天津市各地市2020年高考数学最新联考试题分类大汇编(7)平面向量
天津第三中学2020年高一数学理联考试卷含解析

天津第三中学2020年高一数学理联考试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有是一个符合题目要求的1. 设平面向量,,若,则等于()A. B. C. D.参考答案:D分析:由向量垂直的条件,求解,再由向量的模的公式和向量的数量积的运算,即可求解结果. 详解:由题意,平面向量,且,所以,所以,即,又由,所以,故选D.点睛:本题主要考查了向量的数量积的运算和向量模的求解,其中解答中熟记平面向量的数量积的运算公式和向量模的计算公式是解答的关键,着重考查了推理与运算能力,属于基础题.2. 函数的定义域是()A. B. C.D.参考答案:C考点:函数的定义域.3. 已知集合A={x|x>1},B={x|-1<x<2},则…………………………………( ) A.{x|-1<x<2} B.{x|x>-1} C.{x|-1<x<1} D.{x|1<x<2}参考答案:D 略4. 函数的图像大致是()参考答案:A5. 某扇形的圆心角为135°,所在圆的半径为4,则它的面积是()A.6πB.5πC.4πD. 3π参考答案:A由题得6. 在三棱柱ABC﹣A1B1C1中,各棱长相等,侧棱垂直于底面,点D是侧面BB1C1C的中心,则AD与平面BB1C1C所成角的大小是()A.30°B.45°C.60°D.90°参考答案:C【考点】空间中直线与平面之间的位置关系.【分析】本题考查的知识点是线面夹角,由已知中侧棱垂直于底面,我们过D点做BC的垂线,垂足为E,则DE⊥底面ABC,且E为BC中点,则E为A点在平面BB1C1C上投影,则∠ADE即为所求线面夹角,解三角形即可求解.【解答】解:如图,取BC中点E,连接DE、AE、AD,依题意知三棱柱为正三棱柱,易得AE⊥平面BB1C1C,故∠ADE为AD与平面BB1C1C所成的角.设各棱长为1,则AE=,DE=,tan∠ADE=,∴∠ADE=60°.故选C7. 已知函数,若方程有4个不同实根,则a的取值范围是(A)(B)(C)(D)参考答案:D8. 函数的图象向右平移个单位后与函数的图象重合,则下列结论中错误的是()A. 的一个周期为B. 的图象关于对称C. 是的一个零点D. 在上单调递减参考答案:D【分析】先由图像的平移变换推导出的解析式,再根据图像性质求出结果.【详解】解:函数的图象向右平移个单位后与函数的图象重合,,的一个周期为,故A正确;的对称轴满足:,,当时,的图象关于对称,故B正确;由,得,是的一个零点,故C正确;当时,,在上单调递增,故D错误.故选:D.【点睛】本题考查命题真假的判断,考查三角函数的平移变换、三角函数的性质等基础知识,考查运算求解能力,考查化归与转化思想,是中档题.9. 在平行四边形ABCD中,AC为一条对角线,若=(2,4),=(1,3),则=()A.(2,4)B.(﹣2,﹣4) C.(3,5)D.(﹣3,﹣5)参考答案:D考点:平面向量的坐标运算.专题:平面向量及应用.分析:根据题意,画出图形,结合图形以及平行四边形中的向量相等关系,求出.解答:根据题意,画出图形,如图所示;∵平行四边形ABCD 中,=(2,4),=(1,3),∴=﹣=(﹣1,﹣1), ∴=+=+=﹣=(﹣3,﹣5).故选:D .点评: 本题考查了平面向量的坐标表示以及平行四边形法则,是基础题目.10. 在△ABC 中,AB=2,AC=4, ∠A=,D 为BC 边中点, 则AD 长等于 ( )A .1B .3C .D .参考答案: D二、 填空题:本大题共7小题,每小题4分,共28分11. 函数是+1的反函数,则函数恒过定点________;参考答案:(2,0)12. 函数的减区间为参考答案:和13. 某药品经过两次降价,每瓶的零售价由100元降为81元,已知两次降价的百分率相同,设为,为求两次降价的百分率则列出方程为____________.参考答案:略14. 已知函数定义域为R,总有,若,则实数的取值范围是______.参考答案:略15. 已知且,则________.参考答案:16. 给出下列四个命题:①f(x )=sin (2x ﹣)的对称轴为x=+,k∈Z;②函数f (x )=sinx+cosx 的最大值为2;③函数f (x )=sinxcosx ﹣1的周期为2π;④函数f (x )=sin (x+)在[﹣,]上是增函数.其中正确命题的个数是 A .1个B .2个C.3个D .4个.参考答案:B【考点】2K :命题的真假判断与应用.【分析】求出函数的对称轴判断①的正误;公式的最值判断②的正误;函数的周期判断③的正误;函数的单调性判断④的正误;【解答】解:f (x )=sin (2x ﹣)的对称轴满足:2x ﹣=kπ+,即x=,k∈Z;故①正确.函数f (x )=sinx+cosx=2sin (x+),其最大值为2,故②正确.函数f(x)=sinxcosx﹣1=sin2x﹣1,其周期为π,故③错误.函数f(x)=sin(x+)在[﹣,]上是增函数,在[,]上是减函数.函数f(x)=sin(x+)在[﹣,]上是增函数,故④错误.故只有①②正确.故选:B.【点评】本题考查三角函数的对称性、周期性、单调性以及函数的最值的应用,命题的真假的判断,是基础题.17. (5分)已知扇形的面积为2,扇形圆心角的弧度数是4,则扇形的周长为.参考答案:6考点:扇形面积公式;弧长公式.专题:计算题.分析:设扇形的弧长为l,半径为r,S扇=lr=2,l=4r,其周长c=l+2r可求.解答:设扇形的弧长为l,半径为r,∵扇形圆心角的弧度数是4,∴l=4r,∵S扇=lr=2,∴?4r2=2,∴r2=1,r=1.∴其周长c=l+2r=4r+2r=6r=6.故答案为:6.点评:本题考查扇形面积公式,关键在于掌握弧长公式,扇形面积公式及其应用,属于中档题.三、解答题:本大题共5小题,共72分。
2020年天津市高考数学试卷-含详细解析

2020年天津市高考数学试卷副标题题号一二三总分得分一、选择题(本大题共9小题,共45.0分)1.设全集U={−3,−2,−1,0,1,2,3},集合A={−1,0,1,2},B={−3,0,2,3},则A∩(∁U B)=()A. {−3,3}B. {0,2}C. {−1,1}D. {−3,−2,−1,1,3}2.设a∈R,则“a>1”是“a2>a”的()A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件3.函数y=4x的图象大致为()x2+1A. B.C. D.4.从一批零件中抽取80个,测量其直径(单位:mm),将所得数据分为9组:[5.31,5.33),[5.33,5.35),…,[5.45,5.47),[5.47,5.49],并整理得到如下频率分布直方图,则在被抽取的零件中,直径落在区间[5.43,5.47)内的个数为()A. 10B. 18C. 20D. 365.若棱长为2√3的正方体的顶点都在同一球面上,则该球的表面积为()A. 12πB. 24πC. 36πD. 144π6. 设a =30.7,b =(13)−0.8,c =log 0.70.8,则a ,b ,c 的大小关系为( )A. a <b <cB. b <a <cC. b <c <aD. c <a <b7. 设双曲线C 的方程为x 2a2−y 2b 2=1(a >0,b >0),过抛物线y 2=4x 的焦点和点(0,b)的直线为l.若C 的一条渐近线与l 平行,另一条渐近线与l 垂直,则双曲线C 的方程为( )A.x 24−y 24=1B. x 2−y 24=1C.x 24−y 2=1 D. x 2−y 2=18. 已知函数f(x)=sin(x +π3).给出下列结论:①f(x)的最小正周期为2π; ②f(π2)是f(x)的最大值;③把函数y =sinx 的图象上的所有点向左平移π3个单位长度,可得到函数y =f(x)的图象.其中所有正确结论的序号是( )A. ①B. ①③C. ②③D. ①②③9. 已知函数f(x)={x 3,x ≥0,−x,x <0.若函数g(x)=f(x)−|kx 2−2x|(k ∈R)恰有4个零点,则k 的取值范围是( )A. (−∞,−12)∪(2√2,+∞) B. (−∞,−12)∪(0,2√2) C. (−∞,0)∪(0,2√2)D. (−∞,0)∪(2√2,+∞)二、填空题(本大题共6小题,共30.0分) 10. i 是虚数单位,复数8−i2+i =______.11. 