职业高中高一数学题

合集下载

数学职高高一试题及答案

数学职高高一试题及答案

数学职高高一试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是无理数?A. 3.14159B. -3.14C. πD. 0.1010010001…答案:C2. 函数f(x) = 2x^2 - 4x + 3的零点是:A. x = 1/2B. x = 2C. x = -1D. x = 3答案:B3. 等差数列{an}中,a1 = 2,公差d = 3,那么a5的值是:A. 14B. 17C. 20D. 23答案:A4. 已知集合A = {1, 2, 3},B = {2, 4, 6},那么A∩B的值是:A. {1, 2, 3}B. {2, 4, 6}C. {2}D. 空集答案:C5. 直线y = 2x + 1与x轴的交点坐标是:A. (-1/2, 0)B. (0, 1)C. (-1, 0)D. (1, 0)答案:A6. 一个圆的半径为5,那么它的面积是:A. 25πB. 50πC. 100πD. 25答案:C7. 以下哪个选项是复数?A. 3 + 4iB. -2C. √2D. 0.5答案:A8. 函数f(x) = x^3 - 3x^2 + 2x的导数是:A. 3x^2 - 6x + 2B. x^2 - 6x + 2C. 3x^2 - 3x + 2D. x^2 - 3x + 2答案:A9. 一个等边三角形的边长为a,那么它的高是:A. a√3/2B. a√3/3C. a√3D. a/√3答案:A10. 一个圆的周长是6π,那么它的直径是:A. 3B. 6C. 2D. 1答案:A二、填空题(每题4分,共20分)1. 一个数的平方根是2,那么这个数是______。

答案:42. 等比数列{bn}中,b1 = 8,公比q = 1/2,那么b4的值是______。

答案:23. 一个直角三角形的两条直角边长分别为3和4,那么斜边的长度是______。

答案:54. 函数f(x) = x^2 - 6x + 8的最小值是______。

职高高一期末数学试卷中职

职高高一期末数学试卷中职

一、选择题(每题5分,共20分)1. 下列各数中,有理数是()A. √2B. πC. 3/5D. 无理数2. 如果a < b,那么下列不等式中正确的是()A. a - 1 < b - 1B. a + 1 > b + 1C. a/2 < b/2D. a^2 > b^23. 下列各函数中,是反比例函数的是()A. y = 2x + 3B. y = x^2C. y = 1/xD. y = 3x - 44. 在直角坐标系中,点P(2,3)关于y轴的对称点是()A.(-2,3)B.(2,-3)C.(-2,-3)D.(2,3)5. 一个长方形的长是5cm,宽是3cm,那么它的对角线长是()A. 8cmB. 10cmC. 12cmD. 15cm二、填空题(每题5分,共20分)6. 有理数a和b满足a + b = 0,则a和b互为()。

7. 若函数y = kx + b(k≠0)的图象经过点(1,2),则k = ,b = 。

8. 在等腰三角形ABC中,AB = AC,若∠BAC = 50°,则∠ABC = °。

9. 两个数的乘积是-18,且其中一个数是3,那么另一个数是()。

10. 圆的半径扩大到原来的2倍,那么圆的面积扩大到原来的()倍。

三、解答题(每题10分,共40分)11. (10分)解下列方程:(1)3x - 2 = 11(2)5(x + 2) - 3 = 2x + 912. (10分)已知函数y = -2x + 3,求:(1)当x = 2时,y的值;(2)函数的增减性。

