x≠—1), 求 f(0),f(1),
f(1—a)(a≠2),f(f(2)) 的值.
课堂达标检测
1.下列图形中,不能确定y 是x 的函数的是
y
3
(
)
3
x
⑥对于由实际问题的背景确定的函数,其定义域还要受 实际问题的制约.
★习练·破
求下列函数的定义域:
(1
;(2)y=√x- 1·√1—x;
③
函数的概念与图象(第一课时)高一数学同步精品课件(苏教版2019必修第一册)

C.x|12≤x<1或x>1 D.x|-1≤x≤12或x>1 (2)已知函数 f(x+2)的定义域为(-2,0),则函数 f(2x-2)的定义域为( )
A.(0,2)
B.-12,12
C.(1,2)
D.-12,0
解析 (1)要使函数有意义,自变量 x 的取值必须满足2x2x--11≠≥00,,解得xx≥ ≠12±,1,即 x≥12且 x≠1,故选 C. (2)由题意知-2<x<0,∴0<x+2<2,即f(x)的定义域为(0,2),∴0<2x-2<2,解 得1<x<2.故f(2x-2)的定义域是(1,2). 答案 (1)C (2)C
【训练3】 求下列函数的值域: (1)f(x)=x2+2x+3,x∈{-1,0,1,2}; (2)f(x)=x2+2x+3. 解 (1)∵函数定义域为{-1,0,1,2}, f(x)=(x+1)2+2. ∴f(-1)=2,f(0)=3,f(1)=6,f(2)=11, ∴函数f(x)的值域为{2,3,6,11}. (2)f(x)=x2+2x+3=(x+1)2+2, ∵(x+1)2≥0,∴(x+1)2+2≥2,∴f(x)的值域为[2,+∞).
题型一 函数关系的判断 角度1 由定义判断是否为函数 【例1-1】 判断下列对应关系是否为集合A到集合B的函数.
(1)A=R,B={x|x>0},f:x→y=|x|; (2)A=Z,B=Z,f:x→y=x2; (3)A=Z,B=Z,f:x→y= x; (4)A={x|-1≤x≤1},B={0},f:x→y=0.
二、课堂检测 1.下表表示函数y=f(x)的x与y的所有对应值,则此函数的定义域为( )
X
-1
0
函数的概念及其表示法ppt课件

∴2aa+=b1=,-1,
即ab= =12-,32.
∴f(x)=12x2-32x+2.
(3)在 f(x)=2f1x· x-1 中, 将 x 换成1x,则1x换成 x,
得 f1x=2f(x)· 1x-1,
由fx=2f1x· x-1, f1x=2fx· 1x-1,
解得 f(x)=23 x+13.
答案
2 (1)lgx-1(x>1)
解析 (1)f56=3×56-b=52-b, 若52-b<1,即 b>32时, 则 ff56=f52-b=352-b-b=4, 解之得 b=78,不合题意舍去. 若52-b≥1,即 b≤32,则 =4,解得 b=12.
(2)当 x<1 时,ex-1≤2,解得 x≤1+ln 2, 所以 x<1.
当 x≥1 时, ≤2,解得 x≤8,所以 1≤x≤8.
解析 (1)令 t=2x+1(t>1),则 x=t-2 1, ∴f(t)=lgt-2 1,即 f(x)=lgx-2 1(x>1). (2)设 f(x)=ax2+bx+c(a≠0), 由 f(0)=2,得 c=2, f(x+1)-f(x)=a(x+1)2+b(x+1)+2-ax2-bx-2=x-1, 则 2ax+a+b=x-1,
2.下列给出的四个对应中: ①A=B=N*,对任意的 x∈A,f:x→|x-2|; ②A=R,B={y|y>0},对任意的 x∈A,f:x→x12; ③A=B=R,对任意的 x∈A,f:x→3x+2; ④A={(x,y)|x,y∈R},B=R,对任意的(x,y)∈A,f:(x,y)→x +y. 其中对应为函数的有________(填序号).
