用函数编程计算并输出杨辉三角

用函数编程计算并输出杨辉三角
用函数编程计算并输出杨辉三角

用函数编程计算并输出杨辉三角

#include

#include

#define N 10

void YangHui(int arr[N][N], int n)

{

int i, j;

for(i = 0; i < n; i++)

{

arr[i][0] = 1;

arr[i][i] = 1;

}

for(i = 2; i < n; i++)

{

for(j = 1; j < i; j++)

arr[i][j] = arr[i - 1][j - 1] + arr[i - 1][j];

}

}

void main()

{

int i, j, n, b[N][N];

printf("Input n:");

scanf("%d", &n);

YangHui(b, n);

for(i = 0; i < n; i++)

{

for(j = 0; j <= i; j++)

{

printf("%4d", b[i][j]);

}

printf("\n");

}

}

28.1.4 利用计算器求三角函数值-

28.1.4 利用计算器求三角函数值 第4课时 复习引入 教师讲解:通过上面几节的学习我们知道,当锐角A是30°、45°或60?°等特殊角时,可以求得这些特殊角的正弦值、余弦值和正切值;如果锐角A?不是这些特殊角,怎样得到它的三角函数值呢?我们可以借助计算器来求锐角的三角函数值. 探究新知 (一)已知角度求函数值 教师讲解:例如求sin18°,利用计算器的并输入角度值18,得到结果sin18°=0.309016994. 又如求tan30°36′,?利用键,并输入角的度、分值,就可以得到答案0.591398351. 利用计算器求锐角的三角函数值,或已知锐角三角函数值求相应的锐角时,不同的计算器操作步骤有所不同. 因为30°36′=30.6°,所以也可以利用30.6,?同样得到答案0.591398351. (二)已知函数值,求锐角 教师讲解:如果已知锐角三角函数值,也可以使用计算器求出相应的锐角.例如,已知sinA=0.5018;用计算器求锐角A可以按照下面方法操作: 依次按键0.5018,得到∠A=30.11915867°(如果锐角A精确到1°,则结果为30°). 还可以利用A=30°07′08.97″(如果锐角A?精确到1′,则结果为30°8′,精确到1″的结果为30°7′9″). 使用锐角三角函数表,也可以查得锐角的三角函数值,或根据锐角三角函数值求相应的锐角. 教师提出:怎样验算求出的∠A=30°7′9″是否正确?让学生思考后回答,?然后教

师总结:可以再用计算器求30°7′9″的正弦值,如果它等于0.5018,?则我们原先的计算结果就是正确的. 随堂练习 课本第84页练习第1、2题. 课时总结 90°的锐角用 ?对于余弦与正切也有相类似的求法. 教后反思 _________________________________________________________________________ _____________________________________________________________________________ 第4课时作业设计 课本练习 做课本第85页习题 28.1复习巩固第4题,第5题. 双基与中考 (本练习除了作为本课时的课外作业之外,余下的部分作为下一课时(习题课)学生的课堂作业,学生可以自己根据具体情况划分课内、课外作业的份量) 一、选择题. 1.如图1,Rt △ ABC 中,∠C=90°,D 为BC 上一点,∠DAC=30°,BD=2, AC?的长是( ). A ..3 D .3 2 C A D B A (1) (2) (3)

反三角函数

第二章 三角、反三角函数 一、考纲要求 1.理解任意角的概念、弧度的意义,能正确进行弧度和角度的互换。 2.掌握任意角的正弦、余弦、正切的定义,了解余切、正割、余割的定义,掌握同角三角函数的基本关系式,掌握正弦、余弦的诱导公式,理解周期函数与最小正周期的意义。 3.掌握两角和与两角差的正弦、余弦、正切公式,掌握二倍角的正弦、余弦、正切公式。 4.能正确运用三角公式,进行简单三角函数式的化简,求值和恒等式的证明。 5.了解正弦函数、余弦函数,正切函数的图像和性质,会用“五点法”画正弦函数,余弦函数和函数y=Asin(wx+?)的简图,理解A 、w 、?的物理意义。 6.会由已知三角函数值求角,并会用符号arcsinx 、arccosx 、arctgx 表示。 7.掌握正弦定理、余弦定理,并能初步运用它们解斜三角形,能利用计算器解决三角形的计算问题。 8.理解反三角函数的概念,能由反三角函数的图像得出反三角函数的性质,能运用反三角函数的定义、性质解决一些简单问题。 9.能够熟练地写出最简单的三角方程的解集。 二、知识结构 1.角的概念的推广: (1)定义:一条射线OA 由原来的位置OA ,绕着它的端点O 按一定方向旋转到另一位置OB ,就形成了角α。其中射线OA 叫角α的始边,射线OB 叫角α的终边,O 叫角α的顶点。 (2)正角、零角、负角:由始边的旋转方向而定。 (3)象限角:由角的终边所在位置确定。 第一象限角:2k π<α<2k π+2 π ,k ∈Z 第二象限角:2k π+ 2 π <α<2k π+π,k ∈Z 第三象限角:2k π+π<α<2k π+2 3π ,k ∈Z 第四象限角:2k π+2 3π <α<2k π+2π,k ∈Z (4)终边相同的角:一般地,所有与α角终边相同的角,连同α角在内(而且只有这样的角),可以表示为k 2360°+α,k ∈Z 。 (5)特殊角的集合: 终边在坐标轴上的角的集合{α|α= 2 π k ,k ∈Z } 终边在一、三象限角平分线上角的集合{α|α=k π+4π ,k ∈Z } 终边在二、四象限角平分线上角的集合{α|α=k π-4π ,k ∈Z } 终边在四个象限角平分线上角的集合{α|α=k π-4 π ,k ∈Z } 2.弧度制: (1)定义:用“弧度”做单位来度量角的制度,叫做弧度制。 (2)角度与弧度的互化: 1°= 180 π 弧度,1弧度=( π 180 )° (3)两个公式:(R 为圆弧半径,α为圆心角弧度数)。 弧长公式:l=|α|R