13. (10分)在直角坐标系中,点A(-3,2),点B(3,-2),求:(1)点A关于x轴的对称点A';(2)线段AB的长度。

14. (10分)已知等腰三角形ABC中,AB = AC,AD是高,且AD = 4cm,AB = 6cm,求:(1)底边BC的长度;(2)∠BAC的度数。

中职数学高一数学试卷

中职数学高一数学试卷

中职数学高一数学试卷一、选择题(每题3分,共30分)1. 设集合A = {1, 2, 3},B={2, 3, 4},则A∩ B = ( )A. {1, 2, 3, 4}B. {2, 3}C. {1}D. {4}2. 不等式x + 3>0的解集是( )A. {xx > - 3}B. {xx < - 3}C. {xx≥ - 3}D. {xx≤ - 3}3. 函数y = 2x + 1在x = 1处的函数值为( )A. 3B. 2C. 1D. 04. 下列函数中,是奇函数的是( )A. y = x^2B. y = 2x+1C. y=(1)/(x)D. y = √(x)5. 若log_a2 = m,log_a3=n,则log_a6 = ( )A. m + nB. m - nC. mnD. (m)/(n)6. 已知向量→a=(1,2),→b=(3, - 1),则→a+→b=( )A. (4,1)B. ( - 2,3)C. (2, - 3)D. ( - 4, - 1)7. 在等差数列{a_n}中,a_1=1,d = 2,则a_3=( )A. 1B. 3C. 5D. 78. 直线y = 2x - 1的斜率是( )A. 2B. -1C. 1D. -29. 二次函数y=x^2-2x - 3的顶点坐标是( )A. (1,-4)B. ( - 1, - 4)C. (1,4)D. ( - 1,4)10. 若sinα=(1)/(2),且α∈(0,(π)/(2)),则cosα = ( )A. (√(3))/(2)B. -(√(3))/(2)C. (1)/(2)D. -(1)/(2)二、填空题(每题3分,共15分)1. 集合{x - 2用区间表示为______。

2. 函数y=√(x - 1)的定义域是______。

3. 等比数列{a_n}中,a_1 = 2,q = 3,则a_3=______。

4. 直线3x - 2y+1 = 0的截距式方程为______。

职高数学高一试题及答案

职高数学高一试题及答案

职高数学高一试题及答案一、选择题(每题5分,共30分)1. 下列哪个选项是不等式2x-3>5的解集?A. x>4B. x<4C. x>1D. x<1答案:A2. 函数f(x)=3x^2-2x+1的图像开口方向是:A. 向上B. 向下C. 不能确定D. 没有开口答案:A3. 计算下列表达式的结果:(2x+3)(3x-2) = ?A. 6x^2-x-6B. 6x^2-x+6C. 6x^2+x-6D. 6x^2+x+6答案:A4. 圆的方程为(x-2)^2+(y+3)^2=9,圆心坐标是:A. (2, -3)B. (-2, 3)C. (-2, -3)D. (2, 3)答案:A5. 已知数列{an}的前n项和为Sn,且满足a1=1,an=2an-1+1,求S5的值。

A. 31B. 63C. 15D. 11答案:A6. 函数y=sin(x)在区间[0, π]上的最大值是:A. 0B. 1C. -1D. π答案:B二、填空题(每题5分,共20分)1. 如果一个等差数列的前三项依次为2,5,8,则该数列的第10项是______。

答案:232. 一个圆的半径为5,那么它的面积是______。

答案:25π3. 函数f(x)=x^3-3x+2在x=1处的导数值是______。

答案:04. 已知等比数列{bn}的前三项依次为2,4,8,则该数列的第5项是______。

答案:16三、解答题(每题10分,共50分)1. 解不等式:3x-2>5x+4。

答案:由3x-2>5x+4,得-2x>6,所以x<-3。

2. 求函数f(x)=x^2-4x+3在区间[1,3]上的最大值和最小值。

答案:函数f(x)=x^2-4x+3的导数为f'(x)=2x-4,令f'(x)=0,得x=2为极值点。

计算f(1)=0,f(2)=-1,f(3)=0,所以最大值为0,最小值为-1。

职高高一期末数学试卷

职高高一期末数学试卷

考试时间:120分钟满分:100分一、选择题(每题5分,共50分)1. 下列各数中,属于有理数的是()。

A. √9B. πC. 0.1010010001…(无限循环小数)D. √-12. 已知函数f(x) = 2x - 3,那么f(-1)的值是()。

A. -5B. -1C. 1D. 53. 下列图形中,不属于轴对称图形的是()。

A. 正方形B. 等边三角形C. 长方形D. 平行四边形4. 在△ABC中,若∠A = 45°,∠B = 60°,则∠C的度数是()。

A. 75°B. 105°C. 120°D. 135°5. 下列代数式中,正确的是()。

A. a² + b² = (a + b)²B. (a + b)² = a² + 2ab + b²C. (a - b)² = a² - 2ab + b²D. a² - b² = (a + b)(a - b)6. 已知数列{an}的通项公式为an = 3n - 2,则第10项a10的值是()。

