锐角三角函数(第1课时)

合集下载

锐角三角函数(第一课)

锐角三角函数(第一课)

如果∠α是任意锐角, 这些比值会随着点P在终边的位置改变 而改变吗?__不_变___
PM OP
叫做角α的正弦,记做sinа。Sinα=
PM OP
OM OP
叫做角α的余弦,记做cosа。cosα=
OM OP
PM 叫做角α的正切,记做tanа。tanα= PM
OM
OM
OM 叫做角α的余切,记做cotа。cotα=
1 )角α的正弦sinα,余弦cosα,正切tanα, 余切cotα统称锐角α的三角函数。
2) Rt△ABC中, 锐角α的三角函数的规律:
α的对边 Sinα= 斜边
α的对边 tanα=
α的邻边
Cosα=
α的邻边 斜边
α的邻边 Cotα= α的对边
斜边 Cotα= α的邻边
α的对边
例1:已知Rt△ABC中,∠C=Rt∠. 求证:①cosA=sinB
②tanA=cotB.
互余的两个锐角间三角函数有什么样的关系?
互余两角的三角函数的关系
α α Sin(900__ )= cos α α tan(900__ )= cot
α cos(900▪__ ) = sinα α α cot(900__ )= tan
如图:锐角α的顶点在坐标原点,始边在x轴的正半轴
上,终边上有一点P(2,Y) 如 果 sinα=
y
α
o
5 求y.
5
p (2,y)
x
锐角α终边上一点P(x,y)的横坐标,纵坐标和原点到P的 距离r有什么关系:
r= x2 y2
y tanα=
x
Sinα=
y
x Cosα=
r
r
x Cotα=

1.1锐角三角函数(第1课时)课件

1.1锐角三角函数(第1课时)课件
你能设法验证这个结论吗?
比值大的梯子陡.
图③
图④
知识点 1 正切的定义
B
B B2 B1
A
C2 C1 C
C
如图,B1,B2是梯子AB上的点,B1C1⊥AC,垂足为点C1,
B2C2⊥AC,垂足为点C2.小明想通过测量B1C1及AC1,算出它们
的比,来说明梯子的倾斜程度;而小亮则认为,通过测量B2C2
及AC2,算出它们的比,也能说明梯子的倾斜程度.
应用新知,典例剖析
例1.下图表示甲、乙两个自动扶梯,哪一个自动扶梯比较
陡?
A
E
4m 甲
┐ 8m α
C 甲梯
B
13 m 乙
F
β
乙梯
5m

D
解:甲梯中 tan 4 1 .
82
乙梯中 tan 5 5 .
132 52 12
∵ tanα> tanβ ∴甲梯更陡
知识点 3 坡度和坡角
如图,正切也经常用来描述山坡的坡度.例如, 有一山坡在水平方向上每前进100m就升高60m,那 么山坡的坡度i(即tanα)就是:
(3).如图 (2) tan A BC ( AB
(4).如图 (2) tan B 10 ( 7
). A
).
7┍m
C A 10m C
(1)
(2)
). (6).如图 (2)
). tan A 0.7,
( ).
(5).如图 (2) tanA = 0.7 ( ). tan A 0.7或 tan A 0.7
生活中的梯子
梯子是我们日常生活中常见的物体.
情境导入
你会比较两个梯子哪个更陡吗?你有哪些办法?
知识讲授

24.1锐角的三角函数(第一课时)教案

24.1锐角的三角函数(第一课时)教案

24.1锐角的三角函数——锐角的正切(第一课时)授课对象: 中学九年级班教学安排:一课时授课教师:一、教学背景分析(一)教材分析:1.教材的地位及作用《锐角的三角函数》是沪科版九年级数学上册第24章第一节的内容。

锐角的三角函数的概念是以前面学习的相似三角形、勾股定理的知识为基础的,本章内容是三角学中最基础的内容,也是今后进一步学习三角学的必要知识准备。

2.教材处理本节教材共分三课时完成,;第一课时是正切概念的建立及其简单应用;第二课时是正弦、余弦概念的建立及其简单应用;第三课时是综合应用。

(二)学情分析:九年级的学生具备了一定的逻辑思维能力和推理能力。

通过以前的合作学习,具备了一定的合作交流的能力.二、教学目标知识与技能: 1. 理解锐角正切(tanA)、坡度、坡角的意义;2.学会根据定义求锐角的正切值.过程与方法: 1. 经历锐角的正切的探求过程,体会数形结合的思想方法.2.三角函数的学习中,初步体验探索、讨论、论证对学习数学的重要性。

