4.4角的比较

合集下载

北师大版七年级上册4.4角的比较教学设计

北师大版七年级上册4.4角的比较教学设计
(五)总结归纳
1.教师引导学生回顾本节课所学的内容,总结角的大小比较的方法和技巧。
2.学生分享自己在学习过程中遇到的困难和收获。
3.教师强调本节课的重点,提醒学生在日常生活中多观察、多思考,将所学知识应用到实际问题中。
4.布置课后作业,巩固所学知识。
五、作业布置
为了巩固本节课所学知识,培养学生的独立思考和应用能力,特布置以下作业:
3.探究题:
小组合作,讨论并总结:在平面几何中,还有哪些关于角的大小比较的性质和定理?请举例说明。
作业要求:
1.作业需独立完成,书写工整,保持卷面整洁。
2方法。
3.对于选做题,鼓励学生发挥想象,勇于尝试,培养创新意识。
4.探究题要求小组共同讨论,形成统一的结论,并在课堂上进行分享。
1.充分发挥学生的主体作用,鼓励学生积极参与,表达自己的观点和疑问。
2.注重培养学生的空间想象能力,通过实物演示、动手操作等方式,帮助学生建立角的直观印象。
3.引导学生运用已学知识,发现角的大小比较的规律,培养学生的逻辑思维和归纳总结能力。
4.针对不同学生的学习情况,提供有针对性的指导,关注个体差异,使每位学生都能在原有基础上得到提高。
(2)同角或等角的余角相等:如果两个角是同一个角或相等角的余角,那么这两个角的大小相等。
(3)角的补角相等:两个角的和为180度,这两个角叫做补角,它们的大小相等。
2.教师结合实例,进行演示,让学生在实际操作中掌握角的大小比较方法。
(三)学生小组讨论
1.教师将学生分成若干小组,每组发放一套含有不同角度的扇形卡片。
(二)过程与方法
1.引导学生观察生活中的实例,发现角的大小有差异,激发学生对角的大小比较的兴趣。
2.通过小组合作,让学生动手操作,使用直尺和量角器测量角的大小,培养学生的动手操作能力和合作精神。

北师大版七上 角的比较复习题3(含答案)-

北师大版七上 角的比较复习题3(含答案)-

4.4 角的比较 (C卷)(能力拔高训练题 40分 30分钟)一、探究题:(10分)1.已知∠AOB=90°,∠COD=90°,则∠AOD与∠BOC之间有什么关系?二、开放题:(10分)2.在0时与12时之间,钟面上的时针与分针在什么时候成30°的角? 请写出两个答案.三、竞赛题:(10分)3.(1)如图,已知∠AOB=90°,∠BOC=30°,OM平分∠AOC,ON平分∠BOC, 求∠MON的度数.(2)如果(1)中的∠AOB=α,其他条件不变,求∠MON的度数.(3)如果(1)中的∠BOC=β (β为锐角),其他条件不变,求∠MON的度数.(4)从(1)、(2)、(3)的结果中能得出什么结论?OC MABN四、趣味题:(10分)4.在抗日战争时期,一组游击队员奉命把A村的一批文物送往一个安全地带, 在A村的南偏东50°距离3千米处有一B村,他们从A村出发,以北偏东80°方向行军, 不知道走了多远以后,他们发现B村出现了烟火,于是决定先把文物就地埋藏起来,然后调转方向走了7千米的路程,直接赶到B村消灭了敌人,结束战斗后, 这组游击队员应到哪里去取文物呢?假如你在场,凭以上信息,你能估计文物藏在什么地方吗?答案:一、1.解:如答图(1),∠AOD+∠COB=∠AOC+∠COB+∠BOD+∠COB=∠AOB+∠COD=180°. 如图(2),∠AOD+∠BOC=360°-∠AOB-∠COD=180°. 如图(3),∠AOD=∠BOC.如图(4),∠AOD=∠BOC.(1)O C ADB(2)O CADB(3)CADB(4)O CADB二、2.1时和11时三、3.(1)解:∵OM 平分∠AOC,DN 平分∠BOC,∠AOB=90°, ∴∠MOC=12∠AOC, ∠NOC=12∠BOC,∴∠MON=∠MOC-∠NOC= 12∠AOC- 12∠BOC=12(∠AOC-∠BOC)=12∠AOB= 12×90°=45°(2)当∠AOC=α,其他条件不变时,∠MON= 12∠AOB=2;(3)当∠BOC=β,其他条件不变时,∠MON=12∠AOB=12×90°=45°(4)分析(1)、(2)、(3)的结果和(1)的解答过程可以看出:∠MON 的大小总等于∠AOB 的一半,而与锐角∠BOC 的大小变化无关. 四、4.解:由题意作答图.作法如下:(1)在平面上任找一点为A(村)(2)作出A 村的南偏东50°的方向线AM,在AM 上截取AB=3cm(以1cm 表示1千米) (3)作出A 村的北偏东80°的方向线AN(4)以B 点为圆心,以7cm 为半径作圆弧交AN 于C.(5)连结BC,量出C 点在B 点处的方向为北偏东62°,BC=7cm,则从B 处以北偏东62°的方向出发走7千米到达C 处,则C 处附近就为藏文物的地方.3cm7cm62︒50︒80︒北西南东CMA BN。

