5.1.1_相交线教案
人教版七年级数学下册5.1.1《相交线》教案

1.分组讨论:学生们将分成若干小组,每组讨论一个与相交线相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。这个操作将演示相交线的基本原理。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“相交线在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
其次,注重培养学生的空间想象力。在解决实际问题时,我发现部分学生难以将题目中的信息与几何图形联系起来。为了改善这一点,我计划在今后的教学中,多设计一些空间想象力训练的环节,如让学生自己动手画图、制作模型等。
再次,加强小组合作学习的引导。在小组讨论和实验操作过程中,我发现有些学生参与度不高,依赖性强。针对这个问题,我将在今后的教学中加强对小组合作学习的引导,鼓励每个学生积极参与,培养他们的团队协作能力。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了相交线的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对相交线的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
1.理论介绍:首先,我们要了解相交线的基本概念。相交线是两条在平面内不平行且在某一点相遇的直线。它在几何学中有着重要的作用,可以帮助我们分析图形的性质和解决实际问题。
《5.1.1 相交线》教学设计

《5.1.1 相交线》教学设计一、教材内容分析本节课是人教版七年级下第五章第一节第一课时相交线。
在七年级上册,我们已经初步接触简单的平面几何图形,重点研究了线段和角,知道了互余、互补的角,等角的补角(余角)相等,能画出图形思考问题,初步掌握思考几何问题的方法,学会初步几何推理的方法。
在此基础上进一步研究平面内两条相交直线形成的4个角的位置和数量关系,为今后学习几何奠定了基础。
同时也为证明几何题提供了示范作用,本节课对于进一步培养学生的识图能力具有推动作用。
二、学生情况分析1、学生已经初步学习了角的相关内容和一些性质。
2、本课的教学对象是七年级的学生,思维活跃,模仿能力强。
三、教学目标(一)知识与技能1.理解对顶角与邻补角的概念,能从图中辨认对顶角与邻补角。
2.掌握“对顶角相等”的性质。
3.理解“对顶角相等”的初步的几何推理(二)能力目标1.经历探究对顶角、邻补角的位置关系的过程,建立空间观念2.通过分析具体图形得到对顶角,邻补角的概念,发展学生的抽象概括能力(三)情感目标1.通过相交线中有关角的探究,使学生初步认识数学与现实生活的密切联系2.通过师生的共同活动,促使学生在学习活动中培养良好的情感,形成合作交流、主动,参与的意识。
四、教学重点、难点重点:邻补角、对顶角的概念,“对顶角相等‘的性质.难点:“对顶角相等”的性质的探索过程.五、教学方法在教学中我采用启发式,引导学生思考,探究,交流,讲练结合。
教学手段则采用多媒体辅助教学。
六、教学过程(一)创设情境,引入课题教师演示以第五章章首图片为主体的课件.引导学生欣赏图片,找出图片中的相交线,平行线师:虽然图中的桥,电线等都是有限长的,但当我们把它们看成直线时,这些直线有些是相交线,有些是平行线,相交线、平行线都有许多重要性质,所以研究这些问题对今后的工作和学习都是有用的,也将为后面的学习做些准备.今天我们先研究直线相交的问题。
从而引入本节课题.(设计意图:让学生借助已有的几何知识从现实生活中发现数学问题,能由实物的形状想象出相交线,平行线的几何图形。
人教版数学七年级下册5-1-1 相交线 教案

5.1.1相交线教学设计课题 5.1.1 相交线单元第五单元学科初中数学年级七下学习目标1.了解两直线相交所构成的角,理解并掌握对顶角、邻补角的概念和性质.2.理解对顶角性质的推导过程,能使用该性质进行简单的计算.3.通过动手、操作、推断、交流等活动,进一步发展空间观念,培养识图能力,推理能力和有条理表达能力.4.通过丰富的数学活动,交流成功的经验,体验数学活动充满着探索和创造,体会数学的应用价值,培养积极思维的学习习惯.重点了解两直线相交所构成的角,理解并掌握对顶角、邻补角的概念和性质.难点理解对顶角性质的推导过程,能使用该性质进行简单的计算.教学过程教学环节教师活动学生活动设计意图导入新课【观察思考】握紧剪刀的把手时,随着把手之间的角逐渐变小,剪刀刃之间的角是怎么变化的?分析:随着把手之间的角逐渐变小,剪刀刃之间的角也逐渐变小.【观察思考】如果把剪刀的构造抽象成一个几何图形,会是什么样的图形?请你在纸上画出来.分析:剪刀的构造可看作两条相交的直线,剪刀刃之间的角就是相交直线所成的角.【复习回顾】相交线的概念:如果两条直线只有一个公共点,那么我们就说这两条直线相交,它们的公共点叫做交点.观察并思考.挖掘和利用现实生活背景,让学生将理论知识与现实生活相联系.分析:如上图,AB、CD为两条直线,点O是直线AB与直线CD的交点,我们就可以说直线AB与直线CD相交.