情感态度价值观:1. 在活动中培养学生乐于探究、合作交流的习惯。

2. 感受数学来源于生活又应用于生活,从而激发学生学习数学的兴趣。

三、教学重、难点教学重点:锐角的正切、坡度、坡角的定义。

教学难点:理解Rt△中一个锐角的对边与其邻边比值的对应关系。

四、教学用具多媒体课件(PPT)、几何画板五、教学过程(一)创设情境、导入新课(5分钟)利用多媒体播放“人民英雄纪念碑——民族的自豪”短片,引导学生思考:如何测量出人民英雄纪念碑的高度呢?要求学生自主探究,积极思考,回答测量高度的方法,教师引导学生分析,如直接测量法和相似法的弊端,从而导入新课——锐角的正切。

(板书课题)【设计意图】通过视频的展示,让学生身临其境地感受人民英雄纪念碑的雄伟,激发学生强烈的爱国热情和民族自豪感,同时,通过对纪念碑高度的测量自然地导入今天的教学重点。

体现新课标的要求:在关注学生数学学习水平的同时,关注学生德育教育和情感态度的发展。

【华东师大版】九年级数学上册:24.3.1《锐角三角函数(第1课时)教案(含答案)

【华东师大版】九年级数学上册:24.3.1《锐角三角函数(第1课时)教案(含答案)

24.3 锐角三角函数1.锐角三角函数第1课时锐角三角函数【知识与技能】1.使学生掌握锐角的四种三角函数的定义.2.使学生掌握锐角三角函数的取值范围.【过程与方法】1.使学生会利用三角函数的定义,表示出直角三角形中某个锐角的三角函数值.2.使学生会利用锐角三角函数的定义求三角函数值.3.使学生学会运用参数法求三角函数值.【情感态度】培养学生的数形结合的思想和探索的精神.【教学重点】三角函数的定义及三角函数值的求法.【教学难点】引入参数三角函数值.一、情境导入,初步认识1.含30°角的直角三角形,有什么性质?答:30°角的直角三角形中,30°角所对的直角边与斜边的比值为12.2.上述结论与所选取的直角三角形的大小有关吗?答:无关.3.含45°角的直角三角形中,45°角所对的直角边与斜边的比值为多少?这个比值与所选取的直角三角形的大小有关吗?答:22,无关.4.一般地,在Rt△ABC中,∠A为其一个锐角,当∠A取一个固定的值时,∠A所对的直角边和斜边的比值固定吗?答:固定不变.如下图我们把这个固定的比值,称为∠A的正弦,记作sinA,当∠A看作变量时,sinA常称为∠A的正弦函数,正弦函数是三角函数的一种,今天我们就来研究锐角三角函数.二、思考探究,获取新知(一)锐角三角函数的定义如图,在Rt△ABC中,∠C=90°∠A的正弦:A BC a sinAAB c∠===的对边斜边∠A的余弦:A AC b cosAAB c∠===的邻边斜边∠A的正切:A BC a tanAA AC b∠===∠的对边的邻边【教学说明】这三个三角函数的书写和含义,特别是不能看成是乘法的关系,另外角的符号也常常省略.提问:你能按定义写出∠B的三个三角函数来吗?(二)锐角三角函数的取值范围在Rt△ABC中,∠A为其一锐角,有0<a<c,0<b<c,∴0<sinA<1,0<cosA<1,tanA>0.(三)利用锐角三角函数定义求三角函数值1.直接利用定义求三角函数值例1 如图,在Rt△ABC中,∠C=90°,AC=15,BC=8,试求出∠A的三个三角函数值.2.已知直角三角形的两边的比,求三角函数值例2 已知,在Rt△ABC中,∠C=90°,a∶b=2∶3,求sinA、cosA.3.已知某锐角三角函数值,求三角函数值.例3 已知,在Rt△ABC中,∠C=90°,sinA=23,求∠A的另外两个三角函数值.三、运用新知,深化理解1.在平面直角坐标系中,点P的坐标为(2,4),O为原点,OP与x轴的夹角为α,则sin α=______.2.在Rt△ABC中,∠C=90°,ac=513,则cosA=______.3.在Rt△ABC中,∠C=90°,tanA=13,则sinA=______,cosA=______.4.如图,在△ABC中,∠ABC=60°,AB∶BC=2∶5,求tanC的值.【教学说明】第4题教师适当点拨:过A点作AD⊥BC构造直角三角形.四、师生互动,课堂小结1.锐角三角函数的定义:∠α的正弦:sinα=α∠的对边斜边∠α的余弦:cosα=α∠的邻边斜边∠α的正切:tanα=αα∠∠的对边的邻边2.锐角三角函数的取值范围:当∠α为锐角时,0<sinα<1;0<cosα<1;tanα>0.3.利用定义求锐角三角函数值.1.布置作业:从教材相应练习和“习题24.3中选取.”2.完成练习册中本课时练习.本课时遵循学生学习数学的心理规律,强调从学生已有的生活经验出发,让学生亲身经历将实际问题抽象成数学模型并进行解释与应用的过程,进而使学生获得对数学理解的同时,在思维能力、情感态度与价值观等多方面得到进步和发展.。