编译原理实验(递归向下语法分析法实验)附C语言源码-成功测试

实验二递归向下分析法 一、实验目和要求 根据某一文法编制调试递归下降分析程序,以便对任意输入的符号串进行分析。本次实验的目的主要是加深对递归下降分析法的理解。 二、实验内容 (1)功能描述 1、递归下降分析法的功能词法分析器的功能是利用函数之间的递归调用模拟语法树自上而下的构造过程。 2、递归下降分析法的前提改造文法:消除二义性、消除左递归、提取左因子,判断是否为LL(1)文法, 3、递归下降分析法实验设计思想及算法 为G 的每个非终结符号U 构造一个递归过程,不妨命名为U。 U 的产生式的右边指出这个过程的代码结构: 1)若是终结符号,则和向前看符号对照,若匹配则向前进一个符号;否则出错。 2)若是非终结符号,则调用与此非终结符对应的过程。当A的右部有多个产生式时,可用选择结构实现。 具体为: (1)对于每个非终结符号U->u1|u2|…|un处理的方法如下: U( ) { ch=当前符号; if(ch可能是u1字的开头) 处理u1的程序部分; else if(ch可能是u2字的开头)处理u2的程序部分; … else error() } (2)对于每个右部u1->x1x2…xn的处理架构如下: 处理x1的程序; 处理x2的程序; … 处理xn的程序; (3)如果右部为空,则不处理。 (4)对于右部中的每个符号xi ①如果xi为终结符号: if(xi= = 当前的符号) { NextChar();

return; } else 出错处理 ②如果xi为非终结符号,直接调用相应的过程xi() 说明: NextChar为前进一个字符函数。 (2)程序结构描述 程序要求: 程序输入/输出示例: 对下列文法,用递归下降分析法对任意输入的符号串进行分析: (1)E->TG (2)G->+TG|—TG (3)G->ε (4)T->FS (5)S->*FS| / FS (6)S->ε (7)F->(E) (8)F->i 输入出的格式如下: (1)E 盘建立一个文本文档" 222.txt"存储一个以#结束的符号串(包括+—*/()i#),在此位置输入符号串例如:i+i*i# (2)输出结果:i+i*i#为合法符号串备注:输入一符号串如i+i*#,要求输出为“非法的符号串” 函数调用格式、参数含义、返回值描述、函数功能;函数之间的调用关系图。 程序所用主要参数和头文件说明: #include #include #include FILE *fp; //定义一个全局文件指针变量 char ch; //定义一个全局字符变量 #define N 20 //定义一个数组大小常量 char string[N]; //定义一个用于存储算式字符串的数组 char *p; //定义一个全局字符指针变量 函数说明: 1)非终结符函数E() 函数功能描述:根据以上文法要求E->TG,所以从主函数开始调入第一个非终结符函数执行,显示调用产生式,依次嵌套调用非终结符函数T()和G(),进行递归向下分析。 void E(){printf("E--->TG..............%c\n",ch); T(); G();}

中考数学-利用计算器求三角函数值

中考数学 利用计算器求三角函数值 复习引入 教师讲解:通过上面几节的学习我们知道,当锐角A是30°、45°或60?°等特殊角时,可以求得这些特殊角的正弦值、余弦值和正切值;如果锐角A?不是这些特殊角,怎样得到它的三角函数值呢?我们可以借助计算器来求锐角的三角函数值. 探究新知 (一)已知角度求函数值 教师讲解:例如求sin18°,利用计算器的18,得到结果sin18°=0.309016994. 又如求tan30°36′,?利用键,并输入角的度、分值,就可以得到答案0.591398351.利用计算器求锐角的三角函数值,或已知锐角三角函数值求相应的锐角时,不同的计算器操作步骤有所不同. 因为30°36′=30.6°,所以也可以利用30.6,?同样得到答案0.591398351. (二)已知函数值,求锐角 教师讲解:如果已知锐角三角函数值,也可以使用计算器求出相应的锐角.例如,已知sinA=0.5018;用计算器求锐角A可以按照下面方法操作: 依次按键0.5018,得到∠A=30.11915867°(如果锐角A 精确到1°,则结果为30°). 还可以利用A=30°07′08.97″(如果锐角A?精确到1′,则结果为30°8′,精确到1″的结果为30°7′9″). 使用锐角三角函数表,也可以查得锐角的三角函数值,或根据锐角三角函数值求相应的锐角.