北师大版数学七年级上册4.4《角的比较》教案

北师大版数学七年级上册4.4《角的比较》教案

北师大版数学七年级上册4.4《角的比较》教案一. 教材分析《角的比较》是北师大版数学七年级上册4.4节的内容,主要包括角的概念、分类和度量。

本节课通过引入角的比较,让学生理解角的大小不仅与边的长短有关,还与角的开口大小有关。

教材内容由浅入深,从基本概念到实际应用,使学生能够逐步掌握角的大小比较方法。

二. 学情分析学生在进入七年级前,已经学习了角的基本概念,如锐角、直角、钝角等。

他们对角的大小有一定的认识,但可能仅局限于边的长短。

通过本节课的学习,学生需要理解角的大小不仅与边的长短有关,还与角的开口大小有关。

此外,学生需要学会用量角器测量角的大小,并能进行角的比较。

三. 教学目标1.知识与技能:学生能够理解角的概念,掌握角的大小比较方法,会用量角器测量角的大小。

2.过程与方法:学生通过观察、操作、交流等活动,培养逻辑思维能力和解决问题的能力。

3.情感态度与价值观:学生培养对数学的兴趣,激发探究精神,培养合作意识。

四. 教学重难点1.教学重点:学生能够理解角的大小比较方法,会用量角器测量角的大小。

2.教学难点:学生能够灵活运用角的大小比较方法,解决实际问题。

五. 教学方法1.情境教学法:通过生活实例引入角的概念,激发学生学习兴趣。

2.启发式教学法:引导学生主动探究角的大小比较方法,培养学生的思维能力。

3.合作学习法:学生分组讨论,共同解决问题,培养学生的合作意识。

六. 教学准备1.教具:量角器、直尺、三角板等。

2.教学素材:课件、教学图片等。

七. 教学过程1.导入(5分钟)利用课件展示生活中常见的角,如钟表、自行车等,引导学生关注角的大小。

提问:你们认为角的大小与什么有关?2.呈现(10分钟)介绍角的概念,讲解角的大小比较方法。

通过示例,让学生明白角的大小不仅与边的长短有关,还与角的开口大小有关。

3.操练(10分钟)学生分组进行实践活动,使用量角器测量不同角的大小,并进行比较。

教师巡回指导,解答学生的疑问。

2023-2024学年北师大版七年级数学上册《第四章基本平面图形4.4角的比较》教学设计

2023-2024学年北师大版七年级数学上册《第四章基本平面图形4.4角的比较》教学设计

2023-2024学年北师大版七年级数学上册《第四章基本平面图形4.4角的比较》教学设计一. 教材分析《第四章基本平面图形4.4角的比较》这一节的内容,主要让学生了解和掌握角的概念,学会用量角器量角的大小,学会比较角的大小,并能解决一些实际问题。