在(x +2x 2)5的展开式中,x 2的系数是______.12. 已知直线x −√3y +8=0和圆x 2+y 2=r 2(r >0)相交于A ,B 两点.若|AB|=6,则r 的值为______. 13. 已知甲、乙两球落入盒子的概率分别为12和13.假定两球是否落入盒子互不影响,则甲、乙两球都落入盒子的概率为______;甲、乙两球至少有一个落入盒子的概率为______.14. 已知a >0,b >0,且ab =1,则12a +12b +8a+b 的最小值为______. 15. 如图,在四边形ABCD 中,∠B =60°,AB =3,BC =6,且AD ⃗⃗⃗⃗⃗⃗ =λBC ⃗⃗⃗⃗⃗ ,AD ⃗⃗⃗⃗⃗⃗ ⋅AB ⃗⃗⃗⃗⃗ =−32,则实数λ的值为______,若M ,N 是线段BC 上的动点,且|MN ⃗⃗⃗⃗⃗⃗⃗ |=1,则DM⃗⃗⃗⃗⃗⃗⃗ ⋅DN⃗⃗⃗⃗⃗⃗ 的最小值为______. 三、解答题(本大题共5小题,共75.0分)16. 在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c.已知a =2√2,b =5,c =√13.(Ⅰ)求角C 的大小; (Ⅱ)求sin A 的值;(Ⅲ)求sin(2A +π4)的值.17. 如图,在三棱柱ABC −A 1B 1C 1中,CC 1⊥平面ABC ,AC ⊥BC ,AC =BC =2,CC 1=3,点D ,E 分别在棱AA 1和棱CC 1上,且AD =1,CE =2,M 为棱A 1B 1的中点. (Ⅰ)求证:C 1M ⊥B 1D ;(Ⅱ)求二面角B −B 1E −D 的正弦值;(Ⅲ)求直线AB 与平面DB 1E 所成角的正弦值.18. 已知椭圆x 2a2+y 2b 2=1(a >b >0)的一个顶点为A(0,−3),右焦点为F ,且|OA|=|OF|,其中O 为原点.(Ⅰ)求椭圆的方程; (Ⅱ)已知点C 满足3OC ⃗⃗⃗⃗⃗ =OF ⃗⃗⃗⃗⃗ ,点B 在椭圆上(B 异于椭圆的顶点),直线AB 与以C 为圆心的圆相切于点P ,且P 为线段AB 的中点.求直线AB 的方程.19. 已知{a n }为等差数列,{b n }为等比数列,a 1=b 1=1,a 5=5(a 4−a 3),b 5=4(b 4−b 3).(Ⅰ)求{a n }和{b n }的通项公式;(Ⅱ)记{a n }的前n 项和为S n ,求证:S n S n+2<S n+12(n ∈N ∗);(Ⅲ)对任意的正整数n ,设c n ={(3a n −2)b na n a n+2,n 为奇数,a n−1bn+1,n 为偶数.求数列{c n }的前2n 项和.20.已知函数f(x)=x3+klnx(k∈R),f′(x)为f(x)的导函数.(Ⅰ)当k=6时,(ⅰ)求曲线y=f(x)在点(1,f(1))处的切线方程;(ⅰ)求函数g(x)=f(x)−f′(x)+9的单调区间和极值;x> (Ⅱ)当k≥−3时,求证:对任意的x1,x2∈[1,+∞),且x1>x2,有f′(x1)+f′(x2)2f(x1)−f(x2).x1−x2答案和解析1.【答案】C【解析】【分析】本题主要考查列举法的定义,以及补集、并集的运算,属于基础题. 进行补集、交集的运算即可. 【解答】解:全集U ={−3,−2,−1,0,1,2,3},集合A ={−1,0,1,2},B ={−3,0,2,3}, 则∁U B ={−2,−1,1}, ∴A ∩(∁U B)={−1,1}, 故选:C . 2.【答案】A【解析】【分析】本题考查了不等式的解法、简易逻辑的判定方法,考查了推理能力与计算能力,属于基础题.解得a 的范围,即可判断出结论. 【解答】解:由a 2>a ,解得a <0或a >1,故a >1”是“a 2>a ”的充分不必要条件, 故选:A . 3.【答案】A【解析】【分析】本题考查了函数图象的识别,属于基础题. 根据函数的奇偶性和函数值的正负即可判断. 【解答】解:函数y =f(x)=4xx 2+1,则f(−x)=−4xx 2+1=−f(x),则函数y =f(x)为奇函数,故排除C ,D , 当x >0是,y =f(x)>0,故排除B , 故选:A . 4.【答案】B【解析】【分析】本题考查了频率分布直方图,属于基础题.根据频率分布直方图求出径径落在区间[5.43,5.47)的频率,再乘以样本的个数即可. 【解答】解:直径径落在区间[5.43,5.47)的频率为(6.25+5)×0.02=0.225,则被抽取的零件中,直径落在区间[5.43,5.47)内的个数为0.225×80=18个, 故选:B . 5.【答案】C【解析】【分析】本题考查球的表面积,考查学生空间想象能力,球的内接体问题,是基础题. 正方体的对角线就是球的直径,求出半径后,即可求出球的表面积. 【解答】解:由题意,正方体的对角线就是球的直径,所以2R=√3×2√3=6,所以R=3,S=4πR2=36π.故选:C.6.【答案】D【解析】【分析】本题考查了指数函数和对数函数的性质,属于基础题.根据指数函数和对数函数的性质即可求出.【解答】解:a=30.7,b=(13)−0.8=30.8,则b>a>1,log0.70.8<log0.70.7=1,∴c<a<b,故选:D.7.【答案】D【解析】【分析】本题考查了双曲线的渐近线方程,抛物线的焦点坐标,直线的平行和垂直,属于中档题.先求出直线l的方程和双曲线的渐近线方程,根据直线平行和垂直即可求出a,b的值,可得双曲线的方程.【解答】解:抛物线y2=4x的焦点坐标为(1,0),则直线l的方程为y=−b(x−1),∵双曲线C的方程为x2a2−y2b2=1(a>0,b>0)的渐近线方程为y=±b ax,∵C的一条渐近线与l平行,另一条渐近线与l垂直,∴−ba =−b,ba⋅(−b)=−1,∴a=1,b=1,∴双曲线C的方程为x2−y2=1,故选:D.8.【答案】B【解析】【分析】本题以命题的真假判断为载体,主要考查了正弦函数的性质的简单应用,属于中档题.由已知结合正弦函数的周期公式可判断①,结合函数最值取得条件可判断②,结合函数图象的平移可判断③.【解答】解:因为f(x)=sin(x+π3),①由周期公式可得,f(x)的最小正周期T=2π,故①正确;、②f(π2)=sin(π2+π3)=sin5π6=12,不是f(x)的最大值,故②错误;③根据函数图象的平移法则可得,函数y=sinx的图象上的所有点向左平移π3个单位长度,可得到函数y=f(x)的图象,故③正确.故选:B.9.【答案】D【解析】【分析】本题考查函数的零点,参数的取值范围,关键利用分类讨论思想,分析函数的交点,属于难题.问题转化为f(x)=|kx2−2x|有四个根,⇒y=f(x)与y=ℎ(x)=|kx2−2x|有四个交点,再分三种情况当k=0时,当k<0时,当k>0时,讨论两个函数四否能有4个交点,进而得出k的取值范围.【解答】解:若函数g(x)=f(x)−|kx2−2x|(k∈R)恰有4个零点,则f(x)=|kx2−2x|有四个根,即y=f(x)与y=ℎ(x)=|kx2−2x|有四个交点,当k=0时,y=f(x)与y=|−2x|=2|x|图象如下:两图象有2个交点,不符合题意,(x2<x1)当k<0时,y=|kx2−2x|与x轴交于两点x1=0,x2=2k图象如图所示,两图象有4个交点,符合题意,当k>0时,(x2>x1)y=|kx2−2x|与x轴交于两点x1=0,x2=2k)内两函数图象有两个交点,所以若有四个交点,在[0,2k只需y=x3与y=kx2−2x在(2k,+∞)还有两个交点,即可,即x3=kx2−2x在(2k,+∞)还有两个根,即k=x+2x 在(2k,+∞)还有两个根,函数y=x+2x≥2√2,(当且仅当x=√2时,取等号),所以0<2k<√2,且k>2√2,所以k>2√2,综上所述,k的取值范围为(−∞,0)∪(2√2,+∞).故选:D.10.【答案】3−2i【解析】【分析】本题考查了复数的运算,属于基础题.根据复数的运算法则即可求出.【解答】解:i是虚数单位,复数8−i2+i =(8−i)(2−i)(2+i)(2−i)=15−10i5=3−2i,故答案为:3−2i11.【答案】10【解析】【分析】本题主要考查二项式定理的应用,二项式展开式的通项公式,求展开式中某项的系数,属于中档题.