【教学建议】引导学生观察剪刀把手夹角与刀刃夹角之间的大小关系,为后续学习邻补角、对顶角做铺垫.讲授新课【合作探究】任意画两条相交的直线,形成几个角?这些角有什么位置关系?分析:任意两条相交的直线,形成4个角;这4个角有公共顶点.【观察思考】在两条相交的直线所形成的4个角中,∠1与∠2有怎样的位置关系?分析:∠1与∠2:①有一条公共边OC;②另一边互为反向延长线;③具有这种关系的两个角,互为邻补角.问题:你还能找出其它的邻补角吗?分析:∠2与∠3;∠3与∠4;∠4与∠1问题:∠1与∠2的度数有什么关系?分析:∠1+∠2=180o【观察思考】在两条相交的直线所形成的4个角中,∠1与∠3思考并回答小组交流合作,观察思考积极回答问题.让学生了解平面内两直线相交所成的4个角之间有怎样的特征.让学生经历合作探究的过程,通过观察、发现、归纳、概括得出邻补角和对顶角的概念;培养学生发现问题,解决问题和抽象概括能力.有怎样的位置关系?分析:∠1与∠3:①有一个公共顶点O;②∠1的两边分别是∠3的两边的反向延长线;③具有这种关系的两个角,互为对顶角.问题:你还能找出其它的对顶角吗?分析:∠2与∠4【合作探究】∠1与∠3的度数有什么关系?分析:∠1+∠2=180o∠2+∠3=180o∠1+∠2=∠2+∠3∠1=∠3总结:对顶角的性质:对顶角相等.【教学建议】引导学生小组合作,自主实践,教师巡回指导,随时观察学生完成情况并进行相应指导.熟悉并掌握对顶角相等.通过分析已知求证,利用平角的定义和等式的性质进行推导,培养学生逻辑推理力.【典型例题】如图,直线a、b相交,若∠1 = 40°,求∠2、∠3、∠4的度数.解:由邻补角的定义,∠1 = 40°可得∠2 = 180°-∠1= 180°-40°= 140°由对顶角相等,可得∠3 = ∠1 = 40°∠4 = ∠2 = 140°【教学建议】教师适当引导,学生自主完成.思考并积极回答.通过例题,规范学生对解题步骤的书写,让学生感受数学的严谨性.【随堂练习】1.如图,直线AB、CD、EF 两两相交,图中共有___对对顶角,___对邻补角.答案:6;12.2.下列各组角中,∠1与∠2是对顶角的为( )答案:D3. 如图,直线AB、CD相交于点O,OE是射线. 则:∠BOC的对顶角是________________,∠AOC的对顶角是________________,∠AOC的邻补角是________________,∠BOE的邻补角是________________.答案:∠AOD;∠BOD;∠BOC、∠AOD;∠AOE.4. 如图,已知直线AB,CD相交于点O,OA平分∠EOC,∠EOC=70°,求∠BOD,∠BOC的度数.解:因为OA平分∠EOC,∠EOC = 70°所以∠AOC = 35°由对顶角相等,得∠BOD =∠AOC = 35°自主完成练习进一步巩固本节课的内容. 了解学习效果,让学生经历运用知识解决问题的过程,给学生获得成功体验的空间.通过课堂练习巩固新知,加深对顶角、余角、补角的概念和性质的理解,并学会运用它们解决一些问题.由邻补角的定义,得∠BOC = 180°-∠AOC= 180°-35°= 145°【教学建议】教师给出练习,随时观察学生完成情况并相应指导,根据学生完成情况适当分析讲解.课堂小结以思维导图的形式呈现本节课所讲解的内容. 回顾本节课所讲的内容通过小结让学生进一步熟悉巩固本节课所学的知识.板书1.邻补角:有一条公共边,另一边互为反向延长线的两个角,互为邻补角.邻补角互补.2.对顶角:(1)概念:有公共顶点,并且一个角的两边分别是另一个角的两边的反向延长线,这样的两个角,互为对顶角.(2)对顶角相等.。
人教版七年级下-5.1.1相交线教案

5.1.1 相交线教案【教学目标】知识与技能理解并掌握邻补角及对顶角的概念。
过程与方法1、通过动手操作、推断、交流等活动,进一步发展空间观念,培养识图能力、推理能力和有条理表达能力。
2、在具体情境中了解邻补角,对顶角,能找出图形中的一个角的邻补角和对顶角,理解对顶角相等,并能运用它解决一些简单问题。
情感、态度、价值观引导学生观察图形,激发学生的好奇心和求知欲,并在运用数学知识解答问题的活动中获取成功的体验,建立学习的信心。
【重点难点】重点对顶角的性质。
难点探索并理解对顶角的性质。
【教学设计】一、创设情境,导入新课教师出示一块布和一把剪刀,表演剪布过程。
问题:剪刀两个把手之间的角发生了什么变化?剪刀张开的口又怎么变化?教师展示剪布的过程。
学生认真观察。
教师应先提出问题,以免在剪布过程中分散学生的注意力,使学生没有注意观察应该观察的内容。
学生观察以后,回答提出的问题。
教师引导:如果将剪刀的构造看作两条相交的直线,这就关系到两条相交直线所成的角的问题。
设计意图:通过动手操作,激发学生兴趣,同时使学生感受生活中的数学现象。
通过教师的引导,使学生将剪刀抽象成两条直线,将实际问题转化为数学间题。
二、探究邻补角与对顶角的概念如图,教师提出问题:(1)两条直线相交,形成了几个角?(2)将这些角两两配对,共能组成几对角,各对角存在怎惩样的位置关系?根据这种位置关系将它们分类。