本节内容是学生在学习了三角形、四边形等基本平面图形的基础上进行的,为学生进一步学习圆、扇形等图形打下基础。

二. 学情分析七年级的学生已经掌握了基本的平面几何知识,对于图形有了一定的认识,但是角的测量和比较还是第一次接触,需要通过实例让学生感受和理解。

另外,学生对于量角器的使用还不够熟练,需要在教学中加强练习。

三. 教学目标1.知识与技能目标:理解角的概念,学会用量角器量角的大小,学会比较角的大小。

2.过程与方法目标:通过观察、操作、思考、交流等活动,培养学生的空间观念和几何思维。

3.情感态度与价值观目标:激发学生学习数学的兴趣,培养学生的合作意识和探究精神。

四. 教学重难点1.重点:角的概念,量角器的使用,比较角的大小。

2.难点:角的分类,钝角、直角、锐角的识别。

五. 教学方法1.情境教学法:通过生活实例引入角的概念,让学生感受和理解角的存在。

2.实践操作法:让学生动手操作量角器,量一量、比一比,加深对角的理解。

3.讨论法:分组讨论,让学生在交流中掌握角的比较方法。

六. 教学准备1.教具:量角器、直尺、三角板、多媒体课件。

2.学具:量角器、直尺、三角板、练习纸。

七. 教学过程导入(5分钟)教师通过展示一些生活中的图片,如剪刀、钟表等,让学生找出其中的角,并试着用量角器量一量。

引导学生发现角的大小是可以比较的,从而引出本节课的主题。

呈现(10分钟)教师通过多媒体课件,展示各种角的图片,让学生观察并说出它们的特点。

同时,教师讲解角的概念,以及量角器的使用方法。

操练(10分钟)教师让学生分组,每组有一套量角器和一些练习纸。

学生分组进行练习,量一量练习纸上的角,并比较大小。

北师大版七年级数学上册《第四章基本平面图形4.4角的比较》说课稿

北师大版七年级数学上册《第四章基本平面图形4.4角的比较》说课稿

北师大版七年级数学上册《第四章基本平面图形4.4角的比较》说课稿一. 教材分析《北师大版七年级数学上册》第四章主要介绍基本平面图形,而4.4节“角的比较”是这一章的重要内容。

本节内容通过探讨角的大小比较,让学生进一步理解角的概念,掌握角的度量方法,并能够运用角的性质解决实际问题。

教材通过丰富的实例和练习,引导学生探究角的大小与边长、开口大小之间的关系,培养学生的观察能力、分析能力和动手能力。

二. 学情分析学生在学习本节内容前,已经掌握了角的概念、度的概念以及角的度量方法。

但学生对角的大小比较可能还比较陌生,需要通过实例和练习来进一步理解和掌握。

此外,学生可能对角的度量工具(量角器)的使用还不够熟练,需要在教学中加强练习。

三. 说教学目标1.知识与技能目标:让学生理解角的大小比较方法,掌握用度量工具(量角器)比较角的大小。

2.过程与方法目标:通过观察、实验、探究等方法,让学生掌握角的大小与边长、开口大小之间的关系。

3.情感态度与价值观目标:培养学生对数学的兴趣,培养学生的观察能力、分析能力和动手能力。

四. 说教学重难点1.教学重点:角的大小比较方法,用度量工具(量角器)比较角的大小。

2.教学难点:角的大小与边长、开口大小之间的关系。

五. 说教学方法与手段1.教学方法:采用观察、实验、探究等教学方法,引导学生主动参与,积极思考。

2.教学手段:使用多媒体课件、实物模型、量角器等教学工具,帮助学生直观地理解角的大小比较。

六. 说教学过程1.导入:通过生活实例引入角的大小比较,激发学生的学习兴趣。

2.新课导入:介绍角的大小比较方法,引导学生观察、实验,探究角的大小与边长、开口大小之间的关系。

3.课堂讲解:讲解角的大小比较方法,引导学生通过度量工具(量角器)进行角的大小的比较。

4.练习巩固:设计不同类型的练习题,让学生运用所学知识解决问题。

5.课堂小结:总结本节课的主要内容,强调角的大小比较方法和注意事项。

北师大版七年级数学上册《基本平面图形——角的比较》教学PPT课件(4篇)

北师大版七年级数学上册《基本平面图形——角的比较》教学PPT课件(4篇)

