28.1锐角三角函数(第一课时)
28.1锐角三角函数(1)

A 45.
A
(2)如图,已知圆锥的高AO等于圆 锥的底面半径OB的 3 倍,求 a .
O
B
AO 3OB 解 tan 3, OB OB
60.
当A,B为锐角 时,若A≠B,则 sinA≠sinB, cosA≠cosB, tanA≠tanB.
B
1、在Rt△ABC中,∠C=90°,
BC=12,BD= 8
3,求∠A的度数及AD的长.
A
D B
C
小结 :
我们学习了30°, 45°, 60°这 几类特殊角的三角函数值.
作业
课本P82 第3题 《同步练习》P51-52(四)(五)
rldmm8989889
28.1锐角三角函数(4)
引例 升国旗时,小明站在操场上离国旗20m处行注目礼。 当国旗升至顶端时,小明看国旗视线的仰角为42°(如 图所示),若小明双眼离地面1.60m,你能帮助小明求出 A 旗杆AB的高度吗?
锐角A的正弦、余弦、 正切都叫做∠A的锐角三 角函数.
c A b
a C
对于锐角A的每一 个确定的值,sinA有 唯一确定的值与它对 应,所以sinA是A的函 数。
同样地, cosA, tanA也是A的函数。
例1 如图,在Rt△ABC中,∠C=90°, 3 ,求cosA和tanB的值. BC=6, sin A 5
B
BC sin A AB BC 3k, AB 5k AC AB 2 BC 2 4k ,
A
C
AC 4 AC 4 cos A , tan B . AB 5 BC 3
请同学们拿出 自己的学习工具— 1 —一副三角尺,思 考并回答下列问题:
锐角三角函数(第一课时) 优质课评选教案

锐角三角函数(第一课时说课稿)单位:广东省翁源县龙仙中学姓名:张丽萍年级:九年级锐角三角函数(第一课时)教材:新人教版九年级下册《数学》尊敬的各位领导、老师:大家好!今天我说课的内容是新人教版九年级下册第二十八章《锐角三角函数》第一课时。
我从下面七个方面对本节课的教学进行说明。
一、教材分析(一)教材的内容:锐角三角函数的概念反映了角度与数值之间对应的函数关系,这种角与数之间的对应关系,以及用含有几个字母的符号sinA 、cosA 、tanA 表示函数等,学生过去没有接触过,因此对学生来讲有一定的难度。
本节内容是在学习了直角三角形两锐角关系、勾股定理等知识的基础上,对直角三角形边角关系的进一步深入和拓展。
(二)地位及作用:“锐角三角函数”属于三角学,是《数学课程标准》中“空间与图形”领域的重要内容。
在初中阶段我们主要研究锐角三角函数和解直角三角形的内容。
本节课的学习为类比得到余弦、正切的概念作好了铺垫、也为解直角三角形等知识奠定了基础。
二、学情分析(一)学生的知识基础:九年级学生已经掌握直角三角形中各边和各角的关系,能灵活运用相似图形的性质及判定方法解决问题,有较强的推理证明能力,这为顺利完成本节课的教学任务打下了基础 (二)学生的认知能力:九年级学生的思维活跃,接受能力较强,逻辑思维从经验型逐步向理论型发展,具备了一定的数学探究活动经历和应用数学的意识。
(三)学生的感悟收获:体会数学知识之间的联系,感受数形结合的思想,体会锐角三角函数的意义,提高应用数学和合作交流的能力。
三、教学目标分析:(一)教学目标新课标指出,教学目标应从知识技能、解决问题、情感态度等三个方面阐述,而这三维目标又应是紧密联系的一个完整的整体,学生学知识技能的过程同时成为学会学习,形成教材分析学情分析教学目标分析教学评价分析教学过程设计教法和学法分教学反思《锐角三角函数》第一课时教学说明正确价值观的过程,借此结合以上教材分析,我将三个目标进行整合,确定本节课的教学目标为:教学目标知识技能了解三角函数和锐角的正弦的意义,并会求锐角的正弦值;掌握根据锐角的正弦值及直角三角形的一边求其他边长的方法。
28.1锐角三角函数(1)

• 5、(2013年广东省) 在Rt△ABC中
∠ABC=90°,AB=3,BC=4,则sinA=__4_/_5_.