教师画两条租交的直线,提出问题。
学生分组讨论在具体图形中得出的两条相交线构成的四个角,根据图形进行分类,然后描述邻补角和对项角的特征。
在这一活动中教师应该关注:(1)学生能否从位置上对这些角进行分类。
(2)学生能否正确区分邻补角、对项角。
(3)学生能否主动参与、勇于探究和发言。
师生共回归纳得出邻补角与对项角的概念。
设计意图:通过对图形中角与角的位置关系的探究,经历从图形到文字到符号的转化过程,使学生加深对相交概念的理解,积累一些研究图形的经验和方法。
人教版七年级数学上册5.1.1相交线(教案)

3.培养学生运用数学知识解决实际问题的能力,将相交线的概念运用到生活中,提高数学应用意识;
4.培养学生合作交流能力,在小组讨论与分享中,提高表达和倾听能力,培养团队协作精神。
三、教学难点与重点
1.教学重点
-重点一:理解并掌握相交线的定义及其特点,能准确判断两条直线是否相交;
人教版七年级数学上册5.1.1相交线(教案)
一、教学内容
人教版七年级数学上册第五章第一节第一部分“相交线”。本节课将涵盖以下内容:
1.相交线的定义及特点;
2.两条直线相交时形成的四个角;
3.对顶角的定义及性质;
4.邻补角的定义及性质;
5.运用相交线知识解决实际问题。
二、核心素养目标
1.培养学生空间观念,通过观察相交线及其形成的角,提高对几何图形的认识和把握;
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“相交线在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
实践活动方面,学生们对于实验操作表现出了极大的兴趣,这也让他们对相交线的理解更加深刻。但在操作过程中,我也发现了一些学生在细节上的疏忽,这需要我在指导时更加细心,确保每个学生都能掌握正确的操作方法。
最后,我认识到,作为教师,我不仅要教授知识,还要培养学生的学科素养,让他们在学习过程中学会思考、分析和解决问题。通过不断的反思和改进,我相信我可以帮助学生们在数学学习的道路上走得更远。
人教版七年级数学下册教案 5-1-1 相交线

5.1.1相交线一、教学目标【知识与技能】1.借助两直线相交所形成的角初步理解邻补角、对顶角的概念.2.会根据邻补角、对顶角的性质去求一个角的度数.3.掌握邻补角与对顶角的性质,并能运用它们解决简单实际问题.【过程与方法】1.通过动手操作、推断、交流等活动,进一步发展空间观念,培养识图能力、推理能力和表达能力.2.在具体情境中了解邻补角、对顶角,能找出图形中的一个角的邻补角和对顶角,理解对顶角相等,并能运用它解决一些简单问题.【情感态度与价值观】引导学生对图形进行观察、发现,激发学生的好奇心和求知欲,并在运用数学知识解答问题的活动中获取成功的体验,树立学习的信心.二、课型新授课三、课时1课时四、教学重难点【教学重点】对顶角的性质【教学难点】理解对顶角相等的性质的探索.五、课前准备教师:课件、三角尺、直尺等.学生:三角尺、铅笔.六、教学过程(一)导入新课(出示课件2-5)同学们,你们看这座宏伟的大桥,它的两端有很多斜拉的平行钢索,桥的侧面有许多相交钢索组成的图案;围棋棋盘的纵线相互平行,横线相互平行,纵线和横线相交.这些都给我们以相交线、平行线的形象.在我们生活中,蕴涵着大量的相交线和平行线.那么两条直线相交形成哪些角?这些角又有什么特征?(二)探索新知1.出示课件7-12,探究邻补角与对顶角的定义教师问:如图,把两根木条用钉子钉在一起,转动其中一根木条,观察两根木条所形成的角的位置及大小关系.你能动手画出两条相交直线吗?学生答:能,作图如下:教师问:两条直线相交,形成的小于平角的角有几个,是哪几个?学生答:两条直线相交,形成的小于平角的角有四个 .分别是∠1,∠2,∠3,∠4.教师问:将这些角两两相配能得到几对角?教师依次展示学生答案:学生1答:∠1 和∠2.学生2答:∠2 和∠3.学生3答:∠3 和∠4.学生4答:∠4 和∠1.教师问:为何如此分类呢?学生答:有一条边在一条直线上,角的顶点相同.教师问:还有其他分类吗?学生答:分类如下:∠1 和∠3,∠2 和∠4.教师问:这样分的标准是什么?学生答:两边分别在一条直线上,有共同的顶点.总结点拨:(出示课件9)教师问:观察∠1和∠2的顶点和两边,有怎样的位置关系?师生一起解答:如图,∠1与∠2有一条公共边OC,它们的另一边互为反向延长线(∠1与∠2 互补),具有这种位置关系的两个角,互为邻补角.教师问:类比∠1和∠2,看∠1和∠3有怎样的位置关系?学生答:这两个角的两边都在同一条直线上,有相同的顶点.教师总结:如图,∠1与∠3有一个公共顶点O,并且∠1的两边分别是∠3的两边的反向延长线,具有这种位置关系的两个角,互为对顶角.总结点拨:(出示课件12)考点1:对顶角的判断下列各图中,∠1与∠2是对顶角的是()(出示课件13)师生共同讨论解答如下:解析:对顶角是由两条相交直线构成的,只有两条直线相交时,才能构成对顶角.答案:D.出示课件14,学生自主练习后口答,教师订正.答案:D.2.出示课件15-17,探究对顶角、邻补角的性质教师问:在上学期我们已经知道互为补角的两个角的和为180°,因而互为邻补角的两个角的和为180°.