教师提出:怎样验算求出的∠A=30°7′9″是否正确?让学生思考后回答,?然后教师总结:可以再用计算器求30°7′9″的正弦值,如果它等于0.5018,?则我们原先的计算结果就是正确的. 随堂练习 课本第84页练习第1、2题. 课时总结 已知角度求正弦值用90°的锐角用 ?对于余弦与正切也有相类似的求法. 教后反思 _________________________________________________________________________ _____________________________________________________________________________ 第4课时作业设计 课本练习 做课本第85页习题28.1复习巩固第4题,第5题. 双基与中考 (本练习除了作为本课时的课外作业之外,余下的部分作为下一课时(习题课)学生的课堂作业,学生可以自己根据具体情况划分课内、课外作业的份量) 一、选择题. 1.如图1,Rt △ABC 中,∠C=90°,D 为BC 上一点,∠DAC=30°,BD=2,则AC?的长是( ). A B . C .3 D .3 2

04.递归算法讲解

1.用递归法计算n! 【讲解】 递归是算法设计中的一种基本而重要的算法。递归方法即通过函数或过程调用自身将问题转化为本质相同但规模较小的子问题,是分治策略的具体体现。 递归方法具有易于描述、证明简单等优点,在动态规划、贪心算法、回溯法等诸多算法中都有着极为广泛的应用,是许多复杂算法的基础。 递归概述 一个函数在它的函数体内调用它自身称为递归(recursion)调用。是一个过程或函数在其定义或说明中直接或间接调用自身的一种方法,通常把一个大型复杂的问题层层转化为一个与原问题相似的规模较小的问题来求解。递归策略只需少量的程序就可描述出解题过程所需要的多次重复计算,大大地减少了程序的代码量。递归的能力在于用有限的语句来定义对象的无限集合。用递归思想写出的程序往往十分简洁易懂。一般来说,递归需要有边界条件、递归前进段和递归返回段。当边界条件不满足时,递归前进;当边界条件满足时,递归返回。 使用递归要注意以下几点: (1)递归就是在过程或函数里调用自身; (2)在使用递增归策略时,必须有一个明确的递归结束条件,称为递归出口。 例如有函数r如下: int r(int a) { b=r(a?1); return b; } 这个函数是一个递归函数,但是运行该函数将无休止地调用其自身,这显然是不正确的。为了防止递归调用无终止地进行,必须在函数内有终止递归调用的手段。常用的办法是加条件判断,满足某种条件后就不再作递归调用,然后逐层返回。 构造递归方法的关键在于建立递归关系。这里的递归关系可以是递归描述的,也可以是递推描述的。 例4-1 用递归法计算n!。 n!的计算是一个典型的递归问题。使用递归方法来描述程序,十分简单且易于理解。 (1)描述递归关系 递归关系是这样的一种关系。设{U 1,U 2 ,U 3 ,…,U n ,…}是一个序列,如果从某一项k开始, U n 和它之前的若干项之间存在一种只与n有关的关系,这便称为递归关系。 注意到,当n≥1时,n!=n*(n?1)!(n=0时,0!=1),这就是一种递归关系。对于特定的k!,它只与k与(k?1)!有关。 (2)确定递归边界 在步骤1的递归关系中,对大于k的U n 的求解将最终归结为对U k 的求解。这里的U k 称 为递归边界(或递归出口)。在本例中,递归边界为k=0,即0!=1。对于任意给定的N!,程序将最终求解到0!。 确定递归边界十分重要,如果没有确定递归边界,将导致程序无限递归而引起死循环。例如以下程序: #include int f(int x) { return(f(x?1));}

1.3《三角函数的计算》教学设计

《三角函数的计算》教学设计 一、学生知识状况分析 1. 本章前两节学生学习了三角函数的定义,三角函数sinα、cosα、tanα值的具体意义,并了解了30°,45°,60°的三角函数值. 2. 学生已经学会使用计算器进行有理数的加、减、乘、除及平方运算,对计算器的功能及使用方法有了初步的了解. 二、教学任务分析 随着学习的进一步深入,当面临实际问题的时候,如果给出的角不是特殊角,那么如何解决实际的问题,为此,本节学习用计算器计算sinα、cosα、tanα的值,以及在已知三角函数值时求相应的角度.掌握了用科学计算器求角度,使学生对三角函数的意义,对于理解sinα、cosα、tanα的值∠α之间函数关系有了更深刻的认识. 根据学生的起点和课程标准的要求,本节课的教学目标和任务是: 知识与技能 1. 经历用计算器由已知锐角求三角函数的过程,进一步体会三角函数的意义. 2. 能够用计算器进行有关三角函数值的计算.能够运用计算器辅助解决含三角函数值计算的实际问题. 过程与方法 在实际生活中感受具体的实例,形成三角形的边角的函数关系,并通过运用计算器求三角函数值过程,进一步体会三角函数的边角关系.

