【含答案】四年级奥数行程问题精选练习(相遇、追及)
小学奥数相遇追击问题有答案

相遇问题【含义】??? 两个运动的物体同时由两地出发相向而行,在途中相遇。
这类应用题叫做相遇问题。
【数量关系】??? 相遇时间=总路程÷(甲速+乙速)??????????????? 总路程=(甲速+乙速)×相遇时间【解题思路和方法】? 简单的题目可直接利用公式,复杂的题目变通后再利用公式。
例1??? 南京到上海的水路长392千米,同时从两港各开出一艘轮船相对而行,从南京开出的船每小时行28千米,从上海开出的船每小时行21千米,经过几小时两船相遇???????????? 解??? 392÷(28+21)=8(小时)????????????????????????? 答:经过8小时两船相遇。
例2??? 小李和小刘在周长为400米的环形跑道上跑步,小李每秒钟跑5米,小刘每秒钟跑3米,他们从同一地点同时出发,反向而跑,那么,二人从出发到第二次相遇需多长时间?????? 解?? “第二次相遇”可以理解为二人跑了两圈。
?????????????因此总路程为400×2?????????? 相遇时间=(400×2)÷(5+3)=100(秒)????????????? 答:二人从出发到第二次相遇需100秒时间。
例3??? 甲乙二人同时从两地骑自行车相向而行,甲每小时行15千米,乙每小时行13千米,两人在距中点3千米处相遇,求两地的距离。
? 解? “两人在距中点3千米处相遇”是正确理解本题题意的关键。
从题中可知甲骑得快,乙骑得慢,甲过了中点3千米,乙距中点3千米,就是说甲比乙多走的路程是(3×2)千米,因此,?????????? 相遇时间=(3×2)÷(15-13)=3(小时)?????????? 两地距离=(15+13)×3=84(千米)????????????????????????? 答:两地距离是84千米。
?小学数学典型应用题8? 追及问题【含义】??? 两个运动物体在不同地点同时出发(或者在同一地点而不是同时出发,或者在不同地点又不是同时出发)作同向运动,在后面的,行进速度要快些,在前面的,行进速度较慢些,在一定时间之内,后面的追上前面的物体。
四年级奥数题相遇问题习题及答案三篇

四年级奥数题相遇问题习题及答案三篇篇一:四年级奥数题:相遇问题习题(A)年级班姓名得分一、填空题1.小张从甲地到乙地步行需要36分钟,小王骑自行车从乙地到甲地需要12分钟.他们同时出发,______分钟后两人相遇?2.甲、乙二人同时从学校出发到少年宫去,已知学校到少年宫的距离是2400米,甲到少年宫后立即返回学校,在距离少年宫300米处遇到乙,此时他们离开学校已30分钟.甲每分钟走_______米,乙每分钟走_______米.3.甲、乙两车同时从A、B两地相向而行,它们相遇时距A、B两地中心处8千米,已知甲车速度是乙车的1.2倍,求A、B两地的距离是_______千米.4.一列火车长152米,它的速度是每小时63.36公里.一个人与火车相向而行,全列火车从他身边开过用8秒钟.这个人的步行速度是每秒_______米.5.如图,A 、B 是圆直径的两端,小张在A 点,小王在B 点同时出发反向行走,他们在C 点第一次相遇,C 离A 点80米;在D 点第二次相遇,D 点离B 点60米.求这个圆的周长.6.甲、乙两地间的路程是600千米,上午8点客车以平均每小时60千米的速度从甲地开往乙地.货车以平均每小时50千米的速度从乙地开往甲地.要使两车在全程的中点相遇,货车必须在上午_______点出发.7.两列对开的火车途中相遇,甲车上的乘客从看到乙车到乙车从旁边开过去,共用6秒钟.已知甲车每小时行45千米,乙车每小时行36千米,乙车全长______米.8.小张与小王分别从甲、乙两村同时出发,在两村之间往返行走(到达另一村后就马上返回),他们在离甲村3.5千米处第一次相遇,在离乙村2千米处第二次相遇,问他们两人第四次相遇的地点离乙村______千米.