2.14《近似数和有效数字》教案

合集下载

《近似数与有效数字》课件

《近似数与有效数字》课件

学习目标
01
02
03
04
理解近似数与有效数字的概念 及意义。
掌握近似数与有效数字的表示 方法。
能够运用近似数与有效数字进 行计算和误差分析。
培养学生对近似数与有效数字 的敏感性和严谨性,提高其科
学素养。
02
CATALOGUE
近似数
近似数的定义
01
02
03
近似数
一个数与准确数相近的一 个数。
近似数的特点
总结词
误差控制是近似数和有效数字使用中的 关键环节,需要采取科学的方法来减小 误差。
VS
详细描述
由于近似数和有效数字的使用过程中不可 避免地会产生误差,因此我们需要采取有 效的误差控制方法来减小误差的影响。这 包括对原始数据进行合理的预处理、选择 合适的近似精度和舍入规则、以及在必要 时进行误差的传递和补偿等。通过科学地 控制误差,可以提高结果的准确性和可靠 性。
在统计学中,近似数用于描述 样本数据的集中趋势、离散程 度等指标。
在大数据处理中,近似数用于 快速计算和查询,提高数据处 理效率。

05
CATALOGUE
近似数与有效数字的注意事项
近似数的精度选择
总结词
精度选择是近似数使用中的重要环节,需要根据实际需求和数据特点来确定。
详细描述
在处理大量数据时,为了简化计算和提高效率,我们通常会选择将数据近似为有限的几位数字。但需要注意的是 ,不同的近似精度可能会对结果产生显著影响。因此,在选择近似数时,我们需要充分考虑数据的分布、变化趋 势以及实际应用的需求。
表示时需考虑单位, 单位对有效数字的位 数也有影响。
表示时需考虑近似值 ,即保留一定的小数 位数来估计不确定度 。