情感态度与价值观 通过积极参与数学活动,体会解决问题后的快乐. 感悟计算器的计算功能和三角函数的应用价值 教学重点:用计算器求已知锐角的三角函数值.能够用计算器辅助解决含三角函数值计算的实际问题. 教学难点:能够用计算器辅助解决含三角函数值计算的实际问题三、教学过程分析 三、教学过程分析 本节课设计了六个教学环节:复习引入,探索新知、例题讲解,随堂练习,课堂小结,布置作业,课外探究. 第一环节 复习引入 活动内容: 用多媒体展示学生前段时间所学的知识,提出问题,从而引入课题. 直角三角形的边角关系: 三边的关系: 222a c b =+,两锐角的关系: ∠A+∠B=90°. 边与角的关系: 锐角三角函数 c a B A ==cos sin ,c b B A ==sin cos ,b a A =tan , 特殊角30°,45°,60°的三角函数值. 引入问题: 1、你知道sin16°等于多少吗? 1sin A ?4 A =∠=2、已知则

.反三角函数例题

§6.4.1 反三角函数(1)——反正弦函数 [教学过程] 一.反正弦函数的引入 1.回忆 sin y x =的图像及反函数的条件,可知sin ,y x x =∈R 不存在反函数 2.若,22x ππ??∈-????,则sin y x =是单调函数,,x y 一一对应,故在,22x ππ?? ∈-???? 上sin y x =存在反函数 3.定义 ()sin ,,22f x x x ππ?? =∈-???? ,其反函数()1arcsin f x x -=,称为反正弦函数 二.反正弦函数的图像 反函数的图像与原函数的图像关于y x =对称,即x 改y ,y 改x 三.根据解析式与图像研究反正弦函数的性质 sin ,,22y x x ππ?? =∈-???? []arcsin ,1,1y x x =∈- 1.值域 []1,1y ∈- ,22y ππ??∈-???? 2.奇偶性 奇函数(过原点) 奇函数(过原点) 3.单调性 增函数 增函数 4.周期性 非周期函数 非周期函数 5.()11arcsin sin arcsin 2 2 x x x x π π -≤≤?-≤≤ ?= 6.()1sin 1arcsin sin 2 2 x x x x π π -≤≤ ?-≤≤?= arcsin 是反正弦的 符号,是一个整体 数形结合,从图像上看反正弦函数的性 质 ()()1 f f x x x A -??=∈??()()1f f x x x D -=∈????

三.例题与练习 例1 求值: (1);(2)()arcsin 1- ;(3)arcsin ? ?? (4)()arcsin 0.5;(5)arcsin0;(6)()arcsin 0.72-≈; (7)arcsin sin 9π?? ???;(8)5arcsin sin 6π?? ?? ? ; (8)()arcsin sin 3.49π 例2 用反正弦函数表示下列各式的: (1)sin x =,22x ππ?? ∈-???? (ii)[]0,2x π∈ (2)1sin 4x =-, (i),22x ππ?? ∈-???? (ii)[]0,2x π∈ (3)sin x =,22x ππ?? ∈-???? (ii)[]0,2x π∈ 例3 求下列函数的定义域和值域: (1)()3arcsin 21y x =- ;(2)6 y π =+ y =-. 四.布置作业 注意的不同范围 ()arcsin y f x =???? ()f x 定义域为A , 由()11f x -≤≤得 B ,则D A B = x x

杨辉三角的各种算法实现

/* Name: 杨辉三角算法集锦 Copyright: 始发于goal00001111的专栏;允许自由转载,但必须注明作者和出处Author: goal00001111 Date: 27-11-08 19:04 Description: 分别使用了二维数组,一维数组,队列,二项式公式,组合公式推论和递归方法等9种算法 算法思路详见代码注释——注释很详细,呵呵 */ #include #include using namespace std; const int MAXROW = 40; void PrintBlank(int n); int Com(int n, int m); int Try(int row, int cel); void Fun_1(int row); void Fun_2(int row); void Fun_3(int row); void Fun_4(int row); void Fun_5(int row); void Fun_6(int row); void Fun_7(int row); void Fun_8(int row); void Fun_9(int row); int main() { int row; cin >> row; Fun_1(row); cout << endl; Fun_2(row); cout << endl; Fun_3(row); cout << endl; Fun_4(row); cout << endl; Fun_5(row);

cout << endl; Fun_6(row); cout << endl; Fun_7(row); cout << endl; Fun_8(row); cout << endl; Fun_9(row); system("pause"); return 0; } //输出n个空格 void PrintBlank(int n) { for (int i=0; i