角的大小的比较方法: (1)如果已知角是锐角、直角、钝角、平角、周角几类中不同 类的角,就可以直接由它们之间的关系比较出它们的大小; (2)可以通过量角器进行量度来比较角的大小; (3)可以根据各角在同一图中的位置关系比较角的大小.
角的平分线
活动:大家在练习本上画一个角,然后把角的两边 对折,展开以后你会发现折痕把角分成了两个角, 这两个角有什么关系呢,它们又和原来的角有着怎 样的等量关系?
4.4 角的比较
知识回顾 比较两条线段的长短的方法? 1、度量法:用刻度尺测量线段的长度的方法。 2、叠合法:将其中一条线段移到另一条线段 上作比较。
猜想:比较两个角的大小方法?
获取新知
问题:有一天学生张虎和王鹏各带了一把折扇(如图),下面是他们的 一段对话:
张:我的折扇大一些,所以我的折扇的角也大一些.
2
2
2
(2)结合(1)的结论可求出∠DOE的度数,从而求出∠BOE的度数
解:(1)因为OC平分∠AOD,
1 所以∠DOC= 2 ∠AOD.
因为OE平分∠BOD,
1
所以∠DOE= 2∠BOD.
所以∠COE=∠DOC+∠DOE=
1
(∠AOD+∠BOD)
= 1 ∠AOB= 1 ×130°=65°.
2
2
2
2. 已知,如图,∠AOB = 130°,∠AOD = 30°,∠BOC = 70° ,问:OC 是∠AOB 的平 分线吗?OD 是∠AOC 的平分线吗?
解: OC不是∠AOB 的平分线 OD是∠AOC 的平分线 B
C D
A O
3. 如图,直线 m 外有一定点 O,A 是 m 上的 一个动点,当点 A 从左向右运动时,观察∠α 和 ∠β 是如何变化的,∠α 和 ∠β 之间有关系吗?

北师大版七年级数学上册《4.4 角的比较》同步训练题-带答案

北师大版七年级数学上册《4.4 角的比较》同步训练题-带答案学校:___________班级:___________姓名:___________考号:___________一、单选题1.7.56756'︒-︒''的值是( ).A .0B .2830'''C .30'D .3014'''2.在AOB ∠的内部任取一点C ,作射线OC ,则一定存在( ) A .AOB AOC ∠>∠B .AOC BOA ∠>∠ C .BOC AOC ∠>∠D .AOC BOC ∠>∠3.若2018,201530,20.25A B C ︒︒''''∠=∠=︒∠=,则( )A .ABC >>∠∠∠B .B AC ∠>∠>∠ C .A C B ∠>∠>∠D .C A B ∠>∠>∠ 4.将一副三角板按如图所示的方式放置,若140∠=︒BOC ,那么AOD ∠的度数是( ).A .50︒B .30︒C .60︒D .40︒5.十点一刻时,时针与分针所成的角是( )A .11230'︒B .12730'︒C .12750'︒D .14230'︒6.入射光线和平面镜的夹角为40°,转动平面镜,使入射角减小20°,反射光线与入射光线的夹角和原来相比较将( )A .减小40°B .增大40°C .减小20°D .不变7.如图,已知点O 为直线AB 上一点,65AOC ∠=︒和105AOD ∠=︒,OM 平分COD ∠,则BOM ∠的度数是( )A .85︒B .95︒C .105︒D .115︒8.如图,点B ,O ,C 在同一条直线上,射线OD 是AOC ∠的平分线,且50AOD ,则BOD ∠的度数为( )A .80︒B .100︒C .130︒D .150︒ 9.如图,设锐角AOB ∠的度数为α,若一条射线平分AOB ∠,则图中所有锐角的和为2α.若四条射线五等分AOB ∠,则图中所有锐角的和为( )A .7αB .6αC .5αD .4a二、填空题3三、解答题 15.已知 2.15,7200a b =︒''=,先分别写出,a b 等于多少分,再比较,a b 的大小. 16.如图,AOB ∠是直角,OC ,OD 是AOB ∠内的两条射线,其中OD 平分BOC ∠.(1)当40AOC ∠=︒时,求AOD ∠的度数;(2)当4AOC DOC ∠=∠时,求AOD ∠的度数.17.如图,直线AB 与CD 相交于点O ,90AOM ∠=︒且OM 平分NOC ∠,若4BOC NOB ∠=∠,求MON ∠的度数.参考答案:1.B2.A3.A4.D5.D6.A7.B8.C9.A10.4911.<12.15413.35或514.6015.129=a b>b'=120a'16.(1)65︒;(2)75︒.17.54︒。

《角与角的大小比较》参考教案1

角角与角的大小比较教学目标:1、经历比较角的大小的研究过程,体会角的比较和线段的比较方法的一致性。

2、会比较角的大小,能估计一个角的大小。

3、在操作活动中认识角的平分线,能画出一个角的平分线。

4、在解决问题的过程中体验类比、联想等思维方法。

教学重、难点:重点: 比较角的大小难点:认识并画出角的平分线教学准备:教师准备:PPT课件学生准备:小剪刀,纸片教法与学法指导:教法:采用“引导——观察——动手操作——猜想——验证”组织教学.学法:鼓励学生采用动手操作与合作交流相结合的方式进行学习,让学生亲身体验知识的发生、发展、发现的全过程,增强学生的参与意识,促进学生对知识的理解和掌握,真正提升学生的数学素养.教学过程:(一)创设问题情景,引入新课师:请同学们回忆一下线段是怎样比较大小的经过思考回忆,学生纷纷举手。