A. 27B. 28C. 29D. 307. 若直角三角形的两条直角边长分别为3和4,则斜边长是()。

A. 5B. √5C. √17D. 2√28. 下列函数中,y = kx + b是一次函数的是()。

A. y = x² + 1B. y = 2x - 3C. y = √xD. y = |x|9. 在平面直角坐标系中,点P(2, -3)关于x轴的对称点是()。

A. (2, 3)B. (-2, -3)C. (2, -3)D. (-2, 3)10. 下列各数中,无理数是()。

A. √4B. 0.1010010001…(无限循环小数)C. √-1D. π二、填空题(每题5分,共25分)11. 已知a = -2,b = 3,则a² + b² = _______。

职高高一数学集合测试卷

职高高一数学集合测试卷

职高高一数学集合测试卷一、选择题(每题3分,共30分)1. 下列集合中,表示同一集合的是()A = {1,2},B = {(1,2)}A = {x x>0},B = {y y>0}A = {x x = 2k,k∈Z},B = {x x = 2k + 1,k∈Z}A = {x x² - 3x+2 = 0},B = {1,2}2. 设集合A={1,2,3},B = {3,4,5},则A∪B=( ) {1,2,3,4,5}{3}{1,2,4,5}{1,2,3}3. 若集合A={x x<0},B={x x²>1},则A∩B=( ){x x< - 1}{x - 1<x<0}{x x<0}{x x>1}4. 已知集合A = {x x² - 5x+6 = 0},则集合A的子集个数为()23455. 设全集U={1,2,3,4,5},集合A={1,3,5},则∁UA=( ){2,4}{1,3,5}{1,2,3,4,5}∅6. 集合A={x - 1<x<2},集合B={x 0<x<3},则A - B=( ){x - 1<x≤0}{x 0<x<2}{x 2≤x<3}{x - 1<x<3}7. 若集合A = {x x = 2n,n∈N},B = {x x = 3n,n∈N},则A∩B中的最小元素是()6238. 设集合M={x x = a²+1,a∈R},N={y y=b² - 1,b∈R},则M与N 的关系是()M = NM⊂NN⊂MM∩N = ∅9. 集合A={x x² - 3x - 4 = 0},则方程x² - 3x - 4 = 0的根是集合A的()子集真子集元素以上都不对10. 已知集合A={1,2,3,4},B={y y = x - 1,x∈A},则B=( ){0,1,2,3}{1,2,3,4}{2,3,4,5}{ - 1,0,1,2}二、填空题(每题4分,共20分)1. 集合A={x x² - 9 = 0}的元素是______。

高一职高数学期末考试(第一学期)

高一职高数学期末考试(第一学期)

高一职高期末考试数学试题一、选择(每题3分)1、设全集U=},104|{N x x x ∈≤≤,A={4,6,8,10},则A C U ( ) A.{5} B 、{5,7} C 、{5,7,9} D 、{7,9}2、已知集合},,{},{c b a A b a = ,则符合条件集合A 的个数为( ) A 、1个 B 、2个 C 、3个 D 、4个3、若集合P={}21|≤<-x x ,集合Q={}01|>-x x ,则Q P 等于( ) A 、}11|{<<-x x B 、}21|{≤<x x C 、}21|{≤<-x x D 、 }1|{->x x4、“0>a 且0>b ”是“a ·b>0”的( )条件A、充分不必要 B 、必要不充分 C 、充分必要 D 、以上答案都不对 5、若a 、b 是任意实数,且a >b,则( ) A 、22b a > B 、1<abC 、b a lg lg >D 、b a --<22 6、下列命题中,正确的是( )A、若a >b ,则a c>bc B 、若,22bc ac >则a >b C 、若b a >,则22bc ac > D 、若b a >,c>d,则bd ac >7、如果A==<+-}01|{2ax ax x Φ,则实数a 的集合是( ) A 、(0,4) B 、[0,4] C 、(0,4] D、[0,4)8、已知方程02)2(22=+++-m x m x 有两个不等的实根,则m 的取值范围是( ) A 、(-2,-1) B 、(-2,0) C 、),1()2,(+∞---∞ D 、),1(+∞- 9、下列四组函数中,有相同图像的一组是( ) A 、||x y =与33x y = B 、x y =与2x y =C 、||||x y =与22x y = D 、1)(=x f 与xx x g =)( 10、设144)2(2++=x x x f ,则)(x f 等于( )A 、2)1(+xB 、122++x xC 、12++x xD 、18162++x x11、函数2655)(xx f x x +-=-是( )函数A 、奇函数B 、偶函数C 、既奇又偶函数D 、非奇非偶函数 12、已知函数)(x f y =在),(o -∞上是减函数,则( )A 、)42()31()21(->->-f f f B 、)31()42()21(->->-f f fC 、)21()42()31(->->-f f f D 、)21()31()42(->->-f f f 13、函数225x x y --=在[-2,1]上的最大值与最小值分别是( ) A 、6,3 B 、6,5 C 、5,3 D 、6,214、函数32)1()(2++-=mx x m x f 且2)1(=-f ,则)(x f 是( ) A 、在),0[+∞上的单调递增函数 B 、在]0,(-∞上的单调递减函数C 、在),(+∞-∞内的奇函数D 、在),(+∞-∞内的偶函数15、把函数)(x f y =的图像向左、向下分别平移2个单位,得到函数xy 2=的图像,则( ) A 、22)(2+=+x x f B 、22)(2-=+x x f C 、22)(2+=-x x f D 、22)(2-=-x x f二、填空题(每题3分)1、设U=R ,P=}1|{≥x x ,Q=}30|{≤≤x x ,则)(Q P C u ⋂=__________________2、若0>a ,则aba b _________1-(填<或>) 3、不等式3|3|1≤-<x 的解集为________________4、设函数=)(x f 0,10,22{≤->+x x x x , 则___________)]2([=-f f5、设函数)(x f 是偶函数,函数)(x g 是奇函数,且x x x g x f +=+2)()(,则)(x f =__________6、设二次函数的图像顶点为(1,3),且过点(2,5),则其解析式为_________________7、_______________2009)49(8102343=++-8、化简,当0≥a 时,a a a 3141的值是_______________9、4524log =x ,则x =______________ 10、函数13+=-x a y 的图像恒过一个定点坐标是______________三、解答题 1、解不等式(1)、0)3)(2)(1(2>++-x x x (2)、x x283)31(2-->2、求函数41432++++=x x x y 的定义域3、设函数1)(35+++=cx bx ax x f 且1)(-=πf ,求)(π-f 的值4、323524log 25log 3log )01.0(lg +--5、证明、函数xx f 1)(=在)0,(-∞上为减函数 6、已知函数0,123,0,32{)(≤+≤<-=x x x x x f(1)求)(x f 的定义域。