反三角函数公式(完整)

反三角函数 分类 反正弦 反余弦 余弦函数x y cos =在]0[π,上的反函数,叫做反余弦函数。记作x cos arc ,表示一个 余弦值为x 的角,该角的范围在]0[π,区间内。定义域]11[, - , 值域]0[π,。 反正切 反余切 余切函数y=cot x 在)0(π,上的反函数,叫做反余切函数。记作x arc cot ,表示一个余切值为x 的角,该角的范围在)0(π,区间内。定义域R ,值域)0(π,。

反正割 反余割 运算公式 余角关系 2 arccos sin arc π = +x x 2 cot tan arc π =+x arc x 2 csc ec a π = +x arc x rcs 负数关系 x x sin arc )sin(arc -=- x x rc arccos )cos(a -=-π x x tan arc )tan(arc -=- x rc x c cot a )(ot arc -=-π

x rc x sec a )(arcsec -=-π x arc x c sec )(sc arc -=- 倒数关系 x arc x csc )1 arcsin(= x arc x sec )1 arccos(= x arc x arc x cot 2cot )1arctan(-==π x x x arc arctan 23arctan )1cot(-=+=ππ x x arc arccos )1 sec(= x x arc arcsin )1 csc(= 三角函数关系

加减法公式 1. ) 10,0()11arcsin(arcsin arcsin ) 10,0()11arcsin(arcsin arcsin ) 10()11arcsin(arcsin arcsin 22222 2 222222>+<<-+---=+>+>>-+--=+≤+≤-+-=+y x y x x y y x y x y x y x x y y x y x y x xy x y y x y x ,,或ππ 2. ) 10,0()11arcsin(arcsin arcsin ) 10,0()11arcsin(arcsin arcsin ) 10()11arcsin(arcsin arcsin 22222 2 222222>+><-----=->+<>----=-≤+≥---=-y x y x x y y x y x y x y x x y y x y x y x xy x y y x y x ,,或ππ 3. ) 0() 11arccos(2arccos arccos ) 0() 11arccos(arccos arccos 2 2 22<+----=+≥+---=+y x x y xy y x y x x y xy y x π 4. ) () 11arccos(arccos arccos ) () 11arccos(arccos arccos 2 2 22y x x y xy y x y x x y xy y x <--+=-≥--+-=- 5. ) 1,0(1arctan arctan arctan ) 1,0(1arctan arctan arctan ) 1(1arctan arctan arctan ><-++-=+>>-++=+<-+=+xy x xy y x y x xy x xy y x y x xy xy y x y x ππ

28.1.3锐角三角函数:运用计算器.doc

28.1 锐角三角函数 第四课时 教学目标: 知识与技能: 1.让学生熟识计算器一些功能键的使用. 2.会熟练运用计算器求锐角的三角函数值和由三角函数值来求角. 过程与方法: 自己熟悉计算器,在老师的指导下求一般锐角三角函数值. 情感态度与价值观: 让学生通过独立思考,自主探究和合作交流进一步体会函数的数学内涵,获得知识,体验成功,享受学习乐趣. 重难点、关键: 1.重点:运用计算器处理三角函数中的值或角的问题. 2.难点:正、余弦概念隐含角度与数之间具有一一对应的函数思想,又用含几个字母的符号组来表示,在教学中应作为难点处理. 教学过程: 一、复习旧知、引入新课 【引入】 通过上课的学习我们知道,当锐角A是等特殊角时,可以求得这些角的正弦、余弦、正切值;如果锐角A不是这些特殊角,怎样得到它的三角函数值呢? 我们可以用计算器来求锐角的三角函数值。 二、探索新知、分类应用 【活动一】用计算器求锐角的正弦、余弦、正切值 利用求下列三角函数值(这个教师可完全放手学生去完成,教师只需巡回指导) sin37°24′;sin37°23′;cos21°28′;cos38°12′; tan52°;tan36°20′;tan75°17′; 【活动二】熟练掌握用科学计算器由已知三角函数值求出相应的锐角.

例如:sinA=0.9816,∠A=; cosA=0.8607,∠A=; tanA=0.1890,∠A=; tanA=56.78,∠A=。 【活动三】知识提高 1.求下列各式的值: (1)sin42°31′ (2)cos33°18′24″ (3)tan55°10′ 2.根据所给条件求锐角α. (1)已知s inα=0.4771,求α.(精确到1″) (2)已知cosα=0.8451,求α.(精确到1″) (3)已知tanα=1.4106,求α.(精确到1″) 3.等腰三角形ABC中,顶角∠ACB=108°,腰AC=10m,求底边AB的长及等腰三角形的面积.(边长精确到1cm) 三、总结消化、整理笔记 本节课应掌握:已知角度求正弦值用sin键;已知正弦值求小于90°的锐角用2ndf sin键,对于余弦与正切也有相类似的求法. 四、书写作业、巩固提高 (一)巩固练习:课本68页练习 (二)提高、拓展练习:分层作业 五、教学后记