生:观察法,测量法,叠加法。

师:回答的很好,请同学们看大屏幕,出示课件:展示图形如下:DBC AO问题:上面各个角中,哪些是锐角哪些是钝角哪些是直角 并指出它们的大小关系。

(注意角的表示的书写格式)由对锐角、钝角、直角三种角的大小的比较,引入本节课的主题——角的比较。

(设计意图:通过教师的引导提问,回顾以前学过的线段的比较,角的表示的以及小学学习中关于锐角、钝角、直角的概念。

由对锐角、钝角、直角三种角的大小的比较,引入本节课的主题——角的比较。

)(二)合作交流,探究新知 老师出示课件(1) (2) (3)请同学们比较以上三组角大小,按照我们平时分的六个学习小组,看哪个小组比较快,想的方法好小组讨论交流,师巡回指导。

各组展示结果:组1:我们用眼看的,(1)∠AOB<∠COD ;(2)∠AOB>∠COD (3)∠AOB>∠COD组2:1组同学说的不对,这几个角比较接近,用肉眼根本看不出来,我们的方法好,我们是用量角器量的,根据角度数来比较大小,这样才准确。

组3:你们两组的方法都不好,我们组的高明,我们是叠合的方法,我们用剪刀把这几个角剪下来,把角的顶点及一条边重合,另一条边放在重边的同侧就可以比较大小。

七年级上册数学第四章基本平面图形

O C A D B OC A E DB 第四章 基本平面图形3【知识点】【知识点】角的平分线: 从一个角的顶点引出的一条射线,把这个角分成两个相等的角,这条射线叫做这个角的平分线。

从一个角的顶点引出的一条射线,把这个角分成两个相等的角,这条射线叫做这个角的平分线。

14、多边形: 由一些不在同一条直线上的线段依次首尾相连组成的封闭平面图形,叫做多边形。

由一些不在同一条直线上的线段依次首尾相连组成的封闭平面图形,叫做多边形。

从一个n 边形的同一个顶点出发,分别连接这个顶点与其余各顶点,可以把这个n 边形分割成(n-2)个三角形。

n 边形内角和等于(n-2)×1800,正多边形(每条边都相等,每个内角都相等的多边形)的每个内角都等于(n-2)×1800 / n 过n 边形一个顶点有(n-3)条对角线,n 边形共(n-3)×n / 2条对角线. 圆、弧、扇形圆、弧、扇形 圆:平面上一条线段绕着固定的一个端点旋转一周,另一个端点形成的图形叫做圆。