北师大版数学九年级下册1.1锐角三角函数第1课时课件

北师大版数学九年级下册1.1锐角三角函数第1课时课件
+4=0的两个正整数根之一,且另两边长为BC=4,AB=6,求
tan A.
合作探究
解:设方程x2+mx+4=0的两根分别为x1,x2,
根据根与系数的关系可知x1·x2=4,
∵x1、x2为正整数解,∴x1、x2可为1、4或2、2.
又∵BC=4,AB=6,∴2<AC<10,∴AC=4,∴AC=BC
=4,∴△ABC为等腰三角形.
过点C作CD⊥AB(如图),∴AD=3,∴CD= ,tan A=


= .


合作探究
方法归纳交流 求解图形中有关角的正切值,在直角三角
形中可直接运用正切的定义求值,无直角三角形的要作辅助线
构造直角三角形求值.
合作探究
1.如图,在Rt△ABC中,∠C=90°,CD是斜边AB上的高,
如果CD=3,BD=2.求tan A的值.
◎重点:正切、倾斜程度、坡度的数学意义.
预习导学
激趣导入
如图,这是上海东方明珠塔的图片,它于1994年10月1日建
成.在各国广播电视塔的排名榜中,当时其高度列亚洲第一、世
界第三,与外滩的“万国建筑博览群”隔江相望.在塔顶俯瞰上
海风景,美不胜收.你能测出东方明珠塔的高度吗?那么就开始
本章的学习之旅吧!
A.
B.
C.
D.
合作探究
在Rt△ABC中,∠C=90°,a、b、c分别是∠A、∠B、
∠C的对边,若b=2a,则tan A=


.
直角三角形两边的比为3∶4,则最小角的正切为




.
若某人沿坡度i=3∶4的斜坡前进10米,则他所在的位
置比本来的位置升高了 6 米.

第1课时 锐角三角函数 公开课获奖课件

第1课时 锐角三角函数 公开课获奖课件

根据“在直角三角形中,30°角所对的直角边等于斜边的一半”,即 ∠A斜的边对边=ABCB=21, 可得 AB=2BC=70 m,即需要准备 70 m 长的水管. 思考 1:在上面的问题中,如果使出水口的高度为 50 m,那么需要准备 多长的水管? 学生按与上面相似的过程,自主解决. 结论:在一个直角三角形中,如果一个锐角等于 30°,那么不管三角形
sinB=∠B斜的边对边=bc.
思考 3:一般地,当∠A 取一定度数的锐角时,它的邻边与斜边的比是否 也是一个固定值?
探究:如图,在 Rt△ABC 与 Rt△A′B′C′中,∠C=∠C′=90°,∠ A=∠A′=α,那么AACB与AA′′CB′′有什么关系?
教师用类比的方法引导学生思考、讨论. 结论:在直角三角形中,当锐角 A 的度数一定时,不管三角形的大小如 何改变,∠A 的邻边与斜边的比是一个固定值. 余弦的概念: 在 Rt△ABC 中,∠C=90°,把锐角 A 的邻边与斜边的比叫做∠A 的余 弦,记作 cosA,即 cosA=∠A斜的边邻边=bc.

蔡琰(作者有待考证)的《胡笳十八拍》
郭璞的《游仙诗》
鲍照的《拟行路难》
庾信的《拟咏怀》
都特别喜欢。不过都是组诗,太长了,就不贴了orz。
最后还想推一下萧绎的《幽逼诗》四首:
【南史曰:元帝避建邺则都江陵,外迫强敌,内失人和。魏师至,方征兵四方,未至而城见克。在幽逼求酒,饮之,制诗四绝。后为梁王詧所害。】 南风且绝唱,西陵最可悲。今日还蒿里,终非封禅时。 人世逢百六,天道异贞恒。何言异蝼蚁,一旦损鲲鹏。 松风侵晓哀,霜雰当夜来。寂寥千载后,谁畏轩辕台。 夜长无岁月,安知秋与春。原陵五树杏,空得动耕人。
的大小如何,这个角的对边与斜边的比值都等于12.