6、(2011 浙江湖州)如图,已知在Rt△ABC中, ∠ C=90°,BC=1,AC=2,则tanA的值为
_____. 1/2
• 7、(2011四川乐山)如图,在4×4的正方
形网格中,tanα= ___2__.
• 8、 (2011江苏苏州)如图,在四边形 ABCD中,E、F分别是AB、AD的中点,若
EF=2,BC=5,CD=3,则tanC等于__4_/3__
是( C )
A、 3/4 B4/3 C3/5 D4/5
• 2、(2013•攀枝花)如图,在菱形ABCD中, DE⊥AB于点E,cosA=3/5,BE=4,则
tan∠DBE的值是 2.
• 3、(2013鞍山)△ABC中,∠C=90°, AB=8,cosA=3/4,则BC的长 .
• 4、(2013•湖州)如图,已知在Rt△ACB 中,∠C=90°,AB=13,AC=12,则cosB
AC1
A
C
(3)如果梯子的倾斜角不变,
只改变B在梯子上的位置呢?
C1
想一想
B1
(1)直角三角形AB1C1和直角三 角 形ABC有什么关系?
B
A
C
BC
(2) AB和
B1C1
AB1,
AC AB
和
AC1 AB1
,
BC AC
和B1C1有什么关系?
AC1
(3)如果梯子的倾斜角不变,
只改变B在梯子上的位置呢?
5
cos A sin B
cosA 4 5
tan A • tan B 1
第1课时 锐角三角函数 公开课获奖课件

根据“在直角三角形中,30°角所对的直角边等于斜边的一半”,即 ∠A斜的边对边=ABCB=21, 可得 AB=2BC=70 m,即需要准备 70 m 长的水管. 思考 1:在上面的问题中,如果使出水口的高度为 50 m,那么需要准备 多长的水管? 学生按与上面相似的过程,自主解决. 结论:在一个直角三角形中,如果一个锐角等于 30°,那么不管三角形
sinB=∠B斜的边对边=bc.
思考 3:一般地,当∠A 取一定度数的锐角时,它的邻边与斜边的比是否 也是一个固定值?
探究:如图,在 Rt△ABC 与 Rt△A′B′C′中,∠C=∠C′=90°,∠ A=∠A′=α,那么AACB与AA′′CB′′有什么关系?
教师用类比的方法引导学生思考、讨论. 结论:在直角三角形中,当锐角 A 的度数一定时,不管三角形的大小如 何改变,∠A 的邻边与斜边的比是一个固定值. 余弦的概念: 在 Rt△ABC 中,∠C=90°,把锐角 A 的邻边与斜边的比叫做∠A 的余 弦,记作 cosA,即 cosA=∠A斜的边邻边=bc.
•
蔡琰(作者有待考证)的《胡笳十八拍》
郭璞的《游仙诗》
鲍照的《拟行路难》
庾信的《拟咏怀》
都特别喜欢。不过都是组诗,太长了,就不贴了orz。
最后还想推一下萧绎的《幽逼诗》四首:
【南史曰:元帝避建邺则都江陵,外迫强敌,内失人和。魏师至,方征兵四方,未至而城见克。在幽逼求酒,饮之,制诗四绝。后为梁王詧所害。】 南风且绝唱,西陵最可悲。今日还蒿里,终非封禅时。 人世逢百六,天道异贞恒。何言异蝼蚁,一旦损鲲鹏。 松风侵晓哀,霜雰当夜来。寂寥千载后,谁畏轩辕台。 夜长无岁月,安知秋与春。原陵五树杏,空得动耕人。
的大小如何,这个角的对边与斜边的比值都等于12.