(相遇指迎面相遇)9.甲村、乙村相距6千米,小张与小王分别从甲、乙两村同时出B发,在两村之间往返行走(到达另一村后马上返回).在出发后40分钟两人第一次相遇.小王到达甲村后返回,在离甲村2千米的地方两人第二次相遇.小张每小时走______千米,小王每小时走______千米.10.小张从甲地到乙地,每小时步行5千米,小王从乙地到甲地,每小时步行4千米.两人同时出发,然后在离甲、乙两地的中点1千米的地方相遇,求甲、乙两地间的距离是______千米.二、解答题11.甲乙两站相距360千米.客车和货车同时从甲站出发驶向乙站,客车每小时行60千米,货车每小时行40千米,客车到达乙站后停留0.5小时,又以原速返回甲站,两车对面相遇的地点离乙站多少千米?12.甲每分钟走50米,乙每分钟走60米,丙每分钟70米,甲乙两人从A地,丙一人从B地同时相向出发,丙遇到乙后2分钟又遇到甲,A、B两地相距多少米?13.A、B两地相距21千米,甲从A地出发,每小时行4千米,同时乙从B地出发相向而行,每小时行3千米.在途中相遇以后,两人又相背而行.各自到达目的的地后立即返回,在途中二次相遇.两次相遇点间相距多少千米?14.一列客车和一列货车同时从两地相向开出,经过18小时两车在某处相遇,已知两地相距1488千米,货车每小时比客车少行8千米,货车每行驶3小时要停驶1小时,客车每小时行多少千米?———————————————答案——————————————————————一、填空题1. 9分钟.36:12=3:136÷(3+1)=9(分)2. 甲90米/分;乙70米/分.速度差=300×2÷30=20(米/分)速度和=2400×2÷30=160(米/分)甲:(160+20)÷2=90(米/分)乙:(160-20)÷2=70(米/分)3. 176千米乙速:8×2÷(1.2-1)=80(千米/小时)甲速:80×1.2=96(千米/小时)相遇时间:1)8096(28=-÷⨯(小时)AB 间距离:1761)8096(=⨯+(千米)4. 1.4米/秒152÷8-63360÷3600=1.4(米/秒)5. 360米第二次相遇时两人合起来所走的行程是第一次相遇时合起来所走行程的3倍.则(80×3-60)×2=360(米)6. 上午7点7602160050216008=⎪⎭⎫ ⎝⎛÷⨯-÷⨯-(点)7. 135米.(45000+36000)÷(60×60)×6=135(米)8. 1千米(3.5×3-2)-[3.5×7-(3.5×3-2)×2]=1(千米)9. 小张:5千米/小时;小王:4千米/小时.小张:[6×(40×3÷60)-2]÷2=5(千米/小时)小王:(6+40×3÷60)÷2=4(千米/小时)10. 18千米(5+4)×[2÷(5-4)]=18(千米)二、解答题11. 客车从甲站行至乙站需要360÷60=60(小时)客车在乙站停留0.5小时后开始返回甲站时,货车行了40×(6+0.5)=260(千米)货车此时距乙站还有360-260=100(千米)货车继续前行,客车返回甲站(化为相遇问题)“相遇时间”为 100÷(60+40)=1(小时)所以,相遇点离乙站60×1=60(千米)12. 甲、丙相遇时,甲、乙两人相距的路程就是乙、丙相背运动的路程和,即(60+70)×2=260(米)甲、乙是同时出发的,到甲、丙相遇时,甲、乙相距260米,所以,从出发到甲、丙相遇需260÷(60-50)=26(分)所以,A 、B 两地相距(50+70)×26=3120(米)13. 