第1讲 函数的概念及其表示法
考试要求 1.函数的概念,求简单函数的定义域和值域,B 级要求;2.选择恰当的方法(如图象法、列表法、解析法)表 示函数,B级要求;3.简单的分段函数及应用,A级要求.
数学 1 3.1.1 函数的概念-课件

D.f:x→y=x
【解析】 (1)观察图象可知,A,B,C 中任取一个 x 的值,y
有可能有多个值与之对应,所以不是函数图象.D 中图象是函
数图象.
栏目 导引
第三章 函数的概念与性质
(2)①错误.若函数的值域只含有一个元素,则定义域不一定只 含有一个元素; ②正确.因为 f(x)=5,这个数值不随 x 的变化而变化,所以 f(π) =5; ③错误.函数就是两个非空数集之间的对应关系. (3)对于 A 中的任意一个元素,在对应关系 f:x→y=18x;f:x→y =14x;f:x→y=12x 下,在 B 中都有唯一的元素与之对应,故 能构成函数关系.对于 A 中的元素 8,在对应关系 f:x→y=x 下,在 B 中没有元素与之对应,故不能构成函数关系.
(-∞,4).
栏目 导引
第三章 函数的概念与性质
已知全集 U=R,A={x|1<x≤3},则∁UA 用区间表示为 ________. 解析:∁UA={x|x≤1 或 x>3},用区间可表示为(-∞,1]∪(3, +∞). 答案:(-∞,1]∪(3,+∞)
栏目 导引
第三章 函数的概念与性质
下图中能表示函数关系的是________.
栏目 导引
第三章 函数的概念与性质
已知函数 g(x)=2x2-1,则 g(1)=( )
A.-1
B.0
C.1
D.2
解析:选 C.因为 g(x)=2x2-1,所以 g(1)=2-1=1.
函数 f(x)= 41-x的定义域是(
)
A.(-∞,4)
B.(-∞,4]
C.(4,+∞)
D.[4,+∞)
解析:选 A.由 4-x>0,解得 x<4,所以此函数的定义域为
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
函数的概念(第一课时)
------郑州外国语学校乔慧娜【三维目标】
1.会用集合与对应的语言来刻画函数,理解函数符号y=f(x)的含义;通过学习函数概念,培养学生观察问题,提出问题的探究能力,进一步培养学生学习数学的兴趣和抽象概括能力;启发学生用函数模型表述和解决现实世界中蕴含的规律,逐渐形成善于提出问题的习惯,学会数学表达和交流,发展数学应用意识.
2.掌握构成函数的三要素,体会对应关系在刻画函数概念中的作用,使学生感受到学习函数的必要性的重要性,激发学生学习的积极性.
【教学重点】正确理解函数的概念,体会函数是描述变量之间的依赖关系的重要数学模型.
【教学难点】函数概念及符号y=f(x)的理解.
【教学方法】诱思教学法
【教学过程】
Ⅰ.创设情景引入课题
北京时间2007年10月24日18时05分,万众瞩目的“嫦娥一号”探月卫星成功发射,在“嫦娥一号”飞行期间,我们时刻关注着“嫦娥一号”离我们的距离随时间是如何变化的,数学上用函数来描述这种运动变化中的数量关系.
在初中已学习过函数的定义.
首先请同学们复习回顾初中学习的函数的定义:
设在某一变化过程中有两个变量x和y,如果对于每一个x值,y都有唯一的值和它对应,那么就说y是x的函数,x叫自变量,y叫因变量.
函数的定义从运动变化的观点描述了变量之间的依赖关系.
Ⅱ.探索研究
上一章我们已学习过集合,并且知道集合是现代数学的基本语言,能否用集合和对应的语言来描述函数?函数又有哪些构成要素呢?将是本节课探讨的主要内容.
一、实例分析
(1)一枚炮弹发射后,经过26s落到地面击中目标. 炮弹的射高为845m,且炮弹距地面的高度h(单位:m)随时间t(单位:s)变化的规律是:h=130t-5t2. (﹡)
你能得出炮弹飞行5秒、10秒、20秒时距地面多高吗?其中,时间t的变化范围是什么?炮弹距离地面高度h的变化范围是什么?