如图所示,∠1 与∠3在数量上又有什么关系呢?学生答:猜想:∠1 =∠3.教师问:你能利用学过的有关知识来验证∠1与∠3的数量关系吗?学生答:∵∠1+∠2=180°,∠3+∠2=180°,∴∠1=∠3.教师问:∠1与∠3互为什么角?学生答:互为对顶角.教师问:由此你能猜想对顶角有什么性质?学生答:猜想:对顶角相等.教师问:你能证明你的猜想吗?学生先独立思考,师生共同讨论后解答如下:师生一起解答:已知:直线AB与CD相交于O点(如图),求证:∠1=∠3,∠2=∠4.证明:∵直线AB与CD相交于O点,∴∠1+∠2=180°∠2+∠3=180°,∴∠1=∠3.同理可得∠2=∠4.教师问:您能利用几何语言描述一下对顶角的性质吗?学生答:符号语言:∵直线AB与CD相交于O点,∴∠1=∠3,∠2=∠4.教师总结点拨:(出示课件18)两直线相交分类位置关系名称数量关系∠1 和∠2,∠2 和∠3,∠3 和∠4,∠4 和∠11.有公共顶点2.有一条公共边3.另一边互为反向延长线邻补角邻补角互补∠1 和∠3,∠2 和∠4.1.有公共顶点2.没有公共边对顶角对顶角相等3.两边互为反向延长线考点1:利用对顶角、邻补角的性质求角的度数如图,直线a、b相交,∠1=40°,求∠2、∠3、∠4的度数.(出示课件19)学生独立思考后,师生共同解答.学生1解:由邻补角的定义可知∠2=180°-∠1=180°-40°=140°;学生2解:由对顶角相等可得∠3=∠1=40°,∠4=∠2=140°.教师总结。
5.1.1_相交线教案
第1学时《5.1.1 相交线》教案(西村四中 周英利)课前说课:《相交线》是人教版教材七年级第五章第一节。
是在学生已经学习了直线、射线、线段和角有关知识的基础上, 进一步研究平面内两条直线相交形成4个角的位置和数量关系。
本节课的主要内容包括:对顶角,邻补角的定义,对顶角的性质,为以后证明几何题提供了一个示范作用,本节对于进一步培养学生的识图能力,激发学生的学习兴趣具有推动作用,所以本节课具有很重要的地位和作用。
学习目标:1. 通过图形理解对顶角和邻补角的概念,能在图形中辨认. 2.经历探索对顶角的性质的过程,掌握对顶角相等的性质. 3.会用对顶角的性质进行有关的推理和计算.学习重点:理解对顶角和邻补角的概念,掌握对顶角的性质。
学习难点:会用对顶角的性质进行有关的推理和计算。
学习过程:一、知识链接(课堂提问)1、什么是互为余角?互为补角?2、余角、补角有什么性质? 二、自主预习阅读课本1到3页内容,回答下面的问题:1、画直线AB 、CD 相交于点O ;小于平角的角有几个?2、什么是邻补角、对顶角?对顶角有什么性质? 三、合作探究 小组讨论, 完成下表 两直线相交所形成的角分 类位置关系名称数量关系4321ODC BA顶点: 两边:顶点: 两边:完成表格后,小组讨论,代表展示,其他同学补充,师生共同归纳邻补角和对顶角的定义及性质。
四、巩固落实1、下图中∠1和∠2是对顶角吗?若不是,请说明理由.(口答)2、下列各图中∠1、∠2是邻补角吗?为什么?(口答)3、如图,直线a,b 相交,∠1=40°,求∠2,∠3,∠4的度数.(把下面的解题过程补充完整) 解:∵∠3= ( ) ∠1=40°(已知)∴∠3= °(等量代换)∴∠2=180°-∠1= °( ) ∴∠4=∠2= °( ) 变式1:若∠2是∠1的3倍,求∠3的度数? 变式2:若∠2-∠1=40°, 求∠4的度数?第3题一人演板,其他学生尝试独立完成,然后展示共同评价。
5.1.1 相交线
教师在此引出课题并板书.
然后学生完成举例.
自
主
探究合作源自交流活动(一)让学生用准备好的剪刀剪纸片
问题1:一把张开的剪刀,你能联想出什么几何图形?
问题2:你能说一说剪刀剪开纸的过程中有关夹角的变化吗?
问题3:你能画出相应的几何图形吗?
问题4:你能用几何语言描述它吗?
活动(二)让学生观察刚刚画好的标准图形
教师提出问题.
学生回答.
尝
试
应
用
1.如图5.1.1—1所示,∠1和∠2是对顶角的图形有( )毛
A.1个B.2个C.3个D.4个
2.如图5.1.1—2所示,AB与CD相交所成的四个角中,∠1的邻补角是___,∠1的对顶角_____;若∠1=40°,则∠2=_____,∠3=_____,∠4=_____;
问题5:任意两条相交的直线形成的4个角中,两两相配共能组成几对角?
问题6:这些角有什么位置关系?
结论:邻补角:;
对顶角:.
活动(三)探索对顶角的性质
问题7:对顶角大小有什么关系?
结论:
问题8:你能根据“同角的补角相等”来说说你的发现是正确的吗?
说理过程:
问题9:你能举出生活中应用对顶角相等的例子吗?
学生课下独立完成,延续课堂.
教师交代学生用剪刀注意安全.
学生动手操作,独立思考问题,然后画出相应的几何图形,用语言准确描述.
教师深入学生中去,指导得出几何图形,冰在黑板上画出标准图形.
教师提出问题.
学生分组讨论在具体图形中得出两条相交线构成四个角,根据图形描述邻补角与对顶角的特征.
当学生直观地感知角有“相邻”、“对顶”关系时,教师引导学生用几何语言准确表达.