画线段图如下:设第一次相遇点为M,第二次相遇点为N,AM=4×[21÷(4+3)]=12(千米)AN+AM=3×[21÷(4+3)]×2=18(千米)两次相遇点相距:12-(18-12)=6(千米)14. ①因为18小时=(3小时+1小时)×4+2小时,所以,货车实际行驶时间为3×4+2=14(小时)②设客车每小时行x千米,则货车每小时行(x -8)千米,列方程得18 x +14×(x -8)=1488,x =50篇二:四年级奥数题相遇问题习题及答案(B)年级班姓名得分一、填空题1.某列车通过250米长的隧道用25秒,通过210米长的隧道用23秒.问:该列车与另一列长320米、时速64.8千米的列车错车而过需要______秒?2.甲、乙二人骑车同时从环形公路的某点出发,背向而行,已知甲骑一圈需48分钟,出发后30分钟两人相遇.问:乙骑一圈需______分钟.3.甲、乙二人从相距36千米的两地相向而行.若甲先出发2小时,则在乙动身2.5小时后两人相遇;若乙先出发2小时,则甲动身3小时后两人相遇.甲每小时走______千米.乙每小时走_______千米.4.两列火车相向而行,甲车每小时行48千米,乙车每小时行60千米,两车错车时,甲车上一乘客从乙车车头经过他的车窗时开始计时,到车尾经过他的车窗共用13秒钟,求乙车全长_______米.5.李华从学校出发,以每小时4千米的速度步行到20.4千米外的冬令营报到.半小时后,营地老师闻讯前往迎接,每小时比李华多走1.2千米.又过了1.5小时,张明从学校骑车去营地报到,结果三人在途中某地相遇.问骑车人每小时行________千米.6.甲、乙、丙三辆车同时从A地出发到B地去,甲、乙两车的速度分别为每小时60千米和48千米.有一辆迎面开来的卡车分别在他们出发后6小时、7小时、8小时先后与甲、乙、丙三辆车相遇.求丙车的速度是_______千米/小时.7.已知甲、乙两车站相距470千米,一列火车于中午1时从甲站出发,每小时行52千米,另一列火车于下午2时30分从乙站开出,下午6时两车相遇.问:从乙站开出的火车的速度是_______千米/小时.8.一列快车和一列慢车相向而行,快车的车长是280米,慢车的车长是385米.坐在快车上的人看见慢车驶过的时间是11秒,那么坐在慢车上的人看见快车驶过的时间是______秒?9.操场正中央有一旗竿,小明开始站在旗竿正东离旗竿10米远的地方.然后向正北走了10米,再左转弯向正西走了20米,再左转弯向正南走了30米,再左转弯向正东走了40米,再左转弯向正北走了20米.这时小明离旗竿______米.10.甲乙两地相距258千米.一辆汽车和一辆拖拉机同时分别从两地相对开出,经过4小时两车相遇.已知汽车的速度是拖拉机速度的2倍.相遇时,汽车比拖拉机多行_______千米.二、解答题11.甲、乙二人分别从A 、B 两地同时出发,在A 、B 之间往返跑步.甲每秒跑3米,乙每秒跑7米,如果他们第四次迎面相遇点与第五次迎面相遇点之间相距150米,求A 、B 间相距多少米?12.如下图,A 、C 两地相距2千米,CB 两地相距5千米.甲、乙两人同时从C 地出发,甲向B 地走,到达B 地后立即返回;乙向A 地走, 到达A 地后立即返回;如果甲速度是乙速度的1.5倍,那么在乙到达D 地时,还未能与甲相遇,他们还相距0.5千米,这时甲距C 地多少千米?13.一只小船从A 地到B 地往返一次共用2小时.回来时顺水,比去时的速度每小时多行驶8千米,因此第二小时比第一小时多行驶6千米.求A 至B 两地距离.14.甲、乙两地之间有一条公路,李明从甲地出发步行往乙地;同时张平从乙地出发骑摩托车往甲地.80分后两人在途中相遇.张平到达甲地后马上折回往乙地,在第一次相遇后又经过20分张平在途中追上李明.张平到达乙地后又马上折回往甲地,这样一直下去,当李明到达乙地时,张平追上李明的次数是多少?5———————————————答 案——————————————————————一、填空题1. 15秒该车速:(250-210)÷ (25-23)=20(米/秒)车长:25×20-250=250(米)(64.8千米/小时=18米/秒)错车时间:(250+320)÷(20+18)=15(秒)2. 