八年级数学上人教版《近似数和有效数字》教案

八年级数学上人教版《近似数和有效数字》教案

八年级数学上人教版《近似数和有效数字》教案
一、教学目标
1.让学生了解近似数和有效数字的概念,掌握近似数的估算方法,
能够判断一个数的近似数和有效数字。

2.培养学生的估算能力和应用意识,让学生在实际问题中能够应
用近似数的概念和估算方法解决实际问题。

3.激发学生的学习兴趣和自信心,让学生感受到数学与生活的联
系,培养学生的数学思维能力和解决问题的能力。

二、教学内容和方法
1.教学内容:近似数和有效数字的概念,近似数的估算方法,判
断一个数的近似数和有效数字。

2.教学方法:采用讲解、讨论、举例等多种方法相结合,注重学
生的参与和互动,引导学生自主学习和思考。

三、教学过程设计
1.导入新课:通过实例引入近似数和有效数字的概念,让学生了
解近似数和有效数字的意义和作用。

2.新课教学:通过讲解、讨论和举例等多种方法,引导学生逐步
掌握近似数的估算方法,能够判断一个数的近似数和有效数字。

同时,通过探究活动,让学生自主发现近似数和有效数字的相关性质和规律。

3.巩固练习:设计一些具有代表性的练习题,让学生通过练习加
深对知识的理解和掌握,培养学生的估算能力和应用意识。

4.归纳小结:对本节课所学内容进行总结和回顾,强调重点和难
点,帮助学生形成知识体系。

四、教学评价设计
1.课堂表现:观察学生在课堂上的参与度和表现,给予及时的反
馈和指导。

2.随堂测试:设计一些简单的测试题,检测学生对知识的掌握情
况,及时发现并解决问题。

3.期末考试:通过综合性的测试题,评估学生对本章节内容的理
解和掌握程度。

近似数和有效数字教案

近似数和有效数字教案
2022近似数和有效数字教案
近似数和有效数字教案
作为一无名无私奉献的教化工作者,可能须要进行教案编写工作,教案是教材及大纲与课堂教学的纽带和桥梁。则写教案须要留意哪些问题呢?下面是我帮大家整理的近似数和有效数字教案,仅供参考,希望能够帮助到大家。
近似数和有效数字教案1
教学目标
1、了解近似数和有效数字的概念;
2、探讨后反馈:(1)精确度不同;(2)有效数字不同。
3、做一做:教科书第56页练习,可请四位同学到黑板上板演,并由其他学生点评。
4、补充例题:据中国统计信息网公布的20xx年中国第五次人口普查资料表明,我国的人口总数为1295330000人,请按要求分别取这个数的近似数,并指出近似的有效数字。
(1)精确到百万位;(2)精确到千万位
⑴精确到千位⑵精确到万位
⑶精确到十万位⑷精确到百万位
3.近似数0.2和0.20有什么不同?
探究四:误差
1.在现实生活中,人们用()与()的差来表示近似数与精确数的接近程度,这个数就是误差。误差可能是(),也可能是()。
2.一件零件的直径标出(150±2)毫米,是指这件零件的实际直径在()毫米与()毫米之间,当这个零件为149毫米时,误差为()毫米。
探究二:近似数精确度的两种表示方式
⑴一个近似数四舍五入到哪一位,就说这个数近似数()到哪一位。
(小试身手)下列有四舍五入得到的近似数,各精确到哪一位?
①101②0.14③8.7千④0.0001
⑵有效数字
由四舍五入得到的近似数,从()第一个()起到()止,全部的数字叫做这个近似数的有效数字。
(小试身手)下列各数有几个有效数字:
(2)某词典共1234页。
(3)我们年级有97人,买门票须要800元。等

七年级数学近似数和有效数字;用计算器进行数的简单运算华东师大版知识精讲

七年级数学近似数和有效数字;用计算器进行数的简单运算华东师大版知识精讲

七年级数学近似数和有效数字;用计算器进行数的简单运算华东师大版【本讲教育信息】一. 教学内容:§2.14 近似数和有效数字§2.15 用计算器进行数的简单运算[学习目标]1. 了解近似数和有效数字的意义,能对已给出的由四舍五入得到的近似数,说出它的精确度。

(即精确到哪一位),有几个有效数字;给出一个数,能按指定的精确度要求,用四舍五入法取近似数。

2. 会用计算器作有理数的加、减、乘、除、乘方运算和它们的混合运算,体会计算器在学习和生活中的作用,初步感受到解决问题的程序思想,接受现代科技思想的基本训练。

[知识内容](一)近似数和有效数字:1. 有效数字的概念:一个近似数,从左边第一个不是0的数字起,到精确到的数位止,所有的数字都叫做这个数的有效数字。

2. 难点解读:我们知道,在很多情况下,一个数可以准确无误地表示一个量,而且在要求上也是准确的,如人口普查,考试成绩等等,都是准确的,但在实际生活中,还存在着大量不要求绝对准确或不可能做到绝对准确的量,如估计作物的产量、全家人的开支等等。

近似数就是为适应这种相对准确的数而产生的概念,四舍五入是一种规定,这种规定也是相对合理的,或说统一要求就是相对合理的。

精确到××位,是指四舍五入到这一位,这点同学们应该明白;按四舍五入取近似数,是指对要精确到的那一位数后的一位数“四舍五入”。

3. 注意事项:(1)在进行近似数的计算时,中间过程应该要求精确度多取一位。

(2)近似数中后面的数字0不能省略不写,如与是不同的,它的精确度不同。

4. 一般地,我们所求的近似值都是用四舍五入得到的。

但是在解决某些实际问题时,要用到不足近似值(如零件毛坯的内径)与过剩近似值(如下料问题)。

(二)用计算器进行数的简单运算。

1. 本节的重点是学会运用计算器进行简单的加、减、乘、除、乘方这五种运算。

2. 本节的难点是如何正确使用和充分利用各种键盘。

3. 难点解读:计算器具有运算快、操作简便、体积小、携带方便等特点。

2.14《近似数和有效数字》课件(华师大)(3)

2.14《近似数和有效数字》课件(华师大)(3)