28.1锐角三角函数教案

教学过程设计斜边c对边a bCBA定度数的锐角时,•它的对边与斜边的比是否也是一个固定值? 任意画Rt △ABC 和Rt △A ′B ′C ′,使∠C=∠C ′=90°,∠A=∠A ′=a ,那么''''BC B C AB A B 与有什么关系.你能解释一下吗?结论:在直角三角形中,当锐角A 的度数一定时,不管三角形的大小如何,•∠A 的对边与斜边的比都是一个固定值. 正弦函数概念:在Rt △BC 中,∠C=90°,我们把锐角A 的对边与斜边的比叫做∠A 的正弦(sine ),记作sinA , 即sinA =A aA c∠=∠的对边的斜边例如,当∠A=30°时,我们有sinA=sin30°=21;当∠A=45°时,我们有sinA=sin45°=22 . 例1 如图,在Rt △ABC 中,∠C=90°,求sinA 和sinB 的值.课堂训练1.判断对错:1) 如图 (1) sinA= ABBC ( ) (2)sinB= ABBC( ) (3)sinA=0.6m ( ) (4)SinB=0.8 ( )教师给出锐角的正弦概念,学生理解认识.学生理解认识30°和45°的正弦值,尝试独立完成例1,一名学生板书,并解释做题依据与过程,师生评议,达成一致.以“在直角三角形中,当锐角A 的度数一定时,不管三角形的大小如何,•∠A 的对边与斜边的比都是一个固定值。
”为基础给出锐角正弦概念,结合图形,便于学生理解认识和应用.A 10m 6BCDC A B2) 如图 sinA= AB BC( )2、在Rt △ABC 中,把三角形的三边同时扩大100倍,sinA 的值( ) A.扩大100倍 B.缩小 C.不变 D.不能确定 3、在△ABC 中,∠C=90°,若AC=3,BC=4,则sinB=_________.4、在Rt △ABC 中,sin A =54,AB =10,则BC =______5、在Rt △ABC 中,∠C=90o ,AD 是BC 边上的中线,AC=2,BC=4,则sin ∠DAC=_____.6.在Rt △ABC 中,∠C =90o,若AB =5, AC=4,则sinA =( ) A .35 B .45 C .34 D .437、△ABC 中∠C=90°,BC=2,sinA=23,AC 的长是( ) A .13 B .3 C 、 43 D . 5 8.如图,已知点P 的坐标是(a ,b ),则sin α等于( ) A .a b B .b a C .2222.a b D a b a b ++ 9.如图,在△ABC 中,∠ACB =90°,BC =3,AC =4,CD ⊥AB ,垂足为D ,求sin ∠ACD 课堂小结1.锐角的正弦概念;2.sinA 是线段之间的一个比值 ,sinA 没有单位教师组织学生进行练习,学生独立完成,之后,由学生口答,说明依据..学生谈本节课收获,教师 完善补充强调巩固加深对锐角正弦的理解和应用,培养学生应用意识以及综合运用知识的能力,并为此获得成功的体验.作业设计 : 教材28.1第1题(只求正弦)拓展训练 发挥你的聪明才智,动手试一试1、△ABC 中∠C =90°,C D ⊥AB 于D .sin B = [ ]A .AB CD B .BC AC C . AB BC D .ABAC2、 等腰三角形底边长是10,周长是40,则其底角的正弦值是 [ ] A .32 B .322 C .324 D . 325 3、在平面直角平面坐标系中,已知点A(3,0)和B(0,-4),则sin ∠OAB 等于____4、等腰梯形,上底长是1cm ,高是2cm ,底角的正弦是54,则下底=_________,腰长=__________. 5、在△ABC 中,∠C =90°,3a =3b ,sin A=__________. 6、在△ABC 中,∠C =90°,a =8,b =45,则sin A +sin B=__________.7、已知△ABC 中,∠ACB =90°,AB =6, CD ⊥AB 于D ,AD =2.求sin A8.已知在Rt △ABC 中,∠C=90o ,D 是BC 中点,DE ⊥AB,垂足为E,sin ∠BDE=54AE=7,求DE 的长.加强教学反思,将知识进行系统整理,总结方法,形成技能,提高学生的学习效果.BCEA。