在(x+2x2)5的展开式的通项公式中,令x的幂指数等于2,求出r的值,即可得到展开式中x2的系数.【解答】解:∵(x+2x2)5的展开式的通项公式为T r+1=C5r x5−r2r x−2r=2r C5r x5−3r,令5−3r =2,得r =1,∴x 2的系数是2×C 51=10, 故答案为10. 12.【答案】5【解析】【分析】本题考查直线与圆相交的性质,涉及弦长的计算,属于基础题. 根据题意,分析圆的圆心,由点到直线的距离公式可得圆心到直线x −√3y +8=0的距离,结合直线与圆相交的性质可得r 2=d 2+(|AB|2)2,计算可得答案. 【解答】解:根据题意,圆x 2+y 2=r 2的圆心为(0,0),半径为r ; 则圆心到直线x −√3y +8=0的距离d =√1+3=4, 若|AB|=6,则有r 2=d 2+(|AB|2)2=16+9=25,故r =5; 故答案为:513.【答案】16 23【解析】【分析】本题考查了互斥事件的概率公式,考查了运算求解能力,属于基础题. 根据互斥事件的概率公式计算即可. 【解答】解:因为甲、乙两球落入盒子的概率分别为12和13, 则甲、乙两球都落入盒子的概率12×13=16,甲、乙两球至少有一个落入盒子的概率为1−(1−12)(1−13)=1−13=23, 故答案为:16,23.14.【答案】4【解析】【分析】本题考查了基本不等式的应用,考查了运算求解能力,属于中档题. 由12a +12b +8a+b =a+b 2ab+8a+b =a+b 2+8a+b ,利用基本不等式即可求出.【解答】解:a >0,b >0,且ab =1, 则12a+12b +8a+b =a+b 2ab+8a+b =a+b 2+8a+b ≥2√a+b 2⋅8a+b =4,当且仅当a+b 2=8a+b ,即a =2+√3,b =2−√3或a =2−√3,b =2+√3 取等号,故答案为:415.【答案】16 132【解析】【分析】本题考查了向量在几何中的应用,考查了向量的共线和向量的数量积,以及二次函数的性质,属于中档题.以B 为原点,以BC 为x 轴建立如图所示的直角坐标系,根据向量的平行和向量的数量积即可求出点D 的坐标,即可求出λ的值,再设出点M ,N 的坐标,根据向量的数量积可得关于x 的二次函数,根据二次函数的性质即可求出最小值. 【解答】解:以B 为原点,以BC 为x 轴建立如图所示的直角坐标系, ∵∠B =60°,AB =3, ∴A(32,3√32), ∵BC =6,∴C(6,0), ∵AD ⃗⃗⃗⃗⃗⃗ =λBC ⃗⃗⃗⃗⃗ , ∴AD//BC , 设D(x 0,3√32), ∴AD ⃗⃗⃗⃗⃗⃗ =(x 0−32,0),AB ⃗⃗⃗⃗⃗ =(−32,−3√32), ∴AD ⃗⃗⃗⃗⃗⃗ ⋅AB ⃗⃗⃗⃗⃗ =−32(x 0−32)+0=−32,解得x 0=52,∴D(52,3√32), ∴AD ⃗⃗⃗⃗⃗⃗ =(1,0),BC ⃗⃗⃗⃗⃗ =(6,0), ∴AD ⃗⃗⃗⃗⃗⃗ =16BC ⃗⃗⃗⃗⃗ ,∴λ=16,∵|MN⃗⃗⃗⃗⃗⃗⃗ |=1, 设M(x,0),则N(x +1,0),其中0≤x ≤5, ∴DM⃗⃗⃗⃗⃗⃗⃗ =(x −52,−3√32),DN ⃗⃗⃗⃗⃗⃗ =(x −32,−3√32), ∴DM ⃗⃗⃗⃗⃗⃗⃗ ⋅DN ⃗⃗⃗⃗⃗⃗ =(x −52)(x −32)+274=x 2−4x +212=(x −2)2+132,当x =2时取得最小值,最小值为132, 故答案为:16,132.16.【答案】解:(Ⅰ)由余弦定理以及a =2√2,b =5,c =√13,则cosC =a 2+b 2−c 22ab=8+25−132×2√2×5=√22, ∵C ∈(0,π), ∴C =π4;(Ⅱ)由正弦定理,以及C =π4,a =2√2,c =√13,可得sinA = asinC c =2√2×√22√13=2√1313;(Ⅲ)由a <c ,及sinA =2√1313,可得cosA =√1−sin 2A =3√1313, 则sin2A =2sinAcosA =2×2√1313×3√1313=1213,∴cos2A =2cos 2A −1=513,∴sin(2A +π4)=√22(sin2A +cos2A)=√22(1213+513)=17√226.【解析】本题考了正余弦定理,同角的三角形函数的关系,二倍角公式,两角和的正弦公式,属于中档题.(Ⅰ)根据余弦定理即可求出C 的大小; (Ⅱ)根据正弦定理即可求出sin A 的值;(Ⅲ)根据同角的三角形函数的关系,二倍角公式,两角和的正弦公式即可求出.17.【答案】解:以C 为原点,CA ⃗⃗⃗⃗⃗ ,CB ⃗⃗⃗⃗⃗ ,CC 1⃗⃗⃗⃗⃗⃗⃗ 的方向为x 轴,y 轴,z 轴的正方向建立空间直角坐标系,如图所示,则C(0,0,0),A(2,0,0),B(0,2,0),C 1(0,0,3),A 1(2,0,3),B 1(0,2,3),D(2,0,1),E(0,0,2),M(1,1,3),(Ⅰ)证明:依题意,C 1M ⃗⃗⃗⃗⃗⃗⃗⃗ =(1,1,0),B 1D ⃗⃗⃗⃗⃗⃗⃗⃗ =(2,−2,−2),∴C 1M ⃗⃗⃗⃗⃗⃗⃗⃗ ⋅B 1D ⃗⃗⃗⃗⃗⃗⃗⃗ =2−2+0=0,∴C 1M ⊥B 1D ;(Ⅱ)依题意,CA⃗⃗⃗⃗⃗ =(2,0,0)是平面BB 1E 的一个法向量, EB 1⃗⃗⃗⃗⃗⃗⃗ =(0,2,1),ED ⃗⃗⃗⃗⃗ =(2,0,−1), 设n⃗ =(x,y ,z)为平面DB 1E 的法向量, 则{n ⃗ ⋅EB 1⃗⃗⃗⃗⃗⃗⃗ =0n ⃗ ⋅ED ⃗⃗⃗⃗⃗ =0,即{2y +z =02x −z =0,不妨设x =1,则n ⃗ =(1,−1,2), ∴cos <CA ⃗⃗⃗⃗⃗ ,n ⃗ >=CN ⃗⃗⃗⃗⃗⃗ ⋅n ⃗⃗|CN ⃗⃗⃗⃗⃗⃗ |⋅|n ⃗⃗ |=√66, ∴sin <CA⃗⃗⃗⃗⃗ ,n ⃗ >=√1−16=√306, ∴二面角B −B 1E −D 的正弦值√306;(Ⅲ)依题意,AB ⃗⃗⃗⃗⃗ =(−2,2,0),由(Ⅱ)知,n⃗ =(1,−1,2)为平面DB 1E 的一个法向量, ∴cos <AB ⃗⃗⃗⃗⃗ ,n ⃗ >=AB ⃗⃗⃗⃗⃗⃗ ⋅n ⃗⃗|AB ⃗⃗⃗⃗⃗⃗ |⋅|n ⃗⃗ |=−√33,∴直线AB 与平面DB 1E 所成角的正弦值为√33.【解析】(Ⅰ)建立空间坐标系,根据向量的数量积等于0,即可证明; (Ⅱ)先平面DB 1E 的法向量n ⃗ ,再根据向量的夹角公式,求出二面角B −B 1E −D 的正弦值;(Ⅱ)求出cos <AB ⃗⃗⃗⃗⃗ ,n⃗ >值,即可求出直线AB 与平面DB 1E 所成角的正弦值. 本题考查了空间向量在几何中的应用,线线平行和二面角和线面角的求法,考查了运算求解能力,转化与化归能力,逻辑推理能力,属于中档题.18.【答案】解:(Ⅰ)由已知可得b =3,记半焦距为c ,由|OF|=|OA|可得c =b =3,由a 2=b 2+c 2,可得a 2=18, ∴椭圆的方程为 x 218+y 29=1,(Ⅱ):∵直线AB 与C 为圆心的圆相切于点P , ∴AB ⊥CP ,根据题意可得直线AB 和直线CP 的斜率均存在,设直线AB 的方程为y =kx −3, 由方程组{y =kx −3x 218+y 29=1,消去y 可得(2k 2+1)x 2−12kx =0,解得x =0,或x =12k2k 2+1,依题意可得点B 的坐标为(12k2k 2+1,6k 2−32k 2+1),∵P 为线段AB 的中点,点A 的坐标为(0,−3), ∴点P 的坐标为(6 k 2k 2+1,−32k 2+1),由3OC⃗⃗⃗⃗⃗ =OF ⃗⃗⃗⃗⃗ ,可得点C 的坐标为(1,0), 故直线CP 的斜率为−32k 2+16k2k 2+1−1=32k 2−6k+1,∵AB ⊥CP , ∴k ⋅32k 2−6k+1=−1, 整理可得2k 2−3k +1=0, 解得k =12或k =1,∴直线AB 的方程为y =12x −3或y =x −3.【解析】(Ⅰ)根据可得c =b =3,由a 2=b 2+c 2,可得a 2=18,即可求出椭圆方程; (Ⅱ)根据题意可得直线AB 和直线CP 的斜率均存在,设直线AB 的方程为y =kx −3,联立方程组,求出点B 的坐标,再根据中点坐标公式可得点P 的坐标,根据向量的知识求出点C 的坐标,即可求出CP 的斜率,根据直线垂直即可求出k 的值,可得直线AB 的方程.