5.1.1 相交线-教学设计
第五章相交线与平行线本章教材分析本章包括4节内容,前3节主要讨论平面内两条直线的位置关系,重点是垂直和平行关系,第4节是有关平移变换的内容.首先研究相交的情形,探究两条直线相交所成的角的位置和大小关系,给出邻补角和对顶角的概念,得出“对顶角相等”的结论;垂直是两条直线相交的特殊情形,与它有关的概念和结论是学习下一章“平面直角坐标系”的基础.本章对垂直的情形专门进行了研究,探索得出了“过一点有且只有一条直线与已知直线垂直”“垂线段最短”的结论,并给出点到直线的距离的概念,为学习在平面直角坐标系中确定点的坐标打下基础.对于平面内两条直线平行的位置关系,教科书首先引入一个基本事实(平行公理),即过直线外一点有且只有一条直线与已知直线平行,以此为出发点探讨了判定两条直线平行的三种方法和两条直线平行的三条性质,并给出了两条平行线间的距离概念.本章在最后一节安排了有关平移变换的内容,从《新课程标准》看,图形的变换是“空间与图形”领域中很重要的部分.图形的变换主要包括图形的平移、图形的轴对称、图形的旋转和图形的相似等,通过将图形平移、旋转、折叠等活动,使图形动起来,有助于在运动变化的过程中发现图形不变的几何性质,因此图形的变换是研究几何问题、发现几何结论的有效工具.在本章最后,学习命题及命题的构成,学生能对说理的理由,三段论的表达形式有初步的认识.本章教学时间约需12课时,具体分配如下:5.1 相交线 3课时5.2 平行线及其判定 3课时5.3 平行线的性质 3课时5.4 平移 2课时本章复习 1课时5.1 相交线从容说课本节结合具体生活情境,发现并提出数学问题,感受数学与生活的密切联系,经过“讨论”“探究”得出“对顶角相等”和“过一点有且只有一条直线与已知直线垂直”,并引出点到直线的距离的概念,进一步感受数学的严谨性和数学结论的确定性.本节的重点是从两条相交直线中发现探索“对顶角相等”的结论;从具体的实验操作过程中得出“过一点有且只有一条直线与已知直线垂直”,并用它们解释生活中的现象,密切与生活的联系.难点是对生活中的数学现象的抽象概括及对一些几何结论的逻辑推理.在教学中,通过分组讨论、操作、论证等活动,努力培养学生的合作交流意识和探索精神,进一步做好由实验几何到论证几何的过渡.5.1.1 相交线三维目标1.通过学习邻补角、对顶角等概念,进一步发展学生抽象概括能力.2.通过对相交线、邻补角、对顶角的研究,•体会它们在解决实际问题中的作用,并能用它们解释生活中的一些现象.3.通过分组讨论,培养学生合作交流的意识和探索精神.4.通过对顶角、邻补角性质的研究,体会它们在解决实际问题中的作用,•感受数学的严谨性以及数学结论的确定性.教学重点邻补角、对顶角的性质.教学难点发现两条直线相交时所形成的各类角的位置及数量关系.教学过程导入新课师:打开书欣赏第五章的章头图,雄伟壮丽的大桥上,有纵横交错的钢梁,以及像竖琴一样的钢索,你能从中抽象出什么样的几何形象?(同学们思考后回答)生:有很多的相交线和平行线.师:你能在身边再找一些相交线和平行线的实例吗?生:学校操场上的双杠.生:课桌面、黑板面相邻的两边和相对的两边.生:国际象棋、中国象棋的棋盘布满了纵横交错的横线和竖线,它们和平行、或相交.……师:在生活中相交线、平行线的实例比比皆是,因此从这节课开始,我们将要在前面《图形认识初步》的基础上,继续遨游于几何世界,探究两条直线相交都能够形成哪些角?这些角有什么特征?什么样的两条直线互相垂直?垂线有什么性质?什么样的两条直线互相平行?互相平行的直线有什么特征?……更为重要的是它们在生活中的作用,学会用数学的眼光去欣赏我们生活所在的丰富多彩的世界.这节课,我们先来研究相交线.推进新课这里有一把剪刀,握紧剪子(如图1)的把手,就能剪开物体,•你能说出其中的道理吗?生:握紧把手时,随着两个把手之间的角逐渐变小,剪刀刃之间的角也相应变小,直到剪开物体.师:如果把剪子的构造抽象成一个几何图形,会是什么样的图形?请你在练习本上画出.(教师可进行巡视,给学习困难的学生以帮助.从现实生活中发现并提出简单的数学问题吸引学生的注意力,同时为得出相交线所成角的性质提供背景和生活素材).师:同学们表现都很棒,剪子的构造可看作两条相交的直线,而剪刀两个把手之间的角,剪刀刃之间的角都是相交直线....所成角.组织学生活动活动1.(1)任意画两条相交的直线,在形成的四个角中(如图2)各个角存在怎样的位置关系?根据这种位置关系将它们分类.(2)分别量一下各个角的度数,各个角度数有什么关系?为什么?(3)在图1转动剪子把手的过程中,这个关系还保持吗?(学生分组活动,动手操作,教师深入小组参与活动,倾听学生的交流,并指导、帮助学生完成任务)教师应重点关注:(1)学生能否根据各对角的位置关系进行分类;(2)在阐述各对角的位置关系时,语言是否规范;(3)在测量出各个角的大小关系时,能否用“同角的补角相等”为依据,•得出正确结论.(为学生提供参与数学活动的时间和空间,调动学生的主观能动性,激发好奇心和求知欲.通过学生自身探求出结论,获得学习数学的成就感,提高学生的论证几何的能力)生:∠1和∠2、∠2和∠3、∠3和∠4、∠4和∠1它们属于同一种位置关系的角.它们共同的特点是每一对角都有一条公共边,而另一边互为反向延长线.生:以上四对角不仅有特殊的位置,而且它们的和都是180°,即它们互补.师:你能给它们每对角起个名字吗?生:我们前面学过互为补角:如果两个角的和是180°,则称它们互为补角.•而上面的∠1和∠2、∠2和∠3、∠3和∠4、∠4和∠1不仅互补,而且“相邻”,我们称它们为“亲密补角”吧!师:这个名字是不是很温馨呢!(同学们鼓掌)实际上,在数学上,我们把具有上述位置和大小关系的角叫做互为邻补角.师:你还能找到哪些两两相配的角呢?