一堂课的设计 锐角三角函数(第一课时)教学设计

锐角三角函数(第一课时)教学设计教材版本:人民教育出版社 课型:新授 年级:九年级教学任务分析一、教学目标 (一)知识目标1.理解掌握锐角三角函数的定义及锐角三角函数的表示方法:Sin A =斜边的对边A ∠, cos A =斜边的邻边A ∠,tan A=的邻边的对边A A ∠∠2.掌握锐角三角函数的取值范围。
(二)能力目标1.能根据直角三角形的边长计算锐角三角函数值;2.培养学生从特殊到一般的分析能力。
3正确认识直角三角形中的边角关系 (三)情感态度通过三角函数概念的形成过程,增强数形结合的数学思想意识。
通过一系列的探究学习活动,培养学生合作交流的思想意识,感受数学知识的严谨性 二、教学重点:理解锐角三角函数的定义,计算锐角三角函数值。
三、教学难点:锐角三角函数概念的形成。
教学方法设计一、体现学生的主体地位:学生通过自主完成导学案中的学习任务,真正实现学生是学习的主体,切实提高学生的数学学习能力。
二、体现教师的主导作用:教师通过设计导学案体现教师的主导作用。
以PPT 多媒体课件的播放形式,展示知识的形成过程,体现数学思想方法,反应教学思路。
三、教前准备:(一)教具:三角板、直尺等。
(二)PPT 多媒体课件。
(三)导学案(附后)。
教学流程安排教学过程设计(一)创设情境1、情境之一: ——实际生活情境。
据研究,当高跟鞋的鞋底与地面的夹角为11度左右时,人脚的感觉最舒适。
假设某成年人脚前掌到脚后跟长为15厘米,可算出鞋跟高度在3厘米左右最佳。
怎样将11度的锐角、15厘米的边长用于计算鞋跟的高度呢?显然,高跟鞋的鞋底、鞋跟与地面围成了一个直角三角形,这就需要建立边与角的特殊联系。
由此情境引出课题——“锐角三角函数”2、情境之二:自主探究 ——本节课的新知情境。
探索的问题任务: 如图1, 在Rt △ABC 中,∠A 的度数不变时,斜边的邻边A ∠、斜边的对边A ∠、的邻边的对边A A ∠∠的值是否发生变化?探索的方式、方法:学生分成10个小组,实践一由5个小组完成,另外5个小组完成实践二。
28.1锐角三角函数(第一课时)教学设计

《28.1 锐角三角函数(第一课时)》教学设计一、教材分析“锐角三角函数”属于三角学,是《数学课程标准(2011版)》中“图形与几何”领域的重要内容。
本章在已经研究了直角三角形的三边之间关系——勾股定理、两个锐角之间关系的基础上,利用相似三角形的性质进一步讨论直角三角形边角之间的关系。
本节内容主要研究三种锐角三角函数:锐角的的正弦、余弦、正切。
第一课时的是锐角的正弦。
二、学情分析九年级学生思维活跃,接受能力强,具有较强的推理能力,但是正弦函数是角度与数值之间的函数关系,学生第一次遇见,思维上需要做个突破。
三、学习目标1.理解锐角正弦的意义,了解锐角与锐角正弦值之间的对应关系,进一步体会函数的变化与对应的思想;会根据锐角正弦的意义解决直角三角形中已知边长求锐角正弦,以及已知正弦值和一边长求其它边长的问题.2.经历锐角正弦意义的探索过程,体会从特殊到一般的研究问题的思路和数形结合的思想方法培养学生观察问题、发现问题、研究问题的能力.3.经历多样化的学习方式与过程,培养学生主动探究、合作交流、自我反思等学习习惯.四、重点难点重点:理解正弦的概念并能根据正弦的定义求锐角的正弦值。