固定的端点称为圆心固定的端点称为圆心 弧:圆上A 、B 两点之间的部分叫做圆弧,简称弧。

两点之间的部分叫做圆弧,简称弧。

扇形:由一条弧和经过这条弧的端点的两条半径所组成的图形叫做扇形。

扇形:由一条弧和经过这条弧的端点的两条半径所组成的图形叫做扇形。

圆心角:顶点在圆心的角叫圆心角。

圆心角:顶点在圆心的角叫圆心角。

4.4 角的比较※课时达标 1.1.若若OC 是∠是∠AOB AOB 的平分线的平分线,,则∠则∠AOC=_____;AOC=_____;AOC=_____;∠∠AOC=12______; ______; ∠∠AOB=2_______. 2.12平角平角=_____=_____=_____直角直角直角, , 14周角周角=______=______=______平角平角平角=_____=_____=_____直角直角直角,135,135,135°角°角°角=______=______=______平角平角平角. . 3.3.如图如图如图,(1),(1),(1)∠∠AOC=_____ +_____ = ____ -____ ;(2) (2)∠∠AOB=______-______ =______-_____.第第3题图题图 第第4题图题图4.4.如图如图如图,O ,O 是直线AB 上一点上一点,,∠AOC=90AOC=90°°,∠DOE=90DOE=90°°,则图中相等的角有则图中相等的角有_________对对( ( 小于直角的角小于直角的角小于直角的角))分别是______.5.5.下列说法正确的是下列说法正确的是下列说法正确的是( ). ( ).A. A.两条相交直线组成的图形叫做角两条相交直线组成的图形叫做角两条相交直线组成的图形叫做角B. B.有一个公共端点的两条线段组成的图形叫做角有一个公共端点的两条线段组成的图形叫做角有一个公共端点的两条线段组成的图形叫做角C. C.一条射线绕着端点从一个位置旋转到另一个位置所成的图形叫做角一条射线绕着端点从一个位置旋转到另一个位置所成的图形叫做角一条射线绕着端点从一个位置旋转到另一个位置所成的图形叫做角D. D.角是从同一点引出的两条射线角是从同一点引出的两条射线角是从同一点引出的两条射线★基础巩固1.1.已知已知O 是直线AB 上一点上一点,OC ,OC 是一条射线是一条射线, ,则∠则∠则∠AOC AOC 与∠与∠BOC BOC 的关系是的关系是( ). ( ).A. A.∠∠AOC 一定大于∠一定大于∠BOCB.BOC B.BOC B.∠∠AOC 一定小于∠一定小于∠BOC BOCC. C.∠∠AOC 一定等于∠一定等于∠BOCD.BOC D.BOC D.∠∠AOC 可能大于可能大于,,等于或小于∠等于或小于∠BOC BOC2.2.已知∠已知∠已知∠AOB=3AOB=3AOB=3∠∠BOC,BOC,若∠若∠若∠BOC=30BOC=30BOC=30°°,则∠则∠AOC AOC 等于等于( ) ( )A.120 A.120°°B.120 B.120°或°或6060°°C.30 C.30°°D.30 D.30°或°或9090°°3.3. a Ð和b Ð的顶点和一边都重合的顶点和一边都重合,,另一边都在公共边的同侧另一边都在公共边的同侧,,且a b Ð>Ð,那么a Ð的另一半落在另一半落在b Ð的( ).A. A.另一边上另一边上另一边上B. B. B.内部内部内部;C.; C.; C.外部外部外部D. D. D.以上结论都不对以上结论都不对以上结论都不对4.2704.270°°=_______=_______直角直角直角_____________________平角平角平角________________________周角周角周角. .5.5.已知一条射线已知一条射线OA,OA,如果从点如果从点O 再引两条射线OB 和OC,OC,使∠使∠使∠AOB=60AOB=60AOB=60°°, , ∠∠BOC=20BOC=20°°,求∠求∠求∠AOC AOC 的度数的度数. .6.6.如图如图如图,,如果∠如果∠1=651=651=65°°1515′′,∠2=782=78°°3030′′,求∠求∠33是多少度是多少度? ?312☆能力提高7.7.如图(如图(如图(11),OD,OE 分别是∠分别是∠AOC AOC 和∠和∠BOC BOC 的平分线的平分线,,∠AOD=40AOD=40°°,∠BOE=25BOE=25°°,求∠求∠AOB AOB 的度数的度数. . 解解:∵OD 平分∠平分∠AOC,OE•AOC,OE•AOC,OE•平分∠平分∠平分∠BOC(•BOC(•BOC(•已知已知已知)•,• )•,•∴∠∴∠∴∠AOC=•2•AOC=•2•AOC=•2•∠∠AOD,•∠∠BOC=•2•BOC=•2•∠∠_____( ),∵∠∵∠AOD=40AOD=40AOD=40°°,∠_______=25_______=25°°(已知已知), ),∴∠∴∠AOC=2AOC=2AOC=2××4040°°=80=80°°(•(•等量代换等量代换等量代换). ).∠BOC=2BOC=2××( )( )°°=( ),∴∠∴∠∴∠AOB=________. AOB=________.8.8.如图(如图(如图(22),若∠若∠AOC=AOC=AOC=∠∠DOB,DOB,则∠则∠则∠AOB= AOB= AOB= ∠∠COD;•COD;•若∠若∠若∠AOB=•AOB=•AOB=•∠∠COD,•COD,•则∠则∠则∠AOC___AOC___AOC___∠∠DOB.9.9.