它们又有何位置和大小特点?生:∠1和∠3、∠2和∠4它们分别有相同的位置关系.每对角都有一个公共顶点O ,并且每对角的两边都互为反向延长线.师:很好.我们将具有这种位置关系的两个角叫做对顶角,它们的大小有何关系? 生:每对对顶角都分别相等.如图2的∠1=∠3,∠2=∠4.师:你能用前面的知识说明∠1=∠3的理由吗?生:因为∠1与∠2互补,∠3也与∠2互补,由“同角的补角相等”,可以得出∠1=∠3.类似地,可得出∠2=∠4.师:由此可得出结论……生:对顶角相等.师:你能用刚才的结论解释本节开头提出的现象吗?生:可以.通过上面的讨论我们知道了,剪子两个把手之间的角与剪刀刃之间的角是对顶角.在转动剪子把手的过程中,这对对顶角始终保持相等,直到把物体剪开.师生共析:下面我们共同填写下表(多媒体演示) 两直线相交 所形成角 分类位置关系 大小关系 1432C D O AB∠1、∠2 ∠3、∠4活动2.问题: (1)图3中∠1和∠2是对顶角吗?若不是,请说明理由.(学生通过对上面问题的解释,进一步明确对顶角存在的条件,•使学生的思维更严密、条理).生:图3(1)中的∠1和∠2不是对顶角,是因为它们不是两条直线相交而成,•即它们既无公共顶点,每个角的两边只有一边是互为反向延长线;图3(2)中的∠1和∠2虽有公共点,但∠2的一边不是∠1两边中的一条反向延长线;图3(4)中的∠1和∠2也不是对顶角,只有图3(3)中的∠1和∠2是对顶角.师:判断一对角是不是对顶角,我们应注意什么?生:首先看它们是否是两条直线相交而成的角,再看它们是否有公共顶点,•两边是否互为反向延长线.(2)如图4,直线a、b相交,∠1=40°,求∠2、∠3、∠4的度数.(意在利用互为邻补角的大小关系,对顶角相等的性质.教师应先让学生自主解决,对个别学习有困难的学生加以辅导)生:解:如图4,由邻补角的定义,可得∠2=180°-40°=140°;由“对顶角相等”,可得∠3=∠1=40°,∠4=∠2=140°.运用数学知识,解决问题活动3.(多媒体演示)问题:(1)如图5(1),取两根木条a、b,将它们钉在一起,并把它们想象成两条直线,•就得到一个相交线的模型,你能说出其中的邻补角与对顶角吗?如果其中一个角是35°,其他三个角各是多少度?这个角是90°、115°、m°呢?解:将两根木条抽象成相交直线,如图5(2),设直线a、b相交于点O.①当∠1=35°时,由邻补角的定义可得∠2=180°-35°=145°;由“对顶角相等”,可得∠3=∠1=35°,∠4=∠2=145°.②当∠1=90°,同(1)可得∠2=180°-90°=90°,∠3=∠1=90°,∠4=∠2=90°.③当∠1=115°时,∠2=180°-115°=65°,∠3=∠1=115°,∠4=∠2=65°.④当∠1=m°时,∠2=180°-m°,∠3=∠1=m°,∠4=∠2=180°-m°.(2)下列说法正确的是()A.有公共顶点的两个角是对顶角B.相等的两个角是对顶角C.有公共顶点并且相等的角是对顶角D.两条直线相交成的四个角中,有公共顶点且没有公共边的两个角是对顶角答案:D注:①只有两条直线相交时,才能产生对顶角,对顶角是成对出现的;②对顶角的本质特征是:两个角有公共顶点,其两边互为反向延长线.(3)已知直线AB、CD相交于点O,∠AOC+∠BOD=240°,求∠BOC的度数.分析:如图6所示,∠AOC与∠BOD是对顶角,所以∠AOC=∠BOD;又∠AOC+∠BOD=240°,从而∠AOC=∠BOD=120°;又∠AOC和∠BOC是邻补角,所以∠BOC=180°-∠AOC=60°.解:因为直线AB、CD相交于点O,所以∠AOC和∠BOC是邻补角(对顶角的定义),∠AOC和∠BOC是邻补角(邻补角的定义),所以∠AOC=∠BOD(对顶角相等).又因为∠AOC+∠BOD=240°(已知),所以∠AOC=∠BOD=120°.所以∠BOC=180°-∠AOC=60°(邻补角的定义).(4)如图7,AB与CD是直线,图中共有对顶角________对.()A.1 B.2 C.3 D.4解析:在图中只有AB和CD两条直线相交,根据对顶角的特征:两个角有公共顶点,其两边互为反向延长线可知对顶角只有两对即∠AOC和∠BOD、∠AOD和∠BOC.答案:B(5)图8中是对顶角量角器,你能说出用它测量角的原理吗?解:设量角器的底边所在的直线为AB,指针所在直线为CD.根据对顶角相等,可知∠BOD=∠AOC,因此只要读出∠AOC的度数,也就知道了∠BOD的度数.课堂小结本节课讨论了两条直线相交所成的角的问题;重点研究了邻补角、对顶角的位置关系、大小关系,并用它们解决了生活和数学中的一些简单问题,相信同学们在今后的学习过程中,会进一步体会到邻补角和对顶角性质在解题中的作用.布置作业习题5.1 1、2.活动与探究两条直线相交于一点,有______对对顶角,三条直线相交于一点,有_____•对对顶角.……n条直线相交于一点,共可组成______对对顶角.[过程]让学生在讨论的过程中,学会归纳.两条直线相交于一点和三条直线相交于一点较简单,可得出,那么n条直线呢?设n条直线为a1,a2,…,a n,以a1为边所得到的对顶角数为2(n-1);以a2为边所得到的新对顶角数为2(n-2);…以a n-2为边得到的新对顶角数为2×2;以a n-1为边得到的新对顶角数为2×1.加起来得n(n-1)对对顶角.[结果]两条直线相交于一点,有2对对顶角,三条直线相交于一点,有6对对顶角,n条直线相交于一点,共有n(n-1)对对顶角.备课资料一、参考例题【例1】如图9,AB、BC、AC都是直线,且∠1=∠2,那么∠3=∠1吗?为什么?解:因为∠1=∠2(已知),∠3=∠2(对顶角相等),所以∠3=∠1.注:在图形中,要正确地辩认对顶角.