日清反馈:
必做题: P 47 6 选做题: P48 8、 9
认真看课本45页~46页的内容: 1、仔细阅读课本,理解近似数在日常生活应用 中的意义. 2、理解精确度的意义,并观察对圆周率取近 似数时所对应的精确度,思考:如何确定一个近 似数的精确度? 3、认真看例6,思考:如何根据精确度取近似 数?并回答右边云图中的问题.
合作交流
对子:自研自探中2、3的问题。 小组:46页中云图中问题。
2、下列由四舍五入法得到的近似数,各精确到哪一位? 各有哪几个有效数字? ①132.4;②0.0572;③2.40万 3、用四舍五入法求下列各数的近似值 (1)1.595 2(精确到0.01)≈________,有 ________个有效数字. (2)50.98(精确到十位)≈________,有效数字是 ________. (3)75 449(精确到百位)≈________,有________个 有效数字. (4)60 340(保留两个有效数字)≈________,精确到 ________位. (5)0.030 96(保留三个有效数字)≈________,精确 到________位.
展示提升46页练习来自标训练1、指出下列各数是近似数还是准确数 (1)∏=3.14,其中3.14是__________ (2)一盒香烟20支,其中20是_______ (3)人一步能走0.8米,其中0.8是 。 (4)初一(5)班参加数学兴趣小组的同 学有13人,其中13是________。 (5)水星的半径为2440000米,其中 2440000是____________。
判定下列哪些是准确数,哪些不是: (1)初一(4)班有42名同学; (2)每个三角形都有3个内角; (3)我国的领土面积约为960万平方千米; (4)宇宙现在的年龄约为200亿年.

近似数与有效数字教案

近似数与有效数字教案

近似数与有效数字教案一、教学目标1. 让学生理解近似数的概念,掌握四舍五入法求近似数的方法。

2. 让学生掌握有效数字的定义,了解有效数字的计算方法。

3. 培养学生运用近似数和有效数字进行科学计算和数据处理的能力。

二、教学内容1. 近似数的概念及其表示方法。

2. 四舍五入法求近似数的方法步骤。

3. 有效数字的定义及其计算方法。

4. 近似数和有效数字在实际问题中的应用。

三、教学重点与难点1. 教学重点:近似数的概念、四舍五入法求近似数、有效数字的计算。

2. 教学难点:有效数字的计算方法以及在实际问题中的应用。

四、教学方法1. 采用讲授法讲解近似数、四舍五入法和有效数字的概念及计算方法。

2. 利用例题分析法引导学生掌握近似数和有效数字在实际问题中的应用。

3. 采用小组讨论法让学生探讨有效数字的计算方法,培养学生的合作能力。

五、教学步骤1. 导入新课:通过生活实例引入近似数的概念,引导学生关注近似数在实际生活中的应用。

2. 讲解近似数的概念:讲解近似数的定义,让学生了解近似数与精确数的关系。

3. 讲解四舍五入法求近似数:阐述四舍五入法的原理,引导学生掌握求近似数的方法步骤。

4. 讲解有效数字的定义:让学生了解有效数字的概念,讲解有效数字的计算方法。

5. 例题分析:分析实际问题中的近似数和有效数字,让学生掌握近似数和有效数字在实际问题中的应用。

6. 小组讨论:让学生探讨有效数字的计算方法,培养学生的合作能力。

8. 布置作业:设计相关练习题,巩固学生对近似数和有效数字的掌握。

六、教学评估1. 课堂问答:通过提问方式检查学生对近似数和有效数字概念的理解。

2. 练习题:布置练习题,让学生运用四舍五入法和有效数字计算方法,以此评估学生的掌握情况。

3. 小组讨论:评估学生在小组讨论中的参与程度和合作能力。

七、教学拓展1. 近似数的应用:介绍近似数在科学研究、工程技术等领域的应用。

2. 有效数字的拓展:探讨有效数字在数据处理和分析中的重要性。

2.14近似数和有效数字

2.14近似数和有效数字

近似数和有效数字学习目标:1、了解近似数和有效数字的概念2、能按要求取近似数和保留有效数字3、体会近似数的意义及在生活中的作用。

一,课前导学1.据自己已有的生活经验,观察身边熟悉的事物,收集一些数据(1)我班有名学生,名男生,女生。

(2)地球上有大洲。

(3)我的体重约为公斤,我的身高约为厘米(4)中国领土面积约为平方公里。

(5)量一量我们数学课本的宽度为 cm。

2、在这些数据中,哪些数是与实际相接近的?哪些数与实际完合符合的?在日常生活中,与实际完全符合的成为精确数,与实际常会有一点儿偏差的且与实际数据非常接近的数成为近似数。