难点:对正弦的定义的理解.五、教学过程(一)新课导入情景:为了绿化荒山,某地打算从位于山脚下的机井房沿着山坡铺设水管,在山坡上修建一座扬水站,对坡面的绿地进行喷灌.现测得斜坡的仰角为30°,为使出水口的高度为35m,需要准备多长的水管?这个问题转化为数学问题即为:在Rt△ABC中,∠C=90°,∠A=30°,BC=35 m,求A B.问题1:怎样求AB?问题2:如果要使出水口的高度为50 m,那么需要准备多长的水管?出水口的高度为10 m,20 m,30 m,a m呢?这些问题用锐角三角函数的知识解决会非常简单,这节课我们学习正弦.(板书课题)把直角三角形某锐角和它的对边与斜边的比作为两个变量,探索它们的变化关系.(二)自学指导在Rt△ABC中,∠C=90°,∠A的对边斜边与∠A有何对应关系?①∠A=30°时,∠A的对边斜边=12,与三角形的大小有关系吗?(无关)当∠A=45°时,∠A的对边斜边=22,与三角形的大小有关系吗?(无关)②任意画Rt△ABC和Rt△A′B′C′,使得∠C=∠C′=90°,∠A=∠A′=α,则BCAB与''''B CA B有什么关系?BC AB ='''' B C A B③证明:④归纳:∠A是任一个确定的锐角时,∠A的对边斜边的值固定(填“固定”或“不固定”), 与三角形的大小无关(填“有关”或“无关”).⑤在Rt△ABC中,我们把锐角A的对边与斜边的比叫做∠A的正弦,记作sin A,即sin A=∠A的对边斜边=ac.⑥在Rt△ABC中,∠C=90°,∠A=60°,求sin A的值.(sin A=32)(三)例题讲解教材P63例1:①求sin A,就是求∠A的对边与斜边的比.②sin B,就是求∠B的对边与斜边的比.③据下图,求sin A和sin B的值.如图1,sin A=33434,sin B=53434;如图2,sin A=255,sin B=55.④如图,在Rt△ABC中,∠C=90°,sin A=513,AC=24 cm,求AB,BC的长.AB=26 cm,BC=10 cm.(四)当堂训练①在Rt△ABC中,∠C=90°,∠A、∠B、∠C的对边分别为a、b、c;∠A的对边与斜边的比叫做∠A的,即sinA= .②在Rt△ABC中,∠C=90°,∠A、∠B、∠C的对边分别为a、b、c,若a=3、b=4,则sinB= .③在Rt△ABC中,∠C=90°,∠A=30°,则sinA=()()= .④在Rt△ABC中,∠C=90°,∠A=60°,则sinA=()()= .⑤在Rt△ABC中,∠C=90°,∠A=45°,则sinA=()()= .(五)课堂评价1.学生自我评价:这节课你学到了哪些知识?还有什么疑惑?2.教师对学生的评价:从学生的学习态度、参与状况、小组协作研讨积极性等方面进行评价.六、作业布置1.在Rt△ABC中,∠C=90°,若AC=2BC,则sinA的值是.2.在Rt△ABC中,各边的长度都扩大为原来的3倍,那么锐角A的正弦值.3.在Rt△ABC中,∠C=90°,BC=2,sinA=23,则求AC的长.七、教学反思本课时教学时主要是通过让学生画图、动手操作获得相关的结论.正弦的概念是全章知识的基础,对学生今后的学习与工作都十分重要,教学中应十分重视.在教学过程中教师应注意调动学生的积极性与主动性,争取让学生自己发现规律并用自己的语言进行归纳,教师引导学生比较、分析,最后得出结论.同时正弦概念隐含角度与数之间具有一一对应的函数思想,又用含几个字母的符号组来表示,在教学中应作为难点处理.。
人教版九年级下册数学教学课件锐角三角函数第一课时

导入新课
意大利比萨斜塔1350年落成时就已倾斜,其塔顶 中心点偏离垂直中心点2.1 m.1972年比萨地区发生 地震,这座高54.5 m的斜塔在大幅度摇摆后仍魏然屹 立,但塔顶中心点偏离垂直中心线5.2 m,而且还在 继续倾斜,有倒塌的危险.当地从1990年对斜塔进行 维修纠偏,2001年竣工,此时塔顶中心点偏离垂直中 心的距离减少了43.8 cm.
28.1 锐角三角函数(1) ∠A的正弦、余弦、正切都是∠A的锐角三角函数(trigonometric function of acute angle).
答:我们前面研究了直角三角形中角与角之间的关系(两锐角互余)、三边之间的关系(勾股定理),还可以研究边与角之间的关系 . 2.锐角三角函数的定义 2.在Rt△ABC中,∠C=90°,a=3,c=5,求sin A和tan A的值. 1 锐角三角函数(1)
13
巩固练习
2.在Rt△ABC中,∠C=90°,a=3,c=5,求sin A和
tan A的值.