80分钟804813011=⎪⎭⎫ ⎝⎛-÷(分)3. 甲:6千米/时;乙:3.6千米/小时.36×2÷(2+3+2.5)=9.6(千米/小时)甲速:(36-9.6×2.5)÷2=6(千米/小时)乙速:(36-9.6×3)÷2=3.6(千米/小时)4. 390米甲速:48千米/小时=3113米/秒乙速:60千米/小时=3216米/秒 乙车长:3901331133216=⨯⎪⎭⎫ ⎝⎛+(米)5. 20千米/小时()205.12.1442144.202124=⎥⎦⎤⎢⎣⎡-++÷⎪⎭⎫ ⎝⎛⨯-÷⎪⎭⎫ ⎝⎛+⨯(千米/小时)6. 39千米/小时卡车速度:(60-48)×6÷(7-6)-48=24(千米/小时)丙车速度:48-(48+24)÷8=39(千米/小时)7. 60千米/时()60213552470=÷⨯-(千米/小时)8. 8秒11×280÷385=8(秒)9. 30米.10. 86千米.258÷4×(2-1)÷(2+1)×4=86(千米)11. 设甲、乙两人第i 次迎面相遇点为Ci(i=1,2,3,4,5).由甲、乙速度之比为3:7,令AB=1,则7:3:11=B C AC ,1031=AC .如下图:同理可得: 210321⨯=C C ,故1012=BC ; 5332=+BC B C ,故213=BC ; A B C 1 C 3 C 5 C 2 C 45343=+AC A C ,故53;101544==C C AC ;所以25053150=÷=AB (米).答:A 、B 相距250米.12. 由甲速是乙速的1.5倍的条件,可知甲路程是乙路程的1.5倍.设CD 距离为x 千米,则乙走的路程是(4+x)千米,甲路程为(4+x)×1.5千米或(5×2- x –0.5)千米.列方程得(4+ x)×1.5=5×2- x-0.5x =1.4这时甲距C 地:1.4+0.5=1.9(千米).13. 顺水速度:逆水速度=5:3由于两者速度差是8千米.立即可得出逆水速度123358=-÷=(千米/小时). A 至B 距离是12+3=15(千米)答:A 至B 两地距离是15千米.14. 画线段图如下:设从第一次相遇后到张平第一次追上李明时李明走了x 千米,则相同时间内张平走了: x(80÷20)×2+ x=9 x(千米),即在相同时间内,张平速度是李明速度的:9x ÷x=9(倍).这就是说,李明从甲地步行到乙地时,张平骑摩托车行走了9个全程.很明显,其中有5个全程是从乙地到甲地,有4个全程是从甲地到乙地.从甲地到乙地张平每走一个全程,必然追上李明一次.因此,张平共追上李明4次.张平 乙篇三:四年级奥数练习题相遇问题1、甲乙两列火车同时从相距700千米的两地相向而行,甲列车每小时行85千米,乙列车每小时行90千米,几小时两列火车相遇?2、甲乙两车从两地同时出发相向而行,甲车每小时行40千米,乙车每小时行60千米,经过3小时相遇。
小学四年级奥数新行程试题及解析:简单相遇问题

小学四年级奥数新行程试题及解析:简单相遇问题
教案是教师为顺利而有效地开展教学活动,根据课程标准,教学大纲和教科书要求及学生的实际情况,以课时或课题为单位,对教学内容、教学步骤、教学方法等进行的具体设计和安排的一种实用性教学文书,包括教材简析和学生分析、教学目的、重难点、教学准备、教学过程及练习设计等,下面是由小编为大家整理的范文模板,仅供参考,欢迎大家阅读.
甲、乙二人沿运动场的跑道跑步,甲每分钟跑290米,乙每分钟跑270米,跑道一圈长4_米.如果两人同时从起跑线上同方向跑,那么甲经过多长时间才能第一次追上乙?
分析:这是一道封闭线路上的追及问题.甲和乙同时同地起跑,方向一致.因此,当甲第一次追上乙时,比乙多跑了一圈,也就是甲与乙的路程差是4_米.根据“路程差÷速度差=追及时间”即可求出甲追上乙所需的时间.