本题中考查了椭圆与圆的标准方程及其性质、直线与圆相切问题、中点坐标公式等基础知识与基本技能方法,考查了推理能力和计算能力,属于中档题.19.【答案】解:(Ⅰ)设等差数列{a n }的公差为d ,等比数列{b n }的公比为q , 由a 1=1,a 5=5(a 4−a 3),则1+4d =5d ,可得d =1, ∴a n =1+n −1=n ,∵b 1=1,b 5=4(b 4−b 3), ∴q 4=4(q 3−q 2),解得q =2, ∴b n =2n−1; 证明(Ⅱ)由(Ⅰ)可得S n =n(n+1)2,∴S n S n+2=14n(n +1)(n +2)(n +3),(S n+1)2=14(n +1)2(n +2)2,∴S n S n+2−S n+12=−12(n +1)(n +2)<0,∴S n S n+2<S n+12(n ∈N ∗);解:(Ⅲ),当n 为奇数时,c n =(3a n −2)b n a n a n+2=(3n−2)2n−1n(n+2)=2n+1n+2−2n−1n,当n 为偶数时,c n = a n−1b n+1=n−12n,对任意的正整数n ,有∑c 2k−1n k=1=∑(n k=122k 2k+1−22k−22k−1)=22n 2n+1−1,和∑c 2k n k=1=∑2k−14kn k=1=14+342+543+⋯+2n−14n,①, 由①×14可得14∑c 2k n k=1=142+343+⋯+2n−34 n +2n−14n+1,②,①−②得34∑c 2k n k=1=14+242+243+⋯+24 n −14--2n−14n+1, ∴∑c 2k n k=1=59−6n+59×4n,因此∑c 2k 2n k=1=∑c 2k−1n k=1+∑c 2k n k=1=4n 2n+1−6n+59×4n−49.数列{c n }的前2n 项和4n2n+1−6n+59×4n −49.【解析】(Ⅰ)分别根据等差数列的通项公式和等比数列的通项公式即可求出; (Ⅱ)根据等差数列的求和公式和作差法即可比较大小,则课证明; (Ⅲ)分类讨论,再根据错位相减法即可求出前2n 项和.本题考查了等差数列等比数列的通项公式和求和公式,考查了不等式的大小比较,考查了数列求和的方法,考查了运算求解能力,转化与化归能力,分类与整合能力,属于难题.20.【答案】解:(I)(i)当k =6时,f(x)=x 3+6lnx , 故f′(x)=3x 2+6x ,∴f′(1)=9, ∵f(1)=1,∴曲线y =f(x)在点(1,f(1))处的切线方程为y −1=9(x −1),即9x −y −8=0. (ii)g(x)=f(x)−f′(x)+9x =x 3+6lnx −3x 2+3x ,x >0, ∴g′(x)=3x 2−6x +6x −3x 2=3(x−1)3(x+1)x 2,令g′(x)=0,解得x =1, 当0<x <1,g′(x)<0, 当x >1,g′(x)>0,∴函数g(x)在(0,1)上单调递减,在(1,+∞)上单调递增,x=1是极小值点,极小值为g(1)=1,无极大值证明:(Ⅱ)由f(x)=x3+klnx,则f′(x)=3x2+kx,对任意的x1,x2∈[1,+∞),且x1>x2,令x1x2=t,t>1,则(x1−x2)[f′(x1)+f′(x2)]−2[f(x1)+f(x2)]=(x1−x2)(3x12+kx1+3x22+kx2)−2(x13−x23+kln x1x2),=x13−x23−3x12x2+3x1x22+k(x1x2−x2x1)−2kln x1x2,=x23(t3−3t2+3t−1)+k(t−1t−2lnt),①令ℎ(x)=x−1x−2lnx,x>1,当x>1时,ℎ′(x)=1+1x2−2x=(1−1x)2>0,∴ℎ(x)在(1,+∞)单调递增,∴当t>1,ℎ(t)>ℎ(1)=0,即t−1t−2lnt>0,∵x2≥1,t3−3t2+3t−1=(t−1)3>0,k≥−3,∴x23(t3−3t2+3t−1)+k(t−1t −2lnt)>t3−3t2+3t−1−3(t−1t−2lnt)=t3−3t2+6lnt+3t−1,②,由(Ⅰ)(ii)可知当t≥1时,g(t)>g(1)即t3−3t2+6lnt+3t>1,③,由①②③可得(x1−x2)[f′(x1)+f′(x2)]−2[f(x1)+f(x2)]>0,∴当k≥−3时,对任意的x1,x2∈[1,+∞),且x1>x2,有f′(x1)+f′(x2)2>f(x1)−f(x2)x1−x2.【解析】(Ⅰ)(i)根据导数的几何意义即可求出切线方程;(ii)根据导数和函数单调性极值的关系,即可求出;(Ⅱ)要证不等式成立,只要证明(x1−x2)[f′(x1)+f′(x2)]−2[f(x1)+f(x2)]>0,根据导数和函数最值的关系,以及放缩法即可证明.本题是利用导数研究函数的单调性、求函数的极值的基本题型,不等式的证明,属于难题.。
2020年普通高等学校招生全国统一考试(天津卷)数学试题及答案

绝密★启用前 考试时间:2020年7月7日15:00-17:002020年普通高等学校招生全国统一考试(天津卷)数学试题试卷总分150分, 考试时间120分钟本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试用时120分钟.第Ⅰ卷1至3页,第Ⅱ卷4至6页.答卷前,考生务必将自己的姓名、考生号、考场号和座位号填写在答题卡上,并在规定位置粘贴考试用条形码。
答卷时,考生务必将答案涂写在答题卡上,答在试卷上的无效。
考试结束后,将本试卷和答题卡一并交回。
祝各位考生考试顺利!第I 卷注意事项:1.每小题选出答案后,用铅笔将答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.2.本卷共9小题,每小题5分,共45分. 参考公式:·如果事件A 与事件B 互斥,那么()()()P AB P A P B =+.·如果事件A 与事件B 相互独立,那么()()()P AB P A P B =. ·球的表面积公式24S R π=,其中R 表示球的半径.一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的. 1.设全集{3,2,1,0,1,2,3}U =---,集合{1,0,1,2},{3,0,2,3}A B =-=-,则()U A B =∩( )A .{3,3}-B .{0,2}C .{1,1}-D .{3,2,1,1,3}--- 2.设a ∈R ,则“1a >”是“2a a >”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件3.函数241xy x =+的图象大致为( ) A . B .C .D .4.从一批零件中抽取80个,测量其直径(单位:mm ),将所得数据分为9组:[5.31,5.33),[5.33,5.35),,[5.45,5.47],[5.47,5.49],并整理得到如下频率分布直方图,则在被抽取的零件中,直径落在区间[5.43,5.47)内的个数为( )A .10B .18C .20D .365.若棱长为23,则该球的表面积为( ) A .12π B .24π C .36π D .144π6.设0.80.70.713,,log 0.83a b c -⎛⎫=== ⎪⎝⎭,则,,a b c 的大小关系为( )A .a b c <<B .b a c <<C .b c a <<D .c a b <<7.设双曲线C 的方程为22221(0,0)x y a b a b-=>>,过抛物线24y x =的焦点和点(0,)b 的直线为l .若C 的一条渐近线与l 平行,另一条渐近线与l 垂直,则双曲线C 的方程为( )A .22144x y -=B .2214y x -= C .2214x y -= D .221x y -= 8.已知函数()sin 3f x x π⎛⎫=+⎪⎝⎭.给出下列结论: ①()f x 的最小正周期为2π;②2f π⎛⎫⎪⎝⎭是()f x 的最大值; ③把函数sin y x =的图象上所有点向左平移3π个单位长度,可得到函数()y f x =的图象. 其中所有正确结论的序号是A .①B .①③C .②③D .①②③9.