【例2】如图10,已知直线AB、CD、EF相交于点O,∠AOC=60°,∠AOE=70°,求:(1)∠AOD的度数;(2)∠DOF的度数.分析:(1)方法一:据∠AOC=60°,由邻补角的定义,可求出∠AOD的度数.方法二:据平角的定义,可先求出∠EOD的度数,再由∠EOD与∠AOE•的和求∠AOD的度数.(2)方法一:由∠AOE与∠AOC相加求出∠EOC•的度数,•再根据对顶角相等求出∠DOF的度数.方法二:利用对顶角相等求出∠BOF,∠BOD,再相加即可.方法三:先求出∠EOD的度数,再根据邻补角的定义求∠DOF.方法四:先求出∠COF的度数,再根据邻补角的定义去求∠DOF.解:略.答案:(1)120°;(2)130°.【例3】如图11,直线a、b被直线c所截,构成八个角,已知∠1=∠5=58°,•求∠2,∠3,∠4,∠6,∠7,∠8的度数,并说明理由.理由:∵∠1=58°(已知),∴∠3=∠1=58°(对顶角相等).∴∠2=180°-∠1=180°-58°=122°(邻补角的定义).∴∠4=∠2=122°(对顶角相等).同理可求∠7=58°,∠6=∠8=122°.答:∠2=∠4=∠6=∠8=122°,∠3=∠7=58°.注:正确应用对顶角,邻补角,补角的性质可以计算角的度数.本题还有多种解法,你能再找出几种不同的解法吗?【例4】如图12,直线AB与CD相交于点O,且∠BOD的度数是∠AOD的2倍.求:(1)∠AOD、∠BOD的度数;(2)∠BOC、∠AOC的度数.解:(1)因为AB是一条直线(已知),所以∠AOD+∠BOD=180°(邻补角的定义).设∠AOD的度数为x,则∠BOD的度数为2x.所以x+2x=180°,x=60°,即∠AOD=60°,∠BOD=120°.(2)因为AB、CD相交于点O(已知),所以∠BOC=∠AOD,∠AOC=∠BOD(对顶角相等).因为∠AOD=60°,∠BOD=120°(已知),所以∠BOC=60°,∠AOC=120°.【例5】判断下列说法是否正确,并说明理由.(1)有公共顶点的两个角是对顶角;(2)相等的两个角是对顶角;(3)互为对顶角的两个角的余角相等.解:(1)不正确.对顶角的定义是“如果一个角的两边分别是另一角两边的反向延长线,那么这两个角叫做对顶角”.有公共顶点的两个角,其中一个角的两边不一定是另一个角的两边的反向延长线(如图13).(2)不正确.对顶角是两个角处于一种特殊的位置关系,•相等的角是两个角的大小比较,是两个角的度量关系,这是两个不同范畴的概念,如,等边三角形的每个内角都是60°,但不是对顶角.(3)不正确.对顶角相等,但并没有说对顶角一定是锐角,•它们也可能是钝角,所以不一定有余角.二、对顶角歌诀对顶角,必相等,这个性质要搞懂;对顶角,怎么定,反向延长巧又灵.三、练习如图14,直线AB、CD相交于点O,OA平分∠EOC,∠EOC=70°,求∠BOD的度数.答案:35°.11。
5.1.1相交线
O
3
D
A
图中还有对 顶角吗?
观察:1、两条直线相交组成几个小于平角的角?
2、 ∠ 1和∠ 3在位置上有什么关系?
1,有公共顶点 2,两边互为反向延长线
这样的两个角称为互为对顶角
练习:下列图中,∠1与∠2是对顶角吗?为什么?
1 2
1 2
1 2
1
2
(1)
(2)
(3)
(4)
否
是
否
否
观察:∠1和∠2在位置上有什么关系?
D
图1
E
∠1的对顶角是_____________ , ∠BOD
∠1的邻补角是_____________ ∠3、 ∠AOD ,
∠COE ∠2的邻补角是_____________ 。
图2
3、如图3,∠2与∠3为邻补角,
∠1=∠2,则∠1与∠3的关系 为 互补 。
A 1 B
E 3 2 C
D
图3
4、已知两条直线相交成的四个角,其中一个
b a 1 2 4 3
练习:
1、如图1,三条直线AB、CD、
EF两两相交,在这个图形中,有 对顶角_____ 6 对,邻补角____ 12 对. 2、如图2,直线AB、CD 相交于O,OE是射线。则 ∠AOD ∠3的对顶角是_____________ ,
A 1 C O 2 3 B D
A F C E B
三、教法和学法
三、教法和学法: 教法: 叶圣陶先生倡导:解放学生的手,解放学生的脑,解 放学生的时间.根据这一思想及我校初一学生活泼好动 的特点,我采取启发式教学、探究式教学及多媒体辅 助教学 相结合的方法. 学法:以学生分组实践、自主探究、合作交流为主要 形式的探究式学习方法.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
本次活动中,教师应关注:
(1)不同层度学生的本节内容的掌握层次,有针对性地面批、面改形成较规范的说理思想.
(2)对学生普遍存在的知识模糊点,有针对性地讲解.
通过活动5,可以让学生体会多媒体的优势以及对数学知识的应用.
通过一道开放性的习题,由直观的几何图形巩固学生对对顶角及邻补角概念的理解,通过画图提高空间想象能力.这个问题可帮助学生突破本节难点.本问题同时起到对本课的小结作用.
通过举出生活中应用对顶角相等的例子,使学生进一步理解对顶角的性质,体会对顶角在生活中的应用.
活动4
问题
(1)直线a、b相交,∠1=40°,求∠2、∠3、∠4的度数.
(2)∠1等于90°时,∠2、∠3、∠4等于多少度?
(3)如图是一个对顶角量角器.你能说明它度量角度的原理吗?
教师出示问题.
学生独立思考、独立解题.
难点
“对顶角相等”的探究过程.
教学流程安排
活动流程图
活动内容和目的
活动1找出图形中的相交线
活动2认识邻补角和对顶角
活动3探究对顶角相等
活动4巩固练习
活动5课堂小结
布置作业
活动1观察图片,找出相交线,引入课题.