反三角函数及性质

y=arcs inx. 函数y=sinx , x€ [- n /2 , n /2]的反函数叫做反正弦函数,记作x=arcsiny. 习惯上用x表示自变量,用y表示函数,所以反正弦函数写成y=arcsinx.的形式 请注意正弦函数y=sinx,x € R因为在整个定义域上没有一一对应关系,所以不存在反函数。 反正弦函数只对这样一个函数y=sinx , x€ [- n /2 , n /2]成立,这里截取的是正弦函数靠近原点的一个单调区间,叫做正弦函数的主值区间。 理解函数y=arcsinx中,y表示的是一个弧度制的角,自变量x是一个正弦值。这点必须牢记 性质 根据反函数的性质,易得函数y=arcsinx的,定义域[-1 , 1],值域[-n /2 , n /2],是单调递增函数 图像关于原点对称,是奇函数 所以有arcsin(-x)=-arcsinx ,注意x的取值范围:x € [-1 , 1] 导函数: arcsinx = (土匚(-1,1)) vl-x2,导函数不能取|x|=1 * / fim (arcsinx) =-oo lim {arcsinx) = +oo - . ,:T 1 反正弦恒等式 sin(arcsinx)=x , x € [-1 , 1] (arcsinx)'=1/ V (1-x A2) arcsin x=-arcs in(-x) arcs in ( sin x)=x , x 属于[0, n /2]

arccosx 反三角函数中的反余弦。意思为:余弦的反函数,函数为y=arccosx,函数图像如右下图。 就是已知余弦数值,反求角度,如cos(a) = b,贝U arccos(b) = a ; 它的值是以弧度表达的角度。定义域:【-1 , 1】。 由于是多值函数,往往取它的单值支,值域为【0, n ],记作y=arccosx,我们称它叫 做反三角函数中的反余弦函数的主值, arcta n x 反三角函数中的反正切。意思为:tan(a) = b;等价于arctan(b) = a fflil 定义域:{x lx € R},值域:y € (- n/2,冗/2) 计算性质: tan( arcta na)=a arcta n(-x)=-arcta nx arctan A + arctan B=arcta n(A+B)/(1-AB) arctan A - arctan B=arcta n(A-B)/(1+AB) 反三角函数在无穷小替换公式中的应用:当x T 0时,arctanx~x

利用计算器求三角函数值

利用计算器求三角函数值 复习引入 教师讲解:通过上面几节的学习我们知道,当锐角A是30°、45°或60?°等特殊角时,可以求得这些特殊角的正弦值、余弦值和正切值;如果锐角A?不是这些特殊角,怎样得到它的三角函数值呢?我们可以借助计算器来求锐角的三角函数值. 探究新知 (一)已知角度求函数值 教师讲解:例如求sin1818,得到结果sin18°=0.309016994. 又如求tan30°36′,?利用键,并输入角的度、分值,就可以得到答案0.591398351. 利用计算器求锐角的三角函数值,或已知锐角三角函数值求相应的锐角时,不同的计算器操作步骤有所不同. 因为30°36′=30.6°,所以也可以利用30.6,?同样得到答案0.591398351. (二)已知函数值,求锐角 教师讲解:如果已知锐角三角函数值,也可以使用计算器求出相应的锐角.例如,已知sinA=0.5018;用计算器求锐角A可以按照下面方法操作: 依次按键0.5018,得到∠A=30.11915867°(如果锐角A精确到1°,则结果为30°). 还可以利用A=30°07′08.97″(如果锐角A?精确到1′,则结果为30°8′,精确到1″的结果为30°7′9″). 使用锐角三角函数表,也可以查得锐角的三角函数值,或根据锐角三角函

数值求相应的锐角. 教师提出:怎样验算求出的∠A=30°7′9″是否正确?让学生思考后回答,?然后教师总结:可以再用计算器求30°7′9″的正弦值,如果它等于0.5018,?则我们原先的计算结果就是正确的. 随堂练习课本第84页练习第1、2题. 课时总结 已知角度求正弦值用已知正弦值求小于90°的锐角用 ?对于余弦与正切也有相类似的求法. 教后反思 _______________________________________________________________ __________ _______________________________________________________________ ______________ 第4课时作业设计 课本练习 做课本第85页习题28.1复习巩固第4题,第5题. 双基与中考 (本练习除了作为本课时的课外作业之外,余下的部分作为下一课时(习题课)学生的课堂作业,学生可以自己根据具体情况划分课内、课外作业的份量) 一、选择题. 1.如图1,Rt△ABC中,∠C=90°,D为BC上一点,∠DAC=30°,BD=2, AC?的长是().

常用反三角函数公式表

反三角函数公式

反三角函数图像与特征 1 :

反三角函数的定义域与主值范围 式中n为任意整数.