已知函数3,0,(),0.x x f x x x ⎧=⎨-<⎩若函数2()()2()g x f x kx xk =--∈R 恰有4个零点,则k 的取值范围是( )A .1,(22,)2⎛⎫-∞-+∞ ⎪⎝⎭ B .1,(0,22)2⎛⎫-∞- ⎪⎝⎭ C .(,0)(0,22)-∞ D .(,0)(22,)-∞+∞第Ⅱ卷注意事项:1.用黑色墨水的钢笔或签字笔将答案写在答题卡上. 2.本卷共11小题,共105分.二、填空题:本大题共6小题,每小题5分,共30分.试题中包含两个空的,答对1个的给3分,全部答对的给5分.10.i 是虚数单位,复数82ii-=+_________. 11.在522x x ⎛⎫+ ⎪⎝⎭的展开式中,2x 的系数是_________.12.已知直线380x y -+=和圆222(0)x y r r +=>相交于,A B 两点.若||6AB =,则r 的值为_________.13.已知甲、乙两球落入盒子的概率分别为12和13.假定两球是否落入盒子互不影响,则甲、乙两球都落入盒子的概率为_________;甲、乙两球至少有一个落入盒子的概率为_________. 14.已知0,0a b >>,且1ab =,则11822a b a b+++的最小值为_________. 15.如图,在四边形ABCD 中,60,3B AB ︒∠==,6BC =,且3,2AD BC AD AB λ=⋅=-,则实数λ的值为_________,若,M N 是线段BC 上的动点,且||1MN =,则DM DN ⋅的最小值为_________.三、解答题:本大题共5小题,共75分.解答应写出文字说明,证明过程或演算步骤. 16.(本小题满分14分)在ABC 中,角,,A B C 所对的边分别为,,a b c .已知22,5,13a b c ===. (Ⅰ)求角C 的大小; (Ⅱ)求sin A 的值; (Ⅲ)求sin 24A π⎛⎫+ ⎪⎝⎭的值.17.(本小题满分15分)如图,在三棱柱111ABC A B C -中,1CC ⊥平面,,2ABC AC BC AC BC ⊥==,13CC =,点,D E 分别在棱1AA 和棱1CC 上,且12,AD CE M ==为棱11A B 的中点.(Ⅰ)求证:11C M B D ⊥;(Ⅱ)求二面角1B B E D --的正弦值;(Ⅲ)求直线AB 与平面1DB E 所成角的正弦值.18.(本小题满分15分)已知椭圆22221(0)x y a b a b+=>>的一个顶点为(0,3)A -,右焦点为F ,且||||OA OF =,其中O为原点.(Ⅰ)求椭圆的方程;(Ⅱ)已知点C 满足3OC OF =,点B 在椭圆上(B 异于椭圆的顶点),直线AB 与以C 为圆心的圆相切于点P ,且P 为线段AB 的中点.求直线AB 的方程.19.(本小题满分15分)已知{}n a 为等差数列,{}n b 为等比数列,()()115435431,5,4a b a a a b b b ===-=-.(Ⅰ)求{}n a 和{}n b 的通项公式;(Ⅱ)记{}n a 的前n 项和为n S ,求证:()2*21n n n S S S n ++<∈N;(Ⅲ)对任意的正整数n ,设()21132,,,.n nn n n n n a b n a a c a n b +-+-⎧⎪⎪=⎨⎪⎪⎩为奇数为偶数求数列{}n c 的前2n 项和.20.(本小题满分16分)已知函数3()ln ()f x x k x k R =+∈,()f x '为()f x 的导函数. (Ⅰ)当6k =时,(i )求曲线()y f x =在点(1,(1))f 处的切线方程; (ii )求函数9()()()g x f x f x x'=-+的单调区间和极值; (Ⅱ)当3k -时,求证:对任意的12,[1,)x x ∈+∞,且12x x >,有()()()()1212122f x f x f x f x x x ''+->-.绝密★启用前 考试时间:2020年7月7日15:00-17:002020年普通高等学校招生全国统一考试(天津卷)数学试题参考答案试卷总分150分, 考试时间120分钟一、选择题:每小题5分,满分45分.1.C 2.A 3.A 4.B 5.C 6.D 7.D 8.B 9.D二、填空题:每小题5分,满分30分.试题中包含两个空的,答对1个的给3分,全部答对的给5分.10.32i - 11.10 12.5 13.16;23 14.4 15.16;132三、解答题 16.满分14分.(Ⅰ)解:在ABC 中,由余弦定理及5,a b c ===,有222cos 22a b c C ab +-==.又因为(0,)C π∈,所以4C π=.(Ⅱ)解:在ABC 中,由正弦定理及,4C a c π===,可得sin sin a C A c ==.(Ⅲ)解;由a c <及sin A =,可得cos A ==,进而2125sin 22sin cos ,cos 22cos 11313A A A A A ===-=.所以,125sin 2sin 2cos cos 2sin 4441313A A A πππ⎛⎫+=+=+= ⎪⎝⎭ 17.满分15分.依题意,以C 为原点,分别以1,,CA CB CC 的方向为x 轴,y 轴,z 轴的正方向建立空间直角坐标系(如图),可得1(0,0,0),(2,0,0),(0,2,0),(0,0,3)C A B C ,11(2,0,3),(0,2,3),(2,0,1),(0,0,2)A B D E ,(1,1,3)M .(Ⅰ)证明:依题意,1(1,1,0)C M =,1(2,2,2)B D =--,从而112200C M B D ⋅=-+=,所以11C M B D ⊥.(Ⅱ)解:依题意,(2,0,0)CA =是平面1BB E 的一个法向量,1(0,2,1)EB =,(2,0,1)ED =-.设(,,)n x y z =为平面1DB E 的法向量,则10,0,n EB n ED ⎧⋅=⎪⎨⋅=⎪⎩即20,20.y z x z +=⎧⎨-=⎩不妨设1x =,可得(1,1,2)n =-. 因此有6cos ,6||||CA n CA n CA n ⋅〈〉==,于是30sin ,CA n 〈〉=. 所以,二面角1B B E D --的正弦值为306. (Ⅲ)解:依题意,(2,2,0)AB =-.由(Ⅱ)知(1,1,2)n =-为平面1DB E 的一个法向量,于是3cos||||AB n AB n ⋅=.所以,直线AB 与平面1DB E 3.18.满分15分.(Ⅰ)解:由已知可得3b =.记半焦距为c ,由||||OF OA =可得3c b ==.又由222a b c =+,可得218a =.所以,椭圆的方程为221189x y +=. (Ⅱ)解:因为直线AB 与以C 为圆心的圆相切于点P ,所以AB CP ⊥.依题意,直线AB 和直线CP 的斜率均存在.设直线AB 的方程为3y kx =-.由方程组223,1,189y kx x y =-⎧⎪⎨+=⎪⎩消去y ,可得()2221120kx kx +-=,解得0x =,或21221kx k =+.依题意,可得点B 的坐标2221263,2121k k k k ⎛⎫- ⎪++⎝⎭.因为P 为线段AB 的中点,点A 的坐标为(0,3)-,所以点P 的坐标为2263,2121k k k -⎛⎫ ⎪++⎝⎭.由3OC OF =,得点C 的坐标为(1,0),故直线CP 的斜率为2230216121k kk --+-+,即23261k k -+.又因为AB CP ⊥,所以231261k k k ⋅=--+,整理得22310k k -+=,解得12k =,或1k =.所以,直线AB 的方程为132y x =-,或3y x =-.19.满分15分.(Ⅰ)解:设等差数列{}n a 的公差为d ,等比数列{}n b 的公比为q .由11a =,()5435a a a =-,可得1d =,从而{}n a 的通项公式为n a n =.由()15431,4b b b b ==-,又0q ≠,可得2440q q -+=,解得2q =,从而{}n b 的通项公式为12n n b -=.(Ⅱ)证明:由(Ⅰ)可得(1)2n n n S +=,故21(1)(2)(3)4n n S S n n n n +=+++,()22211(1)24n S n n +=++,从而2211(1)(2)02n n n S S S n n ++-=-++<,所以221n n n S S S ++<.