新华师大版九年级上册初中数学 24-3-1课时1 锐角三角函数 教学课件

新华师大版九年级上册初中数学 24-3-1课时1 锐角三角函数 教学课件
(2)当锐角是用一个大写英文字母或一个小写希腊字母 表示时,它的三角函数习惯上省略角的符号,如sin A,cos α,tan B等;当锐角是用三个大写英文字母
或数字表示时,它的三角函数不能省略角的符号,
如sin ∠ABC,sin ∠1等. (3)三角函数符号后面可以写成度数,如sin 20°等.
第十二页,共二十页。
c5
c5
tan B= b = 4 . a3
A
c
b
解:(2) b c2 a2 144 12
B
sin B= b = 12,cos B= a = 5 ,
c 13
c 13
tan B= b = 12 . a5
C
a
第十八页,共二十页。
拓展与延伸
如图,在Rt△DEC中,∠E=90°,CD=10, E
ED=6.试求出∠D的三个三角函数值.
正切.
sin
A=
∠A的对边 斜边
=
a c

cos
A=
∠A的邻边 斜边
=
b c

tan
A=
∠A的对边 ∠A的邻边
=
a b
.
取值范围 0<sinA<1,0<cosA<1
第九页,共二十页。
新课讲解
例 1 如图,在Rt△ACB中,∠C=90°,AC=15
知识点 ,BC=8.试求出∠A的三个三角函数值.
解: AB BC2 AC2 289 17
A
c b
B
C
a
第五页,共二十页。
新课讲解
知识点1 锐角三角函数的定义
一般情况下,Rt△ABC中,当锐角∠A
取一固定值时,∠A的对边与邻边的比值会

1.1锐角三角函数第1课时正切(教案)

1.1锐角三角函数第1课时正切(教案)
1.讨论主题:学生将围绕“正切在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
-正切表的使用:学会查找和利用正切表解决实际问题,这是进行进一步三角函数学习的基础。
-正切函数性质的探索:了解正切函数的周期性、奇偶性等性质,为学习其他三角函数性质打下基础。
举例:通过具体的直角三角形图形,引导学生理解正切值是如何计算的,以及如何判断正切值的正负。
2.教学难点
-正切概念的内化:学生需要将正切概念从具体的直角三角形中抽象出来,内化为一般的数学定义。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了正切函数的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对正切的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
五、教学反思
在今天的课堂上,我们探讨了锐角三角函数中的正切概念。我发现学生们对于正切的定义和应用有着不错的理解和接受度,但在具体的计算和应用中,还存在一些困难。这让我意识到,在今后的教学中,我需要更加注重以下几个方面:
1.1锐角三角函数第1课时正切(教案)
一、教学内容
《人教版八年级下册数学》第十章“锐角三角函数”第1课时“正切”。本节课主要内容包括以下部分:
1.理解正切的概念:通过对直角三角形的观察,引导学生发现锐角与对边、邻边的比值关系,引出正切函数的定义。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

§28.1锐角三角函数(第1课时)
一、教学目标
1学生会在直角三角形中会求一个锐角的正弦值;
2、逐步培养学生观察、比较、分析、概括的思维能力。

二、教学重难点
理解正弦的概念,会求一个锐角的正弦值。

三、教学过程
(一)探究学习
阅读课本63页内容,找到并划出以下内容:
1、如上图,在Rt△ABC中,△C=90°, 我们把锐角A 的对边与斜边的比,叫做,记做,
2、如上图,sinA= ,sinB= .
3、在Rt△ABC中,△C=90°,AB=13,BC=12, AC=5,
则,sinA= ,sinB= .
4、如图,在Rt△ABC中,△C=90°,
则sinA= ,sinB= .
(二)例题教学
课本63页例题教学
例1 如图,在Rt△ABC中,△C=90°,求sinA、sinB。

(三)巩固练习
1、课本64页练习1;
2、课本65页练习1,只求正弦值
(四)课堂小结
1、在直角三角形里,如何求锐角的正弦值?
2、要求一个锐角的正弦值必需要在什么三角形?(五)当堂测试
1、课本68页“复习巩固”第1题,只求正弦
2、在大演草做,做完就交。

(六)家庭作业
《智慧学习》第181页
“学习检测”1至4;“学习巩固”1至4。

相关文档
最新文档