炮弹距离地面的高度h随时间t的变化而变化,对于在(0,26)范围内变化
的任意一个时间t ,按照关系式,都有没有高度h 与它对应呢?若有,有几个?
这里,炮弹飞行时间t 的变化范围是数集}260{≤≤=t t A ,炮弹距地面的高度h 的变化范围是数集}8450{≤≤=h h B .
能否用集合与对应的语言描述变量之间的依赖关系?
从问题的实际意义可知,对于数集A 中的任意一个时间t ,按照对应关系(﹡),在数集B 中都有唯一确定的高度h 和它对应.
(2)近几十年来,大气层中的臭氧迅速减少,因而出现了臭氧层空洞问题.图1中的曲线显示了南极上空臭氧层空洞的面积从1979~2001年的变化情况.
观察图中曲线可看到,臭氧层空洞面积s 随着时间的变化在变化,1987年、1999年的臭氧层空洞面积分别是多少?由曲线可看出,对于在1979至2001年的每一个时间t ,都对应着唯一的臭氧层空洞面积.
其中t 的变化范围是多少?臭氧层空洞面积s 的变化范围是多少? 根据图中曲线可知,时间t 的变化范围是数集}20011979{≤≤=t t A ,臭氧层空洞面积s 的变化范围是数集}260{≤≤=S S B .
观察分析并用集合与对应的语言描述变量之间的依赖关系.
对于数集A 中的任意一个时间t ,按照图中曲线,在数集B 中都有唯一确定的臭氧层空洞面积S 和它对应.
(3)国际上常用恩格尔系数反映一个国家人民生活质量的高低,恩格尔系数越低,生活质量越高. 表1中恩格尔系数随时间(年)变化的情况表明,“八五”计划以来,我国城镇居民的生活质量发生了显著变化.
表1 “八五”计划以来我国城镇居民恩格尔系数变化情况
恩格尔系数与时间之间的关系是否和前两个实例中的两个变量之间的关系相似?如何用集合与对应的语言来描述这个关系?请仿照(1)(2)描述表中恩格尔系数和时间(年)的关系.
根据上表,可知时间t 的变化范围是数集},20011991{*∈≤≤=N t t t A ,恩格尔系数y 的变化范围是数集}8.539.37{≤≤=y y B . 并且,对于数集A 中的任意一个时间t ,根据表1,在数集B 中都有唯一确定的恩格尔系数y 和它对应. 二、问题探讨
以上三个实例有什么不同点和共同点?
活动:让学生分组讨论交流,引导学生找出这三个对应的本质共性. 三个实例中都有两个变量,变量的取值范围都可用集合表示,两个集合之间都有一定的对应关系,有怎样的对应关系呢?
归纳以上三个实例,可看出其不同点是:实例(1)是用解析式刻画变量之间的对应关系,实例(2)是用图像刻画变量之间的对应关系,实例(3)是用表格刻画变量之间的对应关系.
其共同点是:①都有两个非空数集A ,B ;②两个数集之间都有一种确定的对应关系;是一种怎样的对应关系?③对于数集A 中的每一个x ,按照某种对应关系f ,在数集B 中都有唯一确定的y 值和它对应. 记作.:B A f → 我们把这样的对应称为函数.
Ⅲ.归纳概括
通过对三个实例的探讨分析,找出了其共同点. 在三个实例中,大家用集合与对应的语言分别描述了两个变量之间的依赖关系,其中一个变量都是另一个变量的函数,
你能否用集合与对应的语言来刻画函数,抽象概括出函数的概念呢? 活动:让学生分组讨论交流,归纳出函数的概念. 1.函数的概念:
一般地,设A ,B 是非空的数集,如果按照某种确定的对应关系f ,使对于集合中A 任意一个数x ,在集合中B 都有唯一确定的数f (x )和它对应,那么就称
B A f →:为从集合A 到集合B 的一个函数,记作.),(A x x f y ∈=
其中,x 叫做自变量,x 的取值范围A 叫做函数的定义域;与x 的值相对应的y 值叫做函数值,函数值的集合})({A x x f ∈叫做函数的值域.