解答:解:4_÷(290-270)
=4_÷_,
=_(分钟);
答:甲经过_分钟才能第一次追上乙.
点评:此类题根据“追及(拉开)路程÷(速度差)=追及(拉开)时间”,代入数值计算即可.
小学四年级奥数新行程试题及解析:简单相遇问题.到电脑,方便收藏和打印:。
小学奥数全国推荐四年级奥数通用学案附带练习题解析答案15相遇与追及问题(一)

年级四年级学科奥数版本通用版课程标题相遇与追及问题(一)同学们,在小学数学的学习中,我们经常会接触到研究路程、速度和时间三者之间数量关系的问题,这类问题统称为行程问题。
今天我们要学习的相遇问题和追及问题都属于行程问题中很经典的问题,它对我们分析问题、解决问题能力的提高是非常有帮助的,同学们一定要认真学习呀!相遇问题两个物体做相向运动或在环形跑道上做背向运动,随着时间的推移,它们必然要面对面地相遇,这类问题就叫做相遇问题。
它的特点是两个运动物体共同走完整个路程。
它们的基本关系式如下:总路程=(甲速+乙速)×相遇时间相遇时间=总路程÷(甲速+乙速)甲速+乙速=总路程÷相遇时间追及问题两个物体做同向运动,慢者走在前,快者走在后,它们之间的距离不断缩短,直到快者追上慢者。
追及问题属于较复杂的行程问题。
它的特点是快者比慢者多走出一段路程,这段路程就是追及问题中所说的路程差。
追及问题中各数量的关系如下:路程差=速度差×追及时间速度差=路程差÷追及时间追及时间=路程差÷速度差例1 甲、乙两地相距180千米,甲骑车每小时行12千米,乙骑车每小时行18千米,两人从两地同时相向而行,何时相遇?分析与解:本题是最简单、最基础的相遇问题。
甲、乙二人共同走完180千米的距离,只要求出他们的速度和,运用公式:相遇时间=总路程÷(甲速+乙速)即可解决。
180÷(18+12)=6(小时)答:甲、乙两人6小时后相遇。
例2甲、乙两地相距650千米,一辆客车和一辆货车同时从两地相向而行,5小时后相遇,客车每小时行70千米,货车每小时行多少千米?分析与解:客车和货车5小时共行了650千米,所以,用路程除以相遇时间就可以求出它们的速度和,再从速度和中减去客车的速度即为货车的速度。
650÷5=130(千米)130-70=60(千米)答:货车每小时行60千米。
四年级奥数.行程.相遇与追及(B级).学生版

一、相遇甲从A 地到B 地,乙从B 地到A 地,然后两人在途中相遇,实质上是甲和乙一起走了A ,B 之间这段路程,如果两人同时出发,那么相遇路程=甲走的路程+乙走的路程=甲的速度×相遇时间+乙的速度×相遇时间=(甲的速度+乙的速度)×相遇时间 =速度和×相遇时间.一般地,相遇问题的关系式为:速度和×相遇时间=路程和,即=t S V 和和二、追及有两个人同时行走,一个走得快,一个走得慢,当走得慢的在前,走得快的过了一些时间就能追上他.这就产生了“追及问题”.实质上,要算走得快的人在某一段时间内,比走得慢的人多走的路程,也就是要计算两人走的路程之差(追及路程).如果设甲走得快,乙走得慢,在相同的时间(追及时间)内:追及路程=甲走的路程-乙走的路程=甲的速度×追及时间-乙的速度×追及时间=(甲的速度-乙的速度)×追及时间 =速度差×追及时间.一般地,追击问题有这样的数量关系:追及路程=速度差×追及时间,即=t S V 差差例如:假设甲乙两人站在100米的跑道上,甲位于起点(0米)处,乙位于中间5米处,经过时间t 后甲乙同时到达终点,甲乙的速度分别为v 甲和v 乙,那么我们可以看到经过时间t 后,甲比乙多跑了5米,或者可以说,在时间t 内甲的路程比乙的路程多5米,甲用了时间t 追了乙5米知识框架相遇与追及三、相遇和追及在研究追及和相遇问题时,一般都隐含以下两种条件:(1)在整个被研究的运动过程中,2个物体所运行的时间相同 (2)在整个运行过程中,2个物体所走的是同一路径。