3.练习:下列哪些数是精确数?哪些是近似数?(1)初二(3)班有70名学生;()(2)月球离地球的距离大约是38万千米;()(3)中华人民共和国现有31个省级行政区;()(4)北京市大约有1300万人;()(5)小月的年龄是14岁;()4.思考:为什么生活中会有近似数?你还能举出一些日常生活中遇到的近似数吗?二,自主学习1.既然日常生活中我们会常遇到或用到近似数,那么使用近似数就有一个近似程度的问题,也就是精确度的问题。

例如,圆周率π=3.1415926….计算中我们需对π取近似数。

取π≈3,就是精确到位(或精确到)取π≈3.1,就是精确到位(或精确到)取π≈3.14,就是精确到位(或精确到)取π≈3.142,就是精确到位(或精确到)这里取近似数用到了四舍五入。

规定:对一个近似数,从左面第一个不是0的数字起,到末位数字止,所有的数字都称为这个近似数的有效数字。

例如:上面圆周率π的近似值中,3.14有3个有效数字;3.142有4个有效数字。

2.练习:下列由四舍五入法得到的近似数,各精确到哪一位?各有哪几个有效数字?(1)132.4; (2)0.0572; (3)2.40万用四舍五入法按要求取近似值:(1)0.34082(精确到千分位)(2)64.8(精确到个位)(3)1.5046(精确到0.01)(4)0.0692(保留2个有效数字)思考:1.50与1.5两者相同吗?3.探究:对于一个相对较大的数怎样精确数位?如将30542保留3个有效数字,试一试。

2.14近似数(教案)-人教版七年级数学上册

2.14近似数(教案)-人教版七年级数学上册
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解近似数的基本概念。近似数是指用来代替精确数值的数,它是用有限的数字来表示一个实际数值的方法。近似数在科学研究、工程技术以及日常生活中有着广泛的应用。
2.案例分析:接下来,我们来看一个具体的案例。例如,当我们测量一根木棒的长度时,得到的结果可能是2.8米或3米,这些数值就是近似数。这个案例展示了近似数在实际中的应用,以及它如何帮助我们解决问题。
4.近似数的运算:学习近似数的加减乘除运算规则,了解运算过程中误差的传播。
5.近似数在实际问题中的应用:通过实例分析,培养学生运用近似数解决实际问题的能力。
6.近似数的精度:了解不同精度近似数的表示方法,如千位、百位、十位等。
7.近似数的改写:掌握将一个近似数改写成另一个近似数的方法,如将3.14改写为1.57。
-举例:解释为什么在科学计算中,有时需要保留更多的小数位数,而在日常生活中,则可以使用较少的小数位数。
-近似数的误差处理:学生在进行近似数的运算时,可能会忽略误差的累积,导致结果不准确。
-举例:通过具体的计算例子,展示在连续运算中,误差是如何累积的,以及如何通过适当的近似方法减少误差。
-近似数与精确数的区别:学生可能会混淆近似数与精确数的概念,认为近似数就是准确的数值。
五、教学反思
在今天的教学过程中,我发现学生们对于近似数的概念和表示方法掌握得相对较好。通过引入日常生活中的实例,他们能够迅速理解近似数在实际中的应用。然而,我也注意到在讲解近似数的运算规则和误差传播时,部分学生显得有些困惑。这让我意识到,这部分内容是本节课的难点,需要我在今后的教学中进一步强化。
在实践活动环节,学生们分组讨论和实验操作的表现让我感到惊喜。他们能够积极参与,提出自己的观点,并将所学的近似数知识应用到实际问题中。但同时,我也发现有些小组在讨论时,对于如何将近似数应用于实际问题还显得有些迷茫。为此,我计划在下一节课中增加一些更具针对性的案例分析,以帮助他们更好地理解近似数的实际应用。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