活动2通过探究相交线中相交线角与角的位置关系,得出邻补角和对顶角的概念.并能找出图中的对顶角、邻补角.
活动3通过探究发现“对顶角相等”的结论,进而通过说理证实这一结论,初步发展简单说理.
活动4通过解决具体问题加深对对顶角、邻补角的理解.
活动5通过学生习题,总结回顾本节知识点,以便培养学生的概括表达能力,并巩固知识、灵活应用.
课前准备
教具
学具
补充材料
教师用三角板
量角器,三角板
教学过程设计
问题与情境
师生行为
设计意图
活动1
问题
找出图中的相交线、平行线.
教师出示一组图片.
学生观察图片,找相交线、平行线,引出本节课题.
在本次活动中,教师应重点关注:
(1)学生从简单的具体实物抽象出相交线、平行线的能力.
(2)学生认识到相交线、平行线在日常生活中有着广泛的应用.
(3)学生学习数学的兴趣.
让学生借助已有的几何知识从现实生活中发现数学问题,能由实物的形状想象出相交线、平行线的几何图形.使新知识建立在对周围环境的直接感知的基础上.让学生增强对生活中的相交线、平行线的认识.建立直观的,形象化的数学模型.
教师具体指导并根据学生情况板书规范的简单说理过程.
本次活动中,教师应关注:
(1)学生对对顶角相等的掌握情况.
(2)学生进行简单说理的准确性、规范性.
(3)学生能否在独立思考的基础上,积极参与数学问题的讨论.
(4)是否能用几何符号语言来表达自己的解题过程.
教师提出问题,并用课件“对顶角量角器”演示度量过程.
第五章相交线与平行线
5.1相交线
5.1.1相交线
教学任务分析
教
学
目
标
知识
技能
1.了解对顶角与邻补角的概念,能从图中辨认对顶角与邻补角.
2.知道“对顶角相等”.
3.了解“对顶角相等”的说理过程.
数学
思考
1.经历探究对顶角、邻补角的位置关系的过程,建立空间观念.
2.通过分析具体图形得到对顶角、邻补角的概念,发展学生的抽象概括能力.
活动3
问题
(1)对顶角有什么大小关系呢?
课件运用:此时可以在学生思考的基础上利用课件“对顶角”进行动画演示.
(2)你能举出生活中应用对顶角相等的例子吗?
教师提出问题.
学生以组为单位,在观察的基础上研究解决问题的方法,鼓励学生从经验(用量角器,邻补角和为180度)出发,试从不同角度寻求解决问题的方法,得出对顶角相等的结论,口述过程,教师给予明晰,并板书说理过程.
活动5
问题
(1)找出图中∠AOE的对顶角及邻补角.若没有请画出.
(2)布置作业:
习题5.1第1题、第2题和第7题.
教师出示问题.
学生讨论,教师帮助学生分析图形与基本图形的区别,引导学生总结对顶角及邻补角的特征、性质、异同点.
在本次活动中,教师应关注:
(1)学生能否根据定义画出∠AOE的对顶角.
(2)学生能否找出图中对顶角、邻补角.
在本次活动中,教师应关注:
(1)学生画出两条相交线的几何图形,用语言准确描述.
(2)学生能否从角的位置关系上对角进行分类.
(3)学生是否能够正确区分邻补角、对顶角.
(4)学生参与数学学习活动的主动性,敢于发表个人观点.
通过生活中的情景抽象出几何图形,发现对顶角、邻补角,培养空间观念,发展几何直觉.
通过对图形中角与角位置关系的研究分析,学生描述邻补角、对顶角概念,从角的位置关系上来研究这些角的相互关系.让学生经历从图形到文字到符号的转换过程,使学生加深对对顶角、邻补角概念的理解,积累一些图形研究的经验和方法.
教师提,教师应关注:
(1)学生能否借助邻补角互补推导出对顶角相等的性质.
(2)学生能否进行简单说理.
(3)学生是否能运用对顶角相等准确地找到生活中的实际例子.
活动2已从位置上对角进行了研究,现在从角的大小对对顶角进行研究,培养说理习惯.
学生在探索的过程中会遇到困难,出现问题,通过合作学习加以解决.
活动2
问题
(1)看见一把张开的剪刀,你能联想出什么样的几何图形?
(2)观察这些角有什么位置关系.
教师出示剪刀图片,提出问题.
学生独立思考,画出相应的几何图形,并用几何语言描述.教师深入学生中,指导得出几何图形,并在黑板上画出标准图形.
教师提出问题.
学生分组讨论,在具体图形中得出两条相交线构成四个角,根据图形描述邻补角与对顶角的特征.学生可结合概念特征找到图中的两对邻补角与两对对顶角.
学生在观察的基础上进行讨论,最后学生独立解释其度量的原理.
在本次活动中,教师应关注:
(1)学生能否根据课件演示进行独立思考.
(2)学生在思考后能否形成自己的看法并表达出来.
通过具体问题,再次强化对顶角的概念及性质,并培养学生的说理习惯,发展符号感,逐步培养学生用几何语言交流的能力.
问题(2)教师可根据学生的情况添加,为下一节学习两直线垂直作铺垫.
解决
问题
通过小组学习等活动经历得出对顶角相等的过程,进一步提高学生应用已有知识解决数学问题的能力.
情感
态度
1.通过对对顶角的探究,使学生初步认识数学与现实生活的密切联系.
2.通过师生的共同活动,促使学生在学习活动中培养良好的情感、合作交流、主动参与的意识,在独立思考的同时能够认同他人.
重点
对顶角的概念,“对顶角相等”的性质.
为学生提供个性化发展的空间,及时了解学生的学习效果,使学生养成独立思考、反思学习过程的习惯.