(完整)中职高一(上)期末数学试卷A3.docx

(完整)中职高一(上)期末数学试卷A3.docx

职业中专期末试卷(一到四章 )一、选择题( 2 分× 18=36 分,选择题答案请写上面表格中,谢谢配合!)1. 若 A∪B=A, 则 A∩ B 为()A. AB. BC.?D. A或 B2. 不等式 |3x-12|≤9 的整数解的个数是()A. 7B. 6C. 5D. 43.(-a 2) 3的运算结果是()A. a 5B.-a5C.a6D.-a6)4. 如果全集 U=R,A={x|2 < x≤ 4},B={3,4},则 A∩ ( CB)等于(UA.(2,3)∪(3,4 )B.(2,4)C.(2,3)∪(3,4]D. ( 2,4]5.已知集合 A={x|x >2} ,B={x|x > a}, 若 A B ,则 a 的范围为()A.a =2B.a≤2C.a≥ 2D.a≠26.函数 y=2x2-8x+9的最小值是()A. 0B. 1C. 7D. 97.若 x∈[3,5 ),那么式子 3-x 的值一定是()A. 正数B.负数C.非负数D.非正数8.某商品零售价 2006 年比 2005 年上涨 25%,欲控制 2007 年比 2005年只上涨10%,则 2007 年应比 2006 年降价()A.15%B.12%C.10%D.50%9. 已知 a< b<0, 那么一定有()b a b112A.a >b B.0<a<1 C.a<b D.ab< b110. 函数 y=x+x-2 (x >2) 的最小值为()A.4B.3C.2D.12-x11.函数 y= lgx的定义域是()A.[-2,2]B.(0,2)C.(0,2]D.(0,1)∪ (0,2]12.函数 y=lg(x 2-2x-3)的单调递增区间为()A.(3,+∞ )B.(-∞,-1)C.(1,+∞)D.(-∞,1)13.集合 A B 是 A B=A的( )A. 充分但非必要条件B.必要但非充分条件C. 充分必要条件D.既非充分又非必要条件14.已知关于 x 的方程 x2+ ax-a=0 有两个不等的实数根,则()A.a < -4 或 a>0B.a ≥ 0C.-4<a<0D. a>-415.若f2则 f ()的值为()(x+1)=x+3x+5,0A. 3B. 5C.2D.-116.已知 f (x)=x2+ bx+ c 的对称轴为直线 x= 2,则 f(1),f(2),f(4)的大小关系是()A. f(2)< f(1)< f(4)B. f(1)< f(2)< f(4)C. f(2)< f(4)< f(1)D. f(4)< f(2)< f(1)17.下列具有特征 f(x 1· x2)=f(x 1) +f(x 2) 的函数是()A.f(x)=2xB.f(x)=2xC.f(x)=2+xD.f(x)=log x218.设 f(x) 是( - ∞, +∞)上的奇函数, f(x+2)=-f(x),当 0≤x≤1 时,f(x)=x, 则 f(7.5)=()A. -1.5B. -0.5C.0.5D.1.5二、填空题( 3 分× 8=24 分)19.满足条件 {1,2,3}M {1,2,3,4,5,6}的集合的个数是20. 比较大小: 2x 2+5x-3_______ x 2+5x-4. 21. 已知 f (1)=3, f (n+1)=2 f (n)+n, nN +,则 f (4)=_______.22. 函数 f (x)=lg(x 2-kx+k) 无论 x 取何值均有意义,则 k 的取值范围为 _______________.23. 已知 f(x) 是奇函数,且 f(2)=3, 则 f(-2)=________.24. 二次函数 y=ax2+ bx +c (a <0) 与 x 轴的两个交点为( -2,0 ),( 2,0 ) , 则 不 等 式 ax 2 + bx + c > 0 的 解 集 是_____________________. 25. 已知 f (x +1)=x2+ 1,则 f (x )=_____________________.xx 226.求值log 2 1 ( 2 1 ) =_________________. 三、解答题(本题共 8 小题,共 60 分)27. ( 6 分)写出集合 P={1,2,3} 的所有子集。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高一年级 数学试题
一、选择题(每空4分,共40分)
1、等差数列-5,0,5,10,15的公差是( ) A.-5 B.5 C.0 D.10
2、数列
{}a n
满足a
n
=4a n 1-+3,且a 1=0,则此数列的第5项是( )。