已知∠已知∠已知∠AOB AOB 和∠和∠BOC BOC 之和为180180°°,这两个角的平分线所成的角是这两个角的平分线所成的角是_______. _______.10.10.如图(如图(如图(33),∠AOB 是直角是直角,,∠AOC=38AOC=38°°,∠COD=COD=∠∠COB=1:2,COB=1:2,则∠则∠则∠BOD=( ). BOD=( ).A.38 A.38°°B.52 B.52°°C.26 C.26°°D.64 D.64°° E C B B A D OCB A DO (1) (2)CB AD OE C BA DO(3) (4)11.11.如图(如图(如图(44)所示)所示,OE ,OE 平分∠平分∠BOC,OD BOC,OD 平分∠平分∠AOC,AOC,AOC,∠∠BOE=20BOE=20°°,∠AOD=40•AOD=40•°°,•,•求∠求∠求∠DOE DOE 的度数的度数. .●中考在线12.12.用一副三角尺用一副三角尺用一副三角尺,,可以拼出小于180180°的角有°的角有n 个,则n 等于等于( ). A.4 B.6 C.11 D.13 ( ). A.4 B.6 C.11 D.13 13.13.已知已知α、β都是钝角都是钝角,,甲、乙、丙、丁四人计算16(α+β)的结果依次是5050°°,26,26°°,72•,72•°°,90,90°°,那么结果正确的可能是果正确的可能是( ). A.( ). A.( ). A.甲甲 B. B.乙乙 C. C.丙丙 D. D.丁丁14.14.点点P 在∠在∠MAN MAN 内部内部,,现在四个等式现在四个等式::①∠①∠PAM=PAM=PAM=∠∠MAP;MAP;②∠②∠②∠PAN=PAN=12∠A;•A;•③∠③∠③∠MAP=MAP=12∠MAN,MAN,④∠④∠④∠MAN=2MAN=2MAN=2∠∠MAP,其中能表示AP 是角平分线的等式有是角平分线的等式有( ). A.1( ). A.1个 B.2个 C.3个 D.4个15.15.如图如图如图,,∠AOD=AOD=∠∠BOC=90BOC=90°°,∠COD=42COD=42°°,求∠求∠AOC AOC AOC、∠、∠、∠AOB AOB 的度数的度数. .O C ADB16.16.如图如图如图,OA ,OA ,OA⊥⊥OB OB、、OC OC⊥⊥OD,OE 是OD 的反向延长线的反向延长线. .(1) (1)试说明∠试说明∠试说明∠AOC=AOC=AOC=∠∠BOD.(2) (2)若∠若∠若∠BOD=50BOD=50BOD=50°°,求∠求∠AOE. AOE.O CAE DB17.17.如图如图如图,AO ,AO ,AO⊥⊥CO,BO CO,BO⊥⊥DO,DO,∠∠BOC=30BOC=30°°,求∠求∠AOD AOD 的度数的度数..O CADB18.18.如图所示如图所示如图所示,OE ,OE 平分∠平分∠BOC,OD BOC,OD 平分∠平分∠AOC,AOC,AOC,∠∠BOE=20BOE=20°°,∠AOD=40•AOD=40•°°,•,•求∠求∠求∠DOE DOE 的度数的度数..E CB ADO19.19.如图如图如图,AO ,AO ,AO⊥⊥CO,BO CO,BO⊥⊥DO,DO,∠∠BOC=30BOC=30°°,求∠求∠AOD AOD 的度数的度数..OCA DB4.5 多边形和圆的初步认识※课时达标1.________1.________,,__________________,,__________________,,__________________等都是多边形等都是多边形等都是多边形. .2.2.各边相等,各角也相等的多边形叫做各边相等,各角也相等的多边形叫做各边相等,各角也相等的多边形叫做____________. ____________.3.3.下列说法中正确的是下列说法中正确的是下列说法中正确的是( ( ).A.A.圆上任意两点间的部分叫做圆弧圆上任意两点间的部分叫做圆弧圆上任意两点间的部分叫做圆弧B. B. B.圆上任意两点间的线段叫做弧圆上任意两点间的线段叫做弧圆上任意两点间的线段叫做弧C. C.圆上任意两点间的线段长度叫做弧圆上任意两点间的线段长度叫做弧圆上任意两点间的线段长度叫做弧D. D. D.任意两点间的部分叫做弧任意两点间的部分叫做弧任意两点间的部分叫做弧4.4.将一个圆分割成三个扇形,它们的圆心角的度数比为将一个圆分割成三个扇形,它们的圆心角的度数比为1:2:3,则这三个扇形的圆心,则这三个扇形的圆心角的度数分别是角的度数分别是角的度数分别是( ( ).A.30 A.30°,°,°,606060°,°,°,909090°°B.60 B.60°,°,°,120120120°,°,°,180180180°°C.40 C.40°,°,°,808080°,°,°,120120120°°D.50 D.50°,°,°,100100100°,°,°,150150150°°5.5.如图如图如图,,从四边形ABCD 的顶点A 出发,可以画出出发,可以画出__________________对角线对角线对角线,,是线段是线段____. ____.6.6.将一个圆分成三个大小相同扇形,则它们的圆心角是将一个圆分成三个大小相同扇形,则它们的圆心角是将一个圆分成三个大小相同扇形,则它们的圆心角是__________________°。