近似数和有效数字
教学目的:
1、要求学生了解近似数的概念,以由四舍五入得到的近似数,能说出它的精确度,有几个有效数字;
2、给出一个数,能按指定的精确度要求,用四舍五入的方法求近似数。

教学分析:
重点:近似数的准确求法及有效数字的理解。

难点:近似数在实际情况下的取值。

教学过程:
一、知识导向:
本节是以小学所学过的近似数为基础,通过以前所学过的知识,结合新知识,对求近似数给出新的范畴,特别在引入有效数字的的概念后,通过不同的角度来分析、认识近似数。

并以此来学习一类与实际生活中紧密联系的近似数。

二、新课:
1、知识探索:
在有些情况下,一个数可以准确无误地表示一个量,如教材中所举的,通过点数统计出的全班的人数(48人),这是一个准确无误的数字。

此外规定1m=100cm 中的100,全班的学生数为48中的48都是准确数;但在大量的情况下则要用到近似数,如教材所举的测量课本宽度的例子,就不可能做到绝对精确,也不必要搞得非常精确。

2、知识分析:
使用近似数就有一个近似程度的问题,也就是精确度的问题,对于“精确到****位”,应使学生明白是指四舍五入到这一位。

由准确数所取得的近似数与准确数之间的误差不超过精确到的那个数位的半个单位。

如,教材上说我国陆地面积为960万平方千米,意思就是说我国陆地面积的精确数S 满足:
5.09605.0960+≤≤-S (单位:万平方千米)
3、知识形成:
概念:从近似数的左边第一个不是0的数字起,到未位数字为止,所有的数字都叫做这个数的有效数字。

例: 下列由四舍五入得到的近似数各精确到哪一位?各有哪几个有效数字?
(1) 132.4 (2) 0.0572
(3) 2.40万 (4) 4
103.2⨯
例:用四舍五入,按括号中的要求对下列各数取近似数。

(1) 0.34082(精确到千分位)
(2) 64.8(精确到个位)
(3) 1.5046(精确到0.01)
(4) 0.0692(保留2个有效数字)
(5) 30542(保留3个有效数字)
3、知识拓展:
在实际问题中,并不都是通过四舍五入来取近似数的。

根据实际需要,还常常用其他的方法。

例:某地遭遇旱灾,约有10万人的生活受到影响。

政府拟从外地调运一批粮食救灾,需估计每天要调运的粮食数。

如果按一个人平均一天需0.5千克粮食算,那么可以估计出每天要调运5万千克的粮食。

例:某校初一年级共有112名同学,想租用45座的客车外出秋游,因为888.245112=÷…,这里就不能用四舍五入法,而要用进一法估计应该租用客车的辆数,即应租3辆。

例:要把一根100cm 长的圆钢截成6cm 的一段一段做零件。

最多可以截得几段(不计损耗)?计算结果是66.166100=÷…,虽然十分位上的数字上大于5,但不足一段,所以只能截得16段,故结果应取近似数16。

例:上例中,若要截出85段6cm 长的圆钢来做零件,需要用100cm 长的圆钢多少根?计算结果是3125.51685=÷,虽然十分位上的数字小于5,但必须用6根100cm 长的圆钢来截,才能截出85根,所以应取近似数6。

三、巩固训练:
P73.1、2、3、4、5、6
四、知识小结:
本节是以小学所学过的近似数的知识为基础,结合本节中所学的新知识:有效数字。

对近似数有了一个新的认识,主要能是能让学生充分认识到近似数的精确度及有效数字的知识点。

五、作业:
P74.2、3、4
六、每日预题:
先简单认识计算器的组成,特别是各键的基本功能。

相关文档
最新文档