【例 1】聪聪和明明同时从各自的家相对出发,明明每分钟走20米,聪聪骑着脚踏车每分钟比明明快42米,经过20分钟后两人相遇,你知道聪聪家和明明家的距离吗?【巩固】 A 、B 两地相距90米,包子从A 地到B 地需要30秒,菠萝从B 地到A 地需要15秒,现在包子和菠萝从A 、B 两地同时相对而行,相遇时包子与B 地的距离是多少米?【例 2】孙悟空在花果山,猪八戒在高老庄,花果山和高老庄中间有条流沙河,一天,他们约好在流沙河见面,孙悟空的速度是200千米/小时.猪八戒的速度是150千米/小时,他们同时出发2小时后还相距500千米,则花果山和高老庄之间的距离是多少千米?例题精讲【巩固】乙两辆汽车从A、B两地同时相向开出,出发后2小时,两车相距141公里;出发后5小时,两车相遇。
四年级奥数题及答案-行程问题

四年级奥数题及答案-行程问题
甲、乙两辆汽车同时从东西两地相向开出,甲车每小时行56千米,乙车每小时行48千米.两车距中点40千米处相遇.东西两地相距多少千米?
考点:相遇问题.
分析:由于甲车速度快乙车速度慢,甲、乙两车在距中点40千米处相遇,应该是在甲车超过中点而乙车未到中点的一侧,则甲车比乙车多走了40×2=80(千米),甲车每小时比乙车多走56-48=8(千米),可以求出两车行了多少时间甲车才能比乙车多行80千米,80÷8=10(小时),则两地相距(48+56)×10=1040(千米).解答:解:甲车比乙车多行:40×2=80(千米);
两车行驶时间:80÷(56-48),
=80÷8,
=10(小时);
东西两地相距:(56+48)×10,
=104×10,
=1040(千米);
答:东西两地相距1040千米.
点评:本题重在考查我们如何利用距中点的距离和两车速度差来求行驶时间,找到行驶时间就可以求两地距离.。
小学数学行程问题之相遇与追击练习题含答案

小学数学《行程问题之相遇与追击》练习题(含答案)内容概括我们把研究路程、速度、时间以及这三者之间关系的一类问题,总称为行程问题.在对小学数学的学习中,我们已经接触过一些简单的行程应用题,行程问题主要涉及时间(t)、速度(V)和路程岳)这三个基本量,它们之间的关系如下:(1)速度X时间;路程可简记为:s = Vt(2)路程+速度:时间可简记为:t = s + v(3)路程+时间:速度可简记为:V = s + t显然,知道其中的两个量就可以求出第三个量.涉及到两个或两个以上物体运动的问题,其中最常见的是相遇问题和追及问题.相遇问题:速度和X相遇时间=路程和S和二v和t追及问题:速度差X追及时间=路程差S差二v差t对于上面的公式大家已经不陌生了,在下面的学习中我们将和小朋友们一起复习回顾以前的相关知识,而后拓展提高!相遇问题【例1】两地相距400千米,两辆汽车同时从两地相对开出,甲车每小时行40千米,乙车每小时比甲车多行5千米,4小时后两车相遇了吗?【例2】大头儿子的家距离学校3000米,小头爸爸从家去学校,大头儿子从学校回家,他们同时出发, 小头爸爸每分钟比大头儿子多走24米,50分钟后两人相遇,那么大头儿子的速度是每分钟走多少米?【例3】甲乙两车同时从A、B两地出发相向而行,6小时相遇.相遇后甲车继续行驶4小时到达B地.乙车每小时行30千米,A、B两地相距多少千米?【例4】南辕与北辙两位先生对于自己的目的地S城的方向各执一词,于是两人都按照自己的想法驾车同时分别往南和往北驶去,二人的速度分别为50千米/时,60千米/时,那么北辙先生出发5小时他们相距多少千米?