解:在Rt△ABC中,∵a=3,c=5,
∴ b c2 a2 52 32 4 .
∴sin A= a 3 ,tan A= a 3 .
c5
b4
课堂小结
1.正弦、余弦、正切的定义
如图,在Rt△ABC中,∠C=90°,∠A,∠B,∠C 当∠A=45°时,∠A的对边与斜边的比都等于 ,它也是一个固定值.由此你能猜想出什么一般的结论呢?
1.在△ABC中,若三边BC、CA、AB满足BC︰CA︰AB=5︰12︰13,则cos B=( ).
解:在理Rt△)ABC,中,∵还a=3,可c=5以, 研究边与角之间的关系.
导入新课
从实际需要看,要描述比萨斜塔的倾斜程度,我 们需要研究直角三角形中边与角之间的关系:从数学 内部看,我们已经研究了直角三角形的边与边的关 系、角与角的关系,边与角之间有什么关系呢?本节 课我们一起来学习“锐角三角函数”——锐角的正弦、 余弦、正切.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
28.1锐角三角函数(第一课时)课堂设计
学科数学年级九课题28.1锐角三角函数——正弦
课型新授课课时 1 授课时间总共第()课时
目标要求知识
目标
1.初步了解正弦的概念;掌握正弦的表示方法。
2.学会根据定义求锐角的正弦值。
3.熟记30°、45°、60°角的正弦值,并根据正弦值说出对应的锐
角度数。
能力
目标逐步培养学生观察、比较、分析、概括的思维能力。
情感
目标使学生经历从特殊到一般的过程。
培养学生对数学的兴趣。
教学重点正弦的定义。
教学难点正弦的表示方法及应用。
教学手段经历探究,分析,归纳,应用的过程,逐步深入理解知识。
校本教研
小课题
培养学生的探究能力
板书板画设计
28.1锐角三角函数——正弦
定义:在Rt△ABC中,∠C=90°,我们把锐角A的对边与斜边的比叫做∠A的正弦。
记作sinA,即
c
a
A
A=
∠
=
斜边
的对边
sin
2
1
30
sin=
︒
2
2
45
sin=
︒
2
3
60
sin=
︒
教学过程设计(含时间分配)修改完善(一)引入新知识,发现新问题
操场里有一根旗杆,老师让小明去测量旗杆高度,小明站在离旗杆
底部10米远处,目测旗杆的顶部,视线与水平线的夹角为34度,
并已知目高为1米.然后他很快就算出旗杆的高度了。
你想知道小
明怎样算出的吗?
这个问题的解决将涉及到直角三角形中的边角关系.直角三角
形中,它的边与角有什么关系?通过本章的学习,你就会明白其中
的道理,并能应用所学知识解决相关的问题.
探究新知
(1)问题的引入
教师讲解:为了绿化荒山,某地打算从位于山脚下的机井房沿
着山坡铺设水管,•在山坡上修建一座扬水站,对坡面的绿地进行
喷灌.现测得斜坡与水平面所成角的度数是30°,为使出水口的
高度为35m,那么需要准备多长的水管?
教师点拨:这个问题可以归纳为,在Rt△ABC中,∠C=90°,
∠A=30°,BC=35m,•求AB(课本图28.1-1).
在上面的问题中,•如果使出水口的高度为50m,那么需要准备
多长的水管?•要求学生在解决新问题时寻找解决这两个问题的共
同点.
教师引导学生得出这样的结论:在上面求AB(所需水管的长
度)的过程中,虽然问题条件改变了,但我们所用的定理是一样的:
在一个直角三角形中,•如果一个锐角等于30°,那么不管三角形
的大小如何,这个角的对边与斜边的比值都等于1
2
.也是说,只
要山坡的坡度是30°这个条件不变,那么斜边与对边的比值不变.教师提出第2个问题:既然直角三角形中,30°角的斜边与对边的比值不变,那么其他角度的对边与斜边的比值是否也不会变呢?•我们再换一个解试一试.•如课本图28.1-2,在Rt△ABC 中,∠C=90°,∠A=45°,∠A对边与斜边的比值是一个定值吗?•如果是,是多少?