A.15
B.255
C.16
D.63
3、56是数列1×2,2×3,3×4,4×5,…的第( )项。

A.5 B.6 C.7 D.8
4、数列
{}a n
为等差数列的充要条件是( )
A.a n +常数=+a n 1
B.常数=-+a a n n 1
C.正数=-+a a n n 1
D.负数=-+a a n n 1 5、已知等差数列
{}a n
的前n 项和为s n
,且s 5
=25,d=2,则=a 1
( )。

A.5 B.3 C.-1 D.1
6、设a 1,a 2,a 3,a 4成等比数列,其公比为2,则
a a a a 4
32
122++的值
为( )。

A. 41
B.21
C.81
D. 1
7、等比数列
{}a n
中,92
=a
,2435=a ,则=a a 61( )。

A.81 B.2120 C.2168 D.2187 8、化简CA +AB +DM +BD =( ) A.AD B.CM C.BC D.AC
9、下列四式不能化简为AD 的是( )。

A.(AB +CD )+BC
B.(AD +MB )+(BC +CM )
C.MB +AD -BM
D.OC -OA +CD
10、-7a 与a 方向( )。

A.相同
B.相反
C.垂直
D.以上都不对 二、填空题(每空3分,共30分)
1、已知数列
{}
a n
的通项公式=a n ⎪⎭

⎬⎫⎪⎩⎪⎨⎧-)(12(1为正偶数为正奇数n n n n ,则=a 3________,
=a
5
________。

2、两个数1与5的等差中项为_________。

3、在等差数列
{}a n
中,377
3
=+a
a ,则=+++a a a a 8642_________。

4、数列m,m,m,m …既是等差数列,又是等比数列,说法对吗?____(填“√”或“×”)。

5、a =“向北走20km ”,b =“向南走50km ”,则=+b a
_________.
6、已知a
=4,a b 与的方向相反,且2=b ,b m a
=,则实数m=________.
7、已知向量b 与a 不平行,实数x,y 满足向量等式b a y b x a
626+=+,则
x+y=_______.
8、A (2,4),B (1,5),则BA 的坐标是_______.
9、已知向量)31(y 4a ,),,(-==
b ,并且a ∥b
,则y=________. 三、简答题(每题10分,共30分)
1、设等差数列
{}a n
的前三项和为-3,前三项积为8
(1)求
{}a n
的通项公式。

(2)求{}a n
的求和公式 2、设数列{}a n
满足a 1
=1,a a
n n 31
=+,n ∈N +,求
(1)
{}a n
的通项公式 (2){}a n
的求和公式
3、已知平行四边形ABCD 中,M,N 分别是CD,BC 的中点,设b a
==AD AB ,
,试用b a
与表示AM ,BM ,MN .。

相关文档
最新文档