初中数学七年级上册《角的比较》

1. 在现实情境中,进一步丰富锐角、钝角、直角及大小的认识; 2. 学会比较角的大小,能估计一个角的大小;3. 在操作活动中认识角平分线,能画出一个角的平分线。

4. 认识度、分、秒,并会进行简单的换算。

【情感态度与价值观】1. 能通过角的测量、折叠等体验数、符号和图形是描述现实世界的重要手段。

2. 通过实际观察、操作体会角的大小,发展几何直觉。

3. 能用符号语言叙述角的大小关系,解决实际问题。

【重点与难点】1、角的大小的比较方法2、从图形中观察角的和、差关系。

【学习过程】一、预习导学1、 请同学们回忆,比较两条线段的大小关系有哪几种方法? (测量法和叠合法---类比联想,探索解决问题的方法)2、引导学生观看P148/图4-15并回答](1)请同学们把图中的五大景点中的任何两个之间都用线段连接。

(2)你能比较出这两个角的大小吗?你是怎样比较的?引导学生探讨出角的大小比较的一种方法———测量法。

3、 引导由学生动手操作探讨出叠合法的比较过程,若两个角能完全重合,说说这两个角的大小有何关系?4、角的分类二、例题讲解:例1 P148. 根据图4-16 ,求解下列问题:(1) 比较∠AOB 、∠AOC 、∠AOD 、∠AOE 的大小,并指出其中的锐角、直角、钝角、平角;(2) 写出∠AOB 、∠AOC 、∠BOC 、∠AOE 中某些角之间的两个等量关系。

例2、下面请大家各自在纸上任意画一个∠BOA ,再完成书上的做一做。

发现了什么?像刚才这条折痕,它是由角的顶点出发,把原来的角分成两个相等的角。

那么这条射线叫做 。

对这个定义的理解要注意以下几点:1.角平分线是一条射线,不是一条直线,也不是一条线段.它是由角的顶点出发的一条射线,这一点也很好理解,因为角的两边都是射线.2.当一个角有角平分线时,可以产生几个数学表达式.可写成 因为 OC 是∠AOB 的角平分线,所以 ∠AOB=2∠AOC=2∠COB , (1)⎪⎪⎪⎩⎪⎪⎪⎨⎧︒=∠︒=∠︒<∠<︒︒=∠︒<∠<︒3601801809090900ααααα周角:平角:钝角:直角:锐角:角的分类∠AOC=∠COB , (2)反过来,只要具备上述(1)、(2)、中的式子之一,就能得到OC 为∠AOB 的角平分线。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

观察与思考
角的大小与角的两边画出的长短有关吗?
角的大小与角的两边画出的长短没有关系。 角的两边张开得越大,角度就越大
想一想 1 2
3

∠2= ∠1+∠3 ∠1= ∠2-∠3 ∠3= ∠2- ∠1
想一想
O
当∠2= 2∠1时,
B 21
C A
∠1、∠3是什么关系? ∠1 = ∠3
一条射线把一个角分成两个相等 的角,则这条射线叫这个角的角平分线。 符 ∵OC平分∠AOB 号 ∴∠1=∠3 (或∠2= 2∠1 , ∠2= 2∠3) 语 言 B
你选择从哪一面上山呢?
成功永远属于肯攀高峰的人
A
D
B
C
学习目标:
1.运用类比的方法,会比较两 个角的大小. 2.理解角平分线的定义,会画 一个角的角平分线。 3.理解两个角的和或差的意义, 会进行角的 2、学习过程中遇到不懂的问题 可与同桌交流或请教老师。 3、时间不超过5分钟
典例析解
例2、如图:AC为一条直线,点O是 直线AC上一点,∠AOB=120°, OE、OF分别平分∠AOB和∠BOC。
(1)求∠BOC的大小 (2)求∠EOF的大小

当堂检测
感悟与收获
本节课你学到了什么?
C O
21
A
做一做
O
A
c
B
已知: ∠ AOB=760,OC为∠ AOB的角平分线, 那么∠ AOC= 380 , ∠ AOC= ∠ AOB, ∠ AOB= 2 ∠ COB
典例析解
例1、如图所示,∠AOC=30°, ∠BOC=50°,OD是∠AOB的平分 线,求∠AOB、∠AOD和∠COD的 度数.
相关文档
最新文档