(Ⅲ)解:当n 为奇数时,()111232(32)222(2)2n n n n n nn n a b n c a a n n n n-+-+--===-++;当n 为偶数时,1112n n n n a n c b -+-==. 对任意的正整数n ,有222221112221212121k k nnnk k k c k k n --==⎛⎫=-=- ⎪+-+⎝⎭∑∑, 和22311211352144444nnk knk k k n c ==--==++++∑∑. ① 由①得22311113232144444n k n n k n n c +=--=++++∑. ② 由①②得22111211312221121441444444414n n k n n n k n n c ++=⎛⎫- ⎪--⎝⎭=+++-=---∑,从而得21565994nk nk n c =+=-⨯∑. 因此,2212111465421949n nnnk k k nk k k n c c c n -===+=+=--+⨯∑∑∑. 所以,数列{}n c 的前2n 项和为465421949n nn n +--+⨯. 20.满分16分.(Ⅰ)(i )解:当6k =时,3()6ln f x x x =+,故26()3f x x x'=+.可得(1)1f =,(1)9f '=,所以曲线()y f x =在点(1,(1))f 处的切线方程为19(1)y x -=-,即98y x =-. (ii )解:依题意,323()36ln ,(0,)g x x x x x x=-++∈+∞.从而可得2263()36g x x x x x'=-+-,整理可得323(1)(1)()x x g x x '-+=.令()0g x '=,解得1x =. 当x 变化时,(),()g x g x '的变化情况如下表:所以,函数()g x 的单调递减区间为(0,1),单调递增区间为(1,)+∞;()g x 的极小值为(1)1g =,无极大值.(Ⅱ)证明:由3()ln f x x k x =+,得2()3k f x x x'=+. 对任意的12,[1,)x x ∈+∞,且12x x >,令12(1)x t t x =>,则 ()()()()()()()1212122x x f x f x f x f x ''-+--()22331121212122332ln x k k x x x x x x k x x x ⎛⎫⎛⎫=-+++--+ ⎪ ⎪⎝⎭⎝⎭3322121121212212332ln x x x x x x x x x k k x x x ⎛⎫=--++-- ⎪⎝⎭()332213312ln x t t t k t t t ⎛⎫=-+-+-- ⎪⎝⎭. ①令1()2ln ,[1,)h x x x x x =--∈+∞.当1x >时,22121()110h x x x x '⎛⎫=+-=-> ⎪⎝⎭,由此可得()h x 在[1,)+∞单调递增,所以当1t >时,()(1)h t h >,即12ln 0tt -->.因为21x ,323331(1)0,3t t t t k -+-=->-,所以,()332322113312ln (331)32ln x t t t k t t t t t t t t t ⎛⎫⎛⎫-+-+-->-+---- ⎪ ⎪⎝⎭⎝⎭2236ln 31t t t t-=++-. ②由(Ⅰ)(ii )可知,当1t =时,()(1)g t g >,即32336ln 1t t t t-++>,故 22336ln 10t t t t-++->. ③由①②③可得()()()()()()()12121220x x fx f x f x f x ''-+-->.所以,当3k-时,对任意的12,[1,)x x ∈+∞,且12x x >,有()()()()1212122f x f x f x f x x x ''+->-.。
2020年天津高考数学真题

2
√ C. (−∞, 0) ∪ (0, 2 2)
√ D. (−∞, 0) ∪ (2 2, +∞)
♠ 函数零点 ♠ 分段函数 ♠ 函数图象交点
[2020-天津-10]
i
是虚数单位,
复数
8−i 2+i
=
(3 − 2i).
♠ 虚数运算
[2020-天津-11]
在
(x
+
2 x2 )
的展开式中,
x2
的系数为
(10).
23
都落入盒子的概率为
1 ()
甲、乙两球至少有一个落入盒子的概率为
( 2 ).
6
3
♠ 混合选取 ♠ 古典概型
[2020-天津-14]
已知 a > 0, b > 0, 且 ab = 1, 则
1
1 ++
8
的最小值为 (4).
2a 2b a + b
♠ 构造基本不等式
[2020-天津-15]
如图, 在四边形 ABCD 中,∠B = 60◦, AB = 3, BC = 6, 且
[2020-天津-9]
{
已知函数 f (x) = x3, x ≥ 0 ,若函数 g(x) = f (x) − |kx2 − 2x|(k ∈ R) 恰有 4 个零点,则
−x, x < 0
k 的取值范围是 (D) .
A.
1√ (−∞, − ) ∪ (2 2, +∞)
2
B.
1
√
பைடு நூலகம்
(−∞, − ) ∪ (0, 2 2)
为 l. 若 C 的一条渐近线与 l 平行, 另一条渐近线与 l 垂直, 则双曲线 C 的方程为 (D) .
2020版高考数学(天津专用)大一轮精准复习精练:5.2 平面向量数量积与应用 含解析

5.2平面向量数量积与应用挖命题【考情探究】考点内容解读5年考情预测热度考题示例考向关联考点1.平面向量的数量积1.理解平面向量数量积的含义及其物理意义2.了解平面向量的数量积与向量投影的关系3.掌握数量积的坐标表达式,会进行平面向量数量积的运算4.理解数量积的性质并能运用2014天津,8基底法线性表示向量向量的共线表示★★★2.平面向量数量积的应用1.能运用数量积解决两向量的夹角问题和长度问题2.会用数量积判断两个向量的平行、垂直关系3.会用向量方法解决某些简单的平面几何问题、力学问题以及一些实际问题2015天津,14向量方法解决平面几何问题基本不等式★★★分析解读在天津高考中,平面向量的数量积常以平面图形为载体,借助平行四边形法则和三角形法则来考查.当平面图形为特殊图形时,可以建立直角坐标系,通过坐标运算求数量积;遇到模的问题时,通常是进行平方,利用数量积的知识解决,主要从以下几个方面考查:1.理解数量积的定义、几何意义及其应用.2.掌握向量数量积的性质及运算律;掌握求向量长度的方法.3.会用向量数量积的运算求向量夹角,判断或证明向量垂直.4.利用数形结合的方法和函数的思想解决最值等综合问题.破考点【考点集训】考点一平面向量的数量积1.已知A,B是单位圆O上的两点(O为圆心),∠AOB=120°,点C是线段AB上不与A、B重合的动点.MN是圆O的一条直径,则·的取值范围是()A.-B.[-1,1)C.-D.[-1,0)答案 A2.(2012北京,13,5分)已知正方形ABCD的边长为1,点E是AB边上的动点,则·的值为;·的最大值为.答案1;1考点二平面向量数量积的应用3.已知向量||=2,||=1,且|-2|=2,则向量和的夹角为()A.30°B.60°C.120°D.150°答案 C4.已知向量a=(cos θ,sin θ),向量b=(,-1),则|2a-b|的最大值,最小值分别是()A.4,0B.4,4C.4,0D.16,0答案 A5.已知向量a是单位向量,向量b=(2,2),若a⊥(2a+b),则a,b的夹角为.答案炼技法【方法集训】方法1求平面向量的模的方法1.已知平面向量,满足||=||=1,·=-,若||=1,则||的最大值为()A.-1B.-1C.+1D.+1答案 D2.在△ABC中,∠BAC=60°,AB=5,AC=4,D是AB上一点,且·=5,则||等于()A.6B.4C.2D.1答案 C3.已知向量a与向量b的夹角为,且|a|=|b|=2,若向量c=x a+y b(x∈R且x≠0,y∈R),则的最大值为()A. B. C. D.3答案 A方法2求平面向量的夹角的方法4.△ABC是边长为2的等边三角形,向量a,b满足=2a,=2a+b,则向量a,b的夹角为()A.30°B.60°C.120°D.150°答案 C5.若e1,e2是平面内夹角为60°的两个单位向量,则向量a=2e1+e2,b=-3e1+2e2的夹角为()A.30°B.60°C.90°D.120°答案 D6.已知|a|=,a·b=-,且(a-b)·(a+b)=-15,则向量a与b的夹角θ为()A. B. C. D.答案 C方法3用向量法解决平面几何问题的方法7.(2015湖南,9,5分)已知点A,B,C在圆x2+y2=1上运动,且AB⊥BC.若点P的坐标为(2,0),则|++|的最大值为()A.6B.7C.8D.9答案 B8.已知向量,的夹角为60°,||=||=2,若=2+,则△ABC为()A.等腰三角形B.等边三角形C.直角三角形D.等腰直角三角形答案 C过专题【五年高考】A组自主命题·天津卷题组考点一平面向量的数量积1.(2016天津,7,5分)已知△ABC是边长为1的等边三角形,点D,E分别是边AB,BC的中点,连接DE并延长到点F,使得DE=2EF,则·的值为()A.-B.C.D.答案 B2.(2014天津,8,5分)已知菱形ABCD的边长为2,∠BAD=120°,点E,F分别在边BC,DC上,BE=λBC,DF=μDC.若·=1,·=-,则λ+μ=()A. B. C. D.答案 C考点二平面向量数量积的应用(2015天津,14,5分)在等腰梯形ABCD中,已知AB∥DC,AB=2,BC=1,∠ABC=60°.动点E和F分别在线段BC和DC上,且=λ,=,则·的最小值为.答案B组统一命题、省(区、市)卷题组考点一平面向量的数量积1.(2018课标Ⅱ,4,5分)已知向量a,b满足|a|=1,a·b=-1,则a·(2a-b)=()A.4B.3C.2D.0答案 B2.(2014课标Ⅱ,3,5分)设向量a,b满足|a+b|=,|a-b|=,则a·b=()A.1B.2C.3D.5答案 A3.(2017课标Ⅰ,13,5分)已知向量a,b的夹角为60°,|a|=2,|b|=1,则|a+2b|=.答案24.(2016课标Ⅰ,13,5分)设向量a=(m,1),b=(1,2),且|a+b|2=|a|2+|b|2,则m=.答案-25.(2015湖北,11,5分)已知向量⊥,||=3,则·=.答案9考点二平面向量数量积的应用1.(2018浙江,9,4分)已知a,b,e是平面向量,e是单位向量.若非零向量a与e的夹角为,向量b满足b2-4e·b+3=0,则|a-b|的最小值是()A.-1B.+1C.2D.2-答案 A2.(2017课标Ⅱ,12,5分)已知△ABC是边长为2的等边三角形,P为平面ABC内一点,则·(+)的最小值是()A.-2B.-C.-D.-1答案 B3.(2016课标Ⅲ,3,5分)已知向量=,=,则∠ABC=()A.30°B.45°C.60°D.120°答案 A4.(2016山东,8,5分)已知非零向量m,n满足4|m|=3|n|,cos<m,n>=.若n⊥(t m+n),则实数t的值为()A.4B.-4C.D.-答案 B5.(2014江西,14,5分)已知单位向量e1与e2的夹角为α,且cos α=,向量a=3e1-2e2与b=3e1-e2的夹角为β,则cos β=.答案C组教师专用题组1.(2015广东,9,5分)在平面直角坐标系xOy中,已知四边形ABCD是平行四边形,=(1,-2),=(2,1),则·=()A.5B.4C.3D.2答案 A2.(2015福建,7,5分)设a=(1,2),b=(1,1),c=a+k b.若b⊥c,则实数k的值等于()A.-B.-C.D.答案 A3.(2014湖南,10,5分)在平面直角坐标系中,O为原点,A(-1,0),B(0,),C(3,0),动点D满足||=1,则|++|的取值范围是()A.[4,6]B.[-1,+1]C.[2,2]D.[-1,+1]答案 D4.(2018上海,8,5分)在平面直角坐标系中,已知点A(-1,0)、B(2,0),E、F是y轴上的两个动点,且||=2,则·的最小值为.答案-35.(2015安徽文,15,5分)△ABC是边长为2的等边三角形,已知向量a,b满足=2a,=2a+b,则下列结论中正确的是.(写出所有正确结论的编号)①a为单位向量;②b为单位向量;③a⊥b;④b∥;⑤(4a+b)⊥.答案①④⑤6.(2014江苏,12,5分)如图,在平行四边形ABCD中,已知AB=8,AD=5,=3,·=2,则·的值是.答案227.(2014重庆,12,5分)已知向量a与b的夹角为60°,且a=(-2,-6),|b|=,则a·b=.答案108.(2013课标Ⅰ,13,5分)已知两个单位向量a,b的夹角为60°,c=t a+(1-t)b.若b·c=0,则t=.答案 29.(2013课标Ⅱ,13,5分)已知正方形ABCD的边长为2,E为CD的中点,则·=.答案 2解析解法一:·=·(-)=-=22-×22=2.解法二:以A为原点建立平面直角坐标系(如图),可得A(0,0),E(1,2),B(2,0),C(2,2),D(0,2),则=(1,2),=(-2,2),则·=(1,2)·(-2,2)=1×(-2)+2×2=2.【三年模拟】一、选择题(每小题5分,共40分)1.(2018天津芦台一中模拟,7)在直角梯形ABCD中,AB∥CD,AB⊥AD,AB=2,CD=1,P为线段BC上的一点,设=,若·=,则||=()A.2B.C.D.1答案 A2.(2018天津南开二模,8)设△ABC是边长为1的正三角形,M是△ABC所在平面上的一点,且+2λ+=,则当·取得最小值时,λ的值为()A. B. C.2 D.3答案 A3.(2019届天津新华中学期中,5)若非零向量a,b满足|a|=|b|,且(a-b)⊥(3a+2b),则a与b的夹角为()A. B. C.π D.π答案 A4.(2017天津南开一模,7)在△ABC中,AB=AC=1,=,=,·=-,则∠ABC=()A. B. C. D.答案 C5.(2017天津五校联考一模,7)在△ABC中,AC=2AB=2,∠BAC=120°,O是BC的中点,M是AO上的一点,且=3,则·的值是()A.-B.-C.-D.-答案 A6.(2019届天津南开中学第二次月考,7)在△ABC中,·=4,||=3,M,N分别是BC边上的三等分点,则·的值是()A.5B.C.6D.8答案 C7.(2017天津和平一模,7)如图,在平行四边形ABCD中,∠BAD=,AB=2,AD=1.若M、N分别是边AD、CD上的点,且满足==λ,其中λ∈[0,1],则·的取值范围是()A.[-3,1]B.[-3,-1]C.[-1,1]D.[1,3]答案 B8.(2018天津部分区县一模,7)已知点G是△ABC内的一点,且满足++=0,若∠BAC=,·=1,则||的最小值是()A. B. C. D.答案 C二、填空题(每小题5分,共45分)9.(2018天津南开中学第三次月考,12)已知向量a与b的夹角为60°,若a=(0,2),|b|=1,则|a+2b|=.答案210.(2017天津南开三模,11)已知向量a,b满足|a|=,|b|=2,(a+b)⊥a,则向量a,b的夹角为.答案11.(2017天津河西三模,12)已知等边△ABC的边长为2,平面内一点M满足=+,则·=. 答案-212.(2017天津八校联考,13)如图,在矩形ABCD中,AB=,BC=2,点E为BC的中点,点F在边CD上,若·=,则·的值是.答案13.(2018天津红桥二模,12)如图,在△ABC中,AD⊥AB,=,||=1,则·=.答案14.(2019届天津耀华中学第二次月考,13)已知向量、、满足=+,||=2,||=1,E、F分别是线段BC、CD的中点,若·=-,则向量与的夹角为.答案15.(2018天津南开一模,13)在四边形ABCD中,AB=AC=AD=,AB⊥AD,则·的最小值为.答案2-216.(2018天津十二区县一模,13)在等腰梯形中,AB∥CD,AB=2,AD=1,∠DAB=60°,若=3,=λ(λ∈R),且·=-1,则λ=.答案17.(2018天津北辰模拟,14)在梯形ABCD中,BC∥AD,∠BAD=60°,∠CDA=30°,AB=2,AD=6,CD=2,在边BC,DC上分别有动点E,F,使=λ,=μ,λ+μ=1,则·的最小值为.答案 6。
2020年天津市高考数学试卷

2020年天津市高考数学试卷一、选择题L 设全集U = {-3,—2,— 1,0,123},集合4 = {-1,0,1,2}, B = {-3,0,2,3},则4 n QB)=()A.{-3,3}B.{0,2}2.设a 2 R,则"a > 1"是" > 屋的(A.充分不必要条件C .充要条件C.{-1,1} »{—3,—2,—1,1,3})B.必要不充分条件D ,既不充分也不必要条件3.函数y = 器的图象大致为()4.从一批零件中抽取80个,测量其直径(单位:mm),将所得数据分为9组:[5.31,5.33), [5.33, 5.35),…,[5.45, 5,47), [5.47, 5,49],并整理得到如下频率分布直方图,则在被抽取的零件中,直径落在区间[5.43, 547)内的个数为()装率旗距C. D.A.10B.18C.20D.365 .若棱长为2序的正方体的顶点都在同一球面上,则该球的表面积为()A.127TB.247TC.367TD.1447r6 .设。
=3。
乙 b = (J ,c = log 070.8,则a, b, c 的大小关系为() A.a < b < c B.b < a < c C.b < c < a D.c < a < b7 .设双曲线C 的方程为《一3=1伍>0,匕>0),过抛物线y2 = 4%的焦点和点(0,b)的 直线为1.若C 的一条渐近线与[平行,另一条渐近线与I 垂直,则双曲线C 的方程为 ()8 .%2-^=1 C.^-y 2 = l D.%2 -y 2 = l4 4 4 4 , J8.已知函数/'(x) = sin(x + §.给出下列结论:①/(%)的最小正周期为2兀:②/停)是/(“)的最大值;③把函数,=sinx 的图象上所有点向左平移J 个单位长度,可得到函数y =f(x)的图象. 其中所有正确结论的序号是()A.①B.①③C.②③D.①②③X , X 0一'若函数g(x) =/(%) - 一 2x| (k C R)恰有4个零点, -X, % < 0,{10 . i 是虚数单位,好数?=11 .在。
天津市各地市2020年高考数学 最新联考试题分类汇编(7) 平面向量

天津市各地市2020年高考数学最新联考试题分类汇编(7)平面向量一、选择题:7.(天津市六校2020届高三第二次联考理)△ABC的外接圆的圆心为O,半径为1,2=+且=,则向量在方向上的投影为()A. B. C. - D. -2.(天津市新华中学2020届高三第二次月考文)若向量,则A. B. C. D.【答案】D【解析】设,则,所以,解得,即,选D.7. (天津市南开中学2020届高三第四次月考理)平面向量与的夹角为,,则=()A. B. C. 7 D. 3【答案】A7. (天津市2020年滨海新区五所重点学校高三毕业班联考理)在平行四边形中,,连接、相交于点,若,则实数与的乘积为()A. B. C. D.二、填空题:14.(天津市十二区县重点中学2020年高三毕业班联考一)已知点为等边三角形的中心, ,直线过点交线段于点,交线段于点,则的最大值为 .14.(天津市新华中学2020届高三第二次月考文)平面上的向量与满足,且,若点满足,则的最小值为______________________【答案】【解析】由得,所以。
即的最小值为。
14. (天津市六校2020届高三第二次联考文)如上图,是边长为的正方形,动点在以为直径的圆弧上,则的取值范围是▲【答案】[0,16]14. (天津市2020年滨海新区五所重点学校高三毕业班联考理)设函数为坐标原点,图象上横坐标为的点,向量的夹角,满足的最大整数是 .三、解答题:15. (天津市六校2020届高三第二次联考理)在△ABC中,a,b,c分别为角A,B,C的对边,A为锐角,已知向量=(1, cos),=(2sin,1-cos2A),且∥.(1)若a2-c2=b2-mbc,求实数m的值;(2)若a=,求△ABC面积的最大值,以及面积最大是边b,c的大小.。
2020年天津市高考数学试卷-含详细解析

2020年天津市高考数学试卷副标题题号一二三总分得分一、选择题(本大题共9小题,共45.0分)1.设全集U={−3,−2,−1,0,1,2,3},集合A={−1,0,1,2},B={−3,0,2,3},则A∩(∁U B)=()A. {−3,3}B. {0,2}C. {−1,1}D. {−3,−2,−1,1,3}2.设a∈R,则“a>1”是“a2>a”的()A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件3.函数y=4x的图象大致为()x2+1A. B.C. D.4.从一批零件中抽取80个,测量其直径(单位:mm),将所得数据分为9组:[5.31,5.33),[5.33,5.35),…,[5.45,5.47),[5.47,5.49],并整理得到如下频率分布直方图,则在被抽取的零件中,直径落在区间[5.43,5.47)内的个数为()A. 10B. 18C. 20D. 365.若棱长为2√3的正方体的顶点都在同一球面上,则该球的表面积为()A. 12πB. 24πC. 36πD. 144π6. 设a =30.7,b =(13)−0.8,c =log 0.70.8,则a ,b ,c 的大小关系为( )A. a <b <cB. b <a <cC. b <c <aD. c <a <b7. 设双曲线C 的方程为x 2a2−y 2b 2=1(a >0,b >0),过抛物线y 2=4x 的焦点和点(0,b)的直线为l.若C 的一条渐近线与l 平行,另一条渐近线与l 垂直,则双曲线C 的方程为( )A.x 24−y 24=1B. x 2−y 24=1C.x 24−y 2=1 D. x 2−y 2=18. 已知函数f(x)=sin(x +π3).给出下列结论:①f(x)的最小正周期为2π; ②f(π2)是f(x)的最大值;③把函数y =sinx 的图象上的所有点向左平移π3个单位长度,可得到函数y =f(x)的图象.其中所有正确结论的序号是( )A. ①B. ①③C. ②③D. ①②③9. 已知函数f(x)={x 3,x ≥0,−x,x <0.若函数g(x)=f(x)−|kx 2−2x|(k ∈R)恰有4个零点,则k 的取值范围是( )A. (−∞,−12)∪(2√2,+∞) B. (−∞,−12)∪(0,2√2) C. (−∞,0)∪(0,2√2)D. (−∞,0)∪(2√2,+∞)二、填空题(本大题共6小题,共30.0分) 10. i 是虚数单位,复数8−i2+i =______.11. 在(x +2x 2)5的展开式中,x 2的系数是______.12. 已知直线x −√3y +8=0和圆x 2+y 2=r 2(r >0)相交于A ,B 两点.若|AB|=6,则r 的值为______. 13. 已知甲、乙两球落入盒子的概率分别为12和13.假定两球是否落入盒子互不影响,则甲、乙两球都落入盒子的概率为______;甲、乙两球至少有一个落入盒子的概率为______.14. 已知a >0,b >0,且ab =1,则12a +12b +8a+b 的最小值为______. 15. 如图,在四边形ABCD 中,∠B =60°,AB =3,BC =6,且AD ⃗⃗⃗⃗⃗⃗ =λBC ⃗⃗⃗⃗⃗ ,AD ⃗⃗⃗⃗⃗⃗ ⋅AB ⃗⃗⃗⃗⃗ =−32,则实数λ的值为______,若M ,N 是线段BC 上的动点,且|MN ⃗⃗⃗⃗⃗⃗⃗ |=1,则DM⃗⃗⃗⃗⃗⃗⃗ ⋅DN⃗⃗⃗⃗⃗⃗ 的最小值为______. 三、解答题(本大题共5小题,共75.0分)16. 在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c.已知a =2√2,b =5,c =√13.(Ⅰ)求角C 的大小; (Ⅱ)求sin A 的值;(Ⅲ)求sin(2A +π4)的值.17. 如图,在三棱柱ABC −A 1B 1C 1中,CC 1⊥平面ABC ,AC ⊥BC ,AC =BC =2,CC 1=3,点D ,E 分别在棱AA 1和棱CC 1上,且AD =1,CE =2,M 为棱A 1B 1的中点. (Ⅰ)求证:C 1M ⊥B 1D ;(Ⅱ)求二面角B −B 1E −D 的正弦值;(Ⅲ)求直线AB 与平面DB 1E 所成角的正弦值.18. 已知椭圆x 2a2+y 2b 2=1(a >b >0)的一个顶点为A(0,−3),右焦点为F ,且|OA|=|OF|,其中O 为原点.(Ⅰ)求椭圆的方程; (Ⅱ)已知点C 满足3OC ⃗⃗⃗⃗⃗ =OF ⃗⃗⃗⃗⃗ ,点B 在椭圆上(B 异于椭圆的顶点