【例5】夏夏和冬冬同时从两地相向而行,夏夏每分钟行50米,冬冬每分钟行60米,两人在距两地中点50米处相遇,求两地的距离是多少米?【例6】甲、乙两列火车同时从东西两镇之间的A地出发向东西两镇反向而行,它们分别到达东西两镇后, 再以同样的速度返回,已知甲每小时行60千米,乙每小时行70千米,相遇时甲比乙少行120千米,东西两镇之间的路程是多少千米?【例7】甲、乙两车分别同时从A、B两地相对开出,第一次在离A地95千米处相遇.相遇后继续前进到达目的地后又立刻返回,第二次在离B地25千米处相遇.求A、B两地间的距离.追击问题【例8】龟兔赛跑同时出发,全程7000米,乌龟以每分30米的速度爬行,兔子每分钟跑330米.兔子跑了10分钟就停下来睡了200分钟,醒来后立即以原速往前跑.当兔子追上乌龟时,离终点的距离是多少千米?【例9】小明步行上学,每分钟行70米.离家12分钟后,爸爸发现小明的文具盒忘在家中,爸爸带着文具盒,立即骑自行车以每分钟280米的速度去追小明.问爸爸出发几分钟后追上小明?【例10】小新和正南在操场上比赛跑步,小新每分钟跑250米,正南每分钟跑210米,一圈跑道长800米,他们同时从起跑点出发,那么小新第一次超过正南需要多少分钟?第三次超过正南需要多少分钟?【例11】两名运动员在湖的周围环形道上练习长跑。
(精选)四年级奥数- 问题解决 -行程问题-相遇追及问题综合练习

3、甲、乙两人同地同方向出发,甲 每小时走7千米,乙每小时走5千米。 乙先走2小时后,甲才开始走,甲追 上乙需要几小时?
4、 小伟和小华从学校到电影院看 电影,小伟以每分钟60米的速度向 电影院走去。5分钟后小华以每分钟 80米的速度向电影院走去,结果两 人同时到达电影院。学校到电影院 有多少米?
1、甲、乙两艘轮船同时从武汉开往 南京,甲船每小时航行64千米,乙 船每小时航行56千米。乙船先航行2 小时,甲船才出发,甲船追上乙船 要多长时间?
2、某部队进行行军活动,以每小 时7千米的速度前进,2小时后,部 队派通信员沿同一条路骑车传达命 令,通信员以每小时14千米的速度 去追赶部队,通信员追上队伍用了 多长时间?
行程问题之相遇追及问题 综合练习
相遇问题常用公式: 速度和×相遇时间=相遇路程 相遇路程÷速度和=相遇时间 相遇路程÷相遇时间=速度和 速度和:两人或两车速度的和; 相遇时间:两人或两车同时开出到 相遇所用的时间
追击问题中常用公式:
路程差=速度差×追及 时间
速度差=路程差÷追 及时间 追及时间路程差÷速
5、甲、乙两艘轮船从相距654千米 的两地相对开出而行,8小时两船还 相距22千米。已知乙船每小时行42 千米,甲船每小时行多少千米?
6、甲、乙两城相距680千米,从甲 城开往乙城的普通客车每小时行驶 60千米,2小时后,快车从乙城开往 甲城,每小时行80千米,快车开出 几小时后两车相遇?
7、A、B两地相距3300米, 甲、乙两人同时从两地相对 而行,甲每分钟走82米, 乙每分钟走83米,已经行 了15分钟,还要行多少分 钟才可以相遇?
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
小学奥数行程问题
知识点一:相遇问题
1、两辆汽车同时从相距325 千米的两地相对开出,甲车的速度为35 千米/时,乙车的速度为30 千米/ 时。
当甲、乙两车相遇时,它们各行驶了多少千米?
2、高小帅家距离学校3000 米,小帅妈妈从家出发接小帅放学,而小帅也要从学校回家,他们恰巧同时出发。
小帅妈妈每分钟比小帅多走24 米,30 分钟后两人相遇,那么小帅的速度是多少?