教师要求学生自己计算,得出结论,然后再由教师总结:在Rt△ABC中,∠C=90°由于∠A=45°,所以Rt△ABC是等腰直角三角形,由勾股定理得AB2=AC2+BC2=2BC2,AB=2BC.
因此
1
22
BC BC
AB BC
===
2
2
,
即在直角三角形中,当一个锐角等于45°时,不管这个直角
三角形的大小如何,•这个角的对边与斜边的比都等于
2
2
.
教师再将问题提升到更高一个层次:•从上面这两个问题的结论中可知,•在一个Rt△ABC中,∠C=90°,当∠A=30°时,∠
A的对边与斜边的比都等于1
2
,是一个固定值;•当∠A=45°时,
∠A的对边与斜边的比都等于
2
2
,也是一个固定值.这就引发我
们产生这样一个疑问:当∠A取其他一定度数的锐角时,•它的对边与斜边的比是否也是一个固定值?
教师直接告诉学生,这个问题的回答是肯定的,并边板书,•边与学生共同探究证明方法.这为问题可以转化为以下数学语言:任意画Rt△ABC和Rt△A′B′C′(课本图28.1-3),使得
∠C=∠C′=90°,∠A=∠A′=a,那么
''
''
BC B C
AB A B
与有什么关系.
引导学生归纳:在直角三角形中,当锐角A的度数一定时,不管三角形的大小如何,•∠A的对边与斜边的比都是一个固定值.(二)正弦函数概念的提出
教师讲解:在日常生活中和数学活动中上面所得出的结论是非常有用的.为了引用这个结论时叙述方便,数学家作出了如下规定:在Rt△BC中,∠C=90°,我们把锐角A的对边与斜边的比叫做
∠A的正弦,记作sinA,即sinA= =a
c
.
斜边c 对边a
b
C B
A
例如,当∠A=30°时,我们有sinA=sin30°=
12
; 当∠A=45°时,我们有sinA=sin45°=22
. 你能计算sin60°的值吗? (三)正弦函数的简单应用
例1 如课本图28.1-5,在Rt △ABC 中,∠C=90°,求sinA 和sinB 的值.
(1)
3
4C
B A
教师对题目进行分析:求sinA 就是要确定∠A 的对边与斜边的比;求sinB •就是要确定∠B 的对边与斜边的比.我们已经知道了∠A 对边的值,所以解题时应先求斜边的值. 例1由教师示范板书,图2由学生模仿自作。
牛刀小试:
1.在Rt △ABC 中,∠C=90°,a=1,c=4,则sinA 的值是( ). A .
15
1115.
.
.
15
4
3
4
B C D 2.在Rt △ABC 中,∠C=90°,AB=10,sinB=
2
5,BC 的长是( ). A .22121.4.21
.50
B C D 3. Sin (65°-∠A ) =
1
2
, 则∠A= 4. 如图:P 是∠α的边OA 上一点,且点P 的坐标为(3,4),则sin α=
P
A
B
C
5.在Rt △ABC 中,锐角A 的对边和斜边同时扩大 100倍,sinA 的值( ) A.扩大100倍 B.缩小 C.不变 D.不能确定
拓展延伸:
如图,Rt △ABC 中,∠C=90°,CD ⊥AB ,图中sinB 等于哪两条线段的比。
如图:AB 是⊙O 的直径,且AB=10,CD 是⊙O 的弦,AD 与BC 相交于点P ,若弦BC=8,求sin ∠ADC 的值。
中考连接: sin30°=
12, sin210°= -12
, ∴sin210°=sin(180°+30°)= - sin30°= -1
2
sin45°=
22, sin225°= -2
2,
∴sin225°=sin(180°+45°)= - sin45°= -
2
2
由此猜想:sin240°= sin(180°+α)=
四、小结:本节主要学习了什么? 五、作业:
课后探究:正弦值随着角度的增大而发生怎样的变化?化简:
2)1(sin -α
A
P
D C
B
6.如图 A
C
B 3
7
3
00 则
sinA=______ .
D C
B
A。