显然,值域是集合的子集.
用集合与对应的语言给出了函数的定义,请同学们分析函数的本质是什么?构成函数的基本要素有哪些?
2. 函数的本质:B A f →:(在对应关系f 下,集合A 到集合B 的一种对应). 3.函数的构成要素:定义域、对应关系、值域.
强调:①值域由定义域和对应关系唯一确定;
②f (x )是函数符号,f 表示对应关系,f (x )表示x 对应的函数值,绝对不能理解为f 与x 的乘积.在不同的函数中f 的具体含义不同,由以上三个实例可看出对应关系可以是解析式、图象、表格等.函数除了可用符号f (x )表示外,还可用g (x ),F (x )等表示.
Ⅳ 提出问题:(设计意图:加深对函数概念的理解.)
初中已学习过一次函数、二次函数、反比例函数,下面请大家回答以下问题: 一次函数、二次函数、反比例函数的定义域、值域、对应关系分别是什么? 并用函数的概念来描述这些函数.
1.一次函数)0(≠+=a b ax y 的定义域是R ,值域是R ,对于R 中的任意一个数x ,在R 中都有唯一的数)0(≠+=a b ax y 和它对应.
2.二次函数)0(2≠++=a c bx ax y 的定义域是R ,值域是B .
当0>a 时,⎭⎬⎫⎩⎨⎧-≥=a b ac y y B 442;当0<a 时, ⎭⎬⎫
⎩
⎨⎧-≤=a b ac y y B 442.对于R
中的任意一个数x ,在B 中都有唯一的数)0(2≠++=a c bx ax y 和它对应.
3.反比例函数)0(≠=k x
k
y 的定义域、对应关系和值域各是什么?请用函数的定义来描述.
函数的本质是两个非空数集间的一种确定的对应关系,下面请同学们 Ⅴ. 思考辨析:
1. )(1R x y ∈=是函数吗?
2.)0(≥±=x x y 是函数吗?
3.x x y -+=
13-是函数吗?
方法引导:如何判断给定的两个变量间是否具有函数关系? 依据定义,依据定义中的哪几个要点?要注意函数概念中的关键词. (1)定义域和对应关系是否给出?(2)根据所给对应关系,自变量x 在定义域中的每一个值,是否都有唯一确定的y 值和它对应?
判断函数的标准可以简化成:两个非空数集A ,B ,一个对应关系. 结合三个实例分析,使学生更深刻理解函数的概念. 由学生总结:理解函数的定义应注意: ①函数是非空数集到非空数集上的一种对应.
②符号“f:A →B ”表示从A 到B 的一个函数.集合A 中数的任意性,集合B 中数的唯一性.
提出问题:你能举出函数的实例吗?(举出不同类型、生活中函数的例子吗?) 如:出租车计价器上的读数是行驶公里数的函数;火车票票价是里程数的函数;家庭电费是家庭用电量的函数;某人的身高是其年龄的函数,反之年龄未必是身高的函数,同一身高可能对应不同的年龄,函数的例子还可以列举很多,不再一一枚举,望同学们课下讨论.
Ⅵ.【练习反馈】
1.下列图像中不能作为函数y =f (x )图像的是( B )
Ⅶ.【提炼总结】
1. 本节课探讨了用集合和对应的语言描述函数的概念,并引进了函数符号y =f (x ).
2. 突出了函数概念的本质:两个非空数集间的一种确定的对应关系. 3.明确了构成函数的三要素:定义域、对应关系、值域. Ⅷ.【课后作业】
一、举出生活中函数的例子(三个以上),并用集合与对应的语言来描述函数,同时说出函数的定义域、对应关系和值域.
二、课本P 24 习题1.2 1、3、4
Ⅸ.【板书设计】。