3、甲、乙两辆汽车分别从A、B 两地相对而行,已知甲车的速度为38 千米/ 时,乙车的速度为40 千米/ 时。
甲车先行2 小时后,乙车才开始出发,乙车行驶5 小时后两车相遇。
求A、B 两地的距离。
4、两列城际列车从两城同时相对开出,其中一列车的速度为40 千米/ 时,另一列车的速度为45 千米/ 时。
在行驶途中,两列车先后各停车4 次,每次停车15 分钟,这样经过7 小时后两车相遇。
求两城的距离。
5、孙悟空住在水帘洞,铁扇公主住在火焰山,水帘洞和火焰山之间有条流沙河。
一天,他们约好在流沙河见面,孙悟空的速度是200 千米/小时,铁扇公主的速度是150 千米/小时。
他们同时出发,2 小时后还相距500 千米。
求水帘洞和火焰山之间的距离。
6、两列货车从相距450 千米的两个城市相向开出,甲货车的速度为38 千米/时,乙货车的速度为40 千米/时。
两车同时行驶4 小时后,还相距多少千米?
知识点二:追及问题
7、甲、乙两地相距300 千米,一列慢车从甲地出发,速度为70 千米/时。
同时一列快车从乙地出发,速度为100 千米/时。
如果两车同向行驶,快车在后,慢车在前,经过多少小时快车可以追上慢车?
8、艾小米步行上学,每分钟走70 米。
艾小米从家出发10 分钟后,爸爸发现她将文具盒落在了家中。
于是爸爸带着文具盒,以每分钟170 米的速度骑车追赶艾小米。
请问:爸爸出发几分钟后可追上艾小米?当爸爸追上艾小米时他们离家多远?
9、小明和小芳兄妹俩的家距离学校2000 米。
每天上学时,小明比小芳提前3 分钟出发,已知小明的速度是每分钟70 米,小芳的速度是每分钟80 米。
当小芳追上小明时,他们距离学校还有多远?
10、甲、乙两车分别从A、B 两地出发,同向而行,乙车在前,甲车在后。
已知甲车比乙车提前出发1 小时,甲车的速度是76 千米/ 小时,乙车的速度是60 千米/ 时。
甲车出发4 小时后追上乙车,求A、B 两地间的距离。
11、甲每分钟走100 米,乙每分钟走80 米,两人于相隔500 米的两地同时相背而行2 分钟后,甲掉头去追乙。
当甲追上乙时,甲一共走了多少米?
12、甲步行的速度为60 米/分,乙步行的速度为50 米/分,两人同时从同一地点背向走了5 分钟,然后甲掉头去追乙。
追上乙时,甲一共走了多少米?
参考答案
知识点一:相遇问题
1、相遇时间:325÷(35+30)=5(小时)甲:35×5=175(千米)乙:30×5=150(千米)
2、速度和:3000÷30=100(米/分) 100-24=76(米/分)高小帅:76÷2=38(米/分)
3、甲:2+5=7(小时) 38×7=266(千米)
乙:40×5=200(千米) 266+200=466(千米)
4、停车时间:4×15=60(分钟) 60 分钟=1 小时
行驶时间:7-1=6(小时)(40+45)×6=510(千米)
5、(200+150)×2=700(千米) 500+700=1200(千米)
6、路程和:(38+40)×4=312(千米) 450-312=138(千米)
知识点二:追及问题
7、速度差:100-70=30(千米/时)追及时间:300÷30=10(小时)
8、路程差:70×10=700(米)速度差:170-70=100(米/分)
追及时间:700÷100=7(分) 170×7=1190(米)
9、路程差:70×3=210(米)速度差:80-70=10(米/分)
追及时间:210÷10=21(分)小芳:21×80=1680(米) 2000-1680=320(米)
10、甲单独:76×1=76(千米)速度差:76-60=16(千米/时)
追及时间:4-1=3(小时)路程差:16×3=48(千米) AB:76+48=124(千米)
11、甲乙共走:(100+80)×2=360(米)路程差:360+500=860(米)
速度差:100-80=20(米/ 分)追及时间:860÷20=43(分) 100×(2+43)4500(米)12、(60+50)×5=550(米) 550÷(60-50)=55(分钟) 60×(55+5)=3600(米)。