反三角函数的相互关系 sin x = x-x3/3!+x5/5!-...(-1)k-1*x2k-1/(2k-1)!+... (-∞= -1 And x < -0.5 Then ArcSin = -Atn(Sqr(1 - x * x) / x) - 2 * Atn(1) If x >= -0.5 And x <= 0.5 Then ArcSin = Atn(x / Sqr(1 - x * x))

If x > 0.5 And x <= 1 Then ArcSin = -Atn(Sqr(1 - x * x) / x) + 2 * Atn(1) End Function ArcCos(x) 函数 功能:返回一个指定数的反余弦值,以弧度表示,返回类型为Double。 语法:ArcCos(x)。 说明:其中,x的取值范围为[-1,1],x的数据类型为Double。 程序代码: Function ArcCos(x As Double) As Double If x >= -1 And x < -0.5 Then ArcCos = Atn(Sqr(1 - x *x) / x) + 4 * Atn(1) If x >= -0.5 And x <= 0.5 Then ArcCos = -Atn(x/ Sqr(1 - x * x)) + 2 * Atn(1) If x> 0.5 And x <= 1 Then ArcCos = Atn(Sqr(1 - x*x) / x) End Function

反三角函数及最简三角方程.docx

标准实用 反三角函数及最简三角方程 一、知识回顾: 1、反三角函数: 概念:把正弦函数y sin x , x,时的反函数,成为反正弦函数,记作 22 y arcsin x . y sin x( x R) ,不存在反函数. 含义: arcsin x 表示一个角;角,;sin x . 22 反余弦、反正切函数同理,性质如下表. 名称函数式定义域值域奇偶性单调性 反正弦函数y arcsin x1,1 增, 2奇函数增函数 2 y arccosx arccos( x)arccosx 反余弦函数1,1 减0,减函数 非奇非偶 反正切函数y arctanx R增, 2奇函数增函数 2 y arc cot x arc cot( x)arc cot x 反余切函数R减0,减函数 非奇非偶 其中: ().符号 arcsin x 可以理解为-, ] 上的一个角弧度,也可以理解为 1[ 2 () 2 区间[- , ] 上的一个实数;同样符号 arccos x 可以理解为 [0 ,π 上的一个角2 ] 2

(弧度 ),也可以理解为区间 [0 ,π]上的一个实数; (2). y =arcsin x 等价于 sin y=x, y∈ [-,], y= arccos x 等价于 cos y 22 =x, x ∈[0, π], 这两个等价关系是解反三角函数问题的主要依据; (3).恒等式 sin(arcsin x)=x, x∈ [- 1, 1] , cos(arccos x)=x, x∈ [-1, 1], tan(arctanx)=x,x ∈ R arcsin(sin x) = x, x ∈ [ -,], arccos(cos x) = x, x ∈ [0, 22 π],arctan(tanx)=x, x∈(-,)的运用的条件; 22 (4).恒等式 arcsin x+arccos x=, arctan x+arccot x=的应用。 22 2、最简单的三角方程 方程方程的解集 a1x | x2k arcsin a, k Z sin x a a1x | x k 1 k arcsin a, k Z a1x | x2k arccos a, k Z cos x a a1x | x2k arccos a, k Z tan x a x | x k arctana, k Z cot x a x | x k arc cot a, k Z 其中: (1 ).含有未知数的三角函数的方程叫做三角方程。解三角方程就是确定三 角方程是否有解,如果有解,求出三角方程的解集; (2).解最简单的三角方程是解简单的三角方程的基础,要在理解三角方程的

递归下降语法分析设计原理与实现技术实验报告

递归下降语法分析设计原理与实现技术 实验报告

变更说明

一、实验目的: 本实验的目的在于在教师的引导下以问题回朔与思维启发的方式,使学生在不断的探究过程中掌握编译程序设计和构造的基本原理和实现技术,启迪学生的抽象思维、激发学生的学习兴趣、培养学生的探究精神和专业素养,从而提高学生发现问题、分析问题和解决问题的能力。 二、实验内容: [实验项目] 完成以下描述算术表达式的LL(1)文法的递归下降分析程序 G[E]: E→TE′ E′→ATE′|ε T→FT′ T′→MFT′|ε F→ (E)|i A→+|- M→*|/ [设计说明] 终结符号i 为用户定义的简单变量,即标识符的定义。 [设计要求] (1)输入串应是词法分析的输出二元式序列,即某算术表达式“实验项目一”的输出结果,输出为输入串是否为该文法定义的算术表达式的判断结果; (2)递归下降分析程序应能发现输入串出错; (3)设计两个测试用例(尽可能完备,正确和出错),并给出测试结果。 三、实验环境: 操作系统:Windows 7 软件:VC++6.0 四、程序功能描述: ●提供了两种输入方式:键盘和文件,有文件输入时需为二元式序列; ●能够对输入的字符串做出正确的递归下降分析判断,并给出判断结果; ●能发现输入串中的错误,包含非法字符,输入不匹配等; ●能够处理一些可预见性的错误,如文件不存在,用户输入非法等。 五、数据结构设计: 全局:

局部(main()中): 六、程序结构描述: ●设计方法: 本程序采用从键盘输入或文件读取两种输入方式,其中文件的内容需为二元式序列,然后按照递归下降分析的方法对输入的字符串进行分析判断,并输出判断结果,程序通过对输入串的检查能够发现输入串中的错误。程序规定的单词符号及其种别码见下表: ●主要函数说明: advance():将下一个字符送入current; error():输出错误,表示不是该文法的句子;

反三角函数

例 试判断下列函数的定义域、值域、奇偶性、周期性、单调性,并画出大致图像。 (1)()sin arcsin y x =。 (2)()arcsin sin y x =。 解:(1)()()sin arcsin y f x x x ===。 定义域为[]1,1-。值域为[]1,1-。奇函数。 ()f x 不是周期函数,且再[]1,1-上单调递增,如图。 (2)()()arcsin sin y f x x ==。 定义域为R 。值域为,22ππ?? -????。奇函数。 ()f x 是周期函数,周期为2π。 下面讨论单调性: ① 当,22x ππ?? ∈- ???? 时,()()arcsin sin f x x x ==,为增函数。 ② 当3,22x ππ?? ∈? ??? 时,()()()arcsin sin arcsin sin f x x x x ππ==-=-????,为减函数。 由函数的周期性,得 ① 区间2,22 2k k π πππ?? - + ??? ? (k Z ∈)为函数()f x 的递增区间,此时 ()()()arcsin sin arcsin sin 22f x x x k x k ππ==-=-????,k Z ∈。 ② 区间32,22 2k k π πππ? ? + + ??? ? (k Z ∈)为函数()f x 的递减区间,此时 ()()()arcsin sin arcsin sin 22f x x k x k x ππππ==+-=+-????,k Z ∈。 所以()2,2,222arcsin sin 32,2,222x k x k k y x k x x k k πππππππππππ???-∈-+????? ?==??? ?+-∈++?????? ,k Z ∈。如图。

递归讲解

复习 输入a,b,c,计算m 。已知m=) ,,max(),,max(),,max(c b b a c b b a c b a +?+ 请把求三个数的最大数max(x,y,z)定义成函数和过程两种方法作此题。 递 归 为了描述问题的某一状态,必须用到它的上一状态,而描述上一状态,又必须用到它的上一状态……这种用自已来定义自己的方法,称为递归定义。例如:定义函数f(n)为: /n*f(n -1) (n>0) f(n)= | \ 1(n=0) 则当n>0时,须用f(n-1)来定义f(n),用f(n-1-1)来定义f(n-1)……当n=0时,f(n)=1。 由上例我们可看出,递归定义有两个要素: (1) 递归边界条件。也就是所描述问题的最简单情况,它本身不再使用递归的定义。 如上例,当n=0时,f(n)=1,不使用f(n-1)来定义。 (2) 递归定义:使问题向边界条件转化的规则。递归定义必须能使问题越来越简单。 如上例:f(n)由f(n-1)定义,越来越靠近f(0),也即边界条件。最简单的情况是f(0)=1。 递归算法的效率往往很低, 费时和费内存空间. 但是递归也有其长处, 它能使一个蕴含递归关系且结构复杂的程序简介精炼, 增加可读性. 特别是在难于找到从边界到解的全过程的情况下, 如果把问题推进一步使其结果仍维持原问题的关系, 则采用递归算法编程比较合适. 递归按其调用方式分为: 1. 直接递归, 递归过程P 直接自己调用自己; 2. 间接递归, 即P 包含另一过程 D, 而D 又调用P. 递归算法适用的一般场合为: 1. 数据的定义形式按递归定义. 如裴波那契数列的定义: f(n)=f(n-1)+f(n-2); f(0)=1; f(1)=2. 对应的递归程序为: Function fib(n : integer) : integer; Begin if n = 0 then fib := 1 { 递归边界 } else if n = 1 then fib := 2 else fib := fib(n-2) + fib(n-1) { 递归 } End; 这类递归问题可转化为递推算法, 递归边界作为递推的边界条件. 2. 数据之间的关系(即数据结构)按递归定义. 如树的遍历, 图的搜索等. 3. 问题解法按递归算法实现. 例如回溯法等. 从问题的某一种可能出发, 搜索从这种情况出发所能达到的所有可能, 当这一条路走到" 尽头 "的时候, 再倒回出发点, 从另一个可能出发, 继续搜索. 这种不断" 回溯 "寻找解的方法, 称作" 回溯法 ". 例1、给定N (N>=1),用递归的方法计算1+2+3+4+…+(n-1)+n 。 分析与解答 本题是累加问题可以用递归方法求解。本题中,当前和=前一次和+当前项,而前一次和的计算方法与其相同,只是数据不同,即可利用s(n)=s(n-1)+n 来求解,另外递归调用的次数是有限次,且退出的条件是当n=1时s=1,这恰好符合递归算法的使用条件。 程序代码如下: program p_1(input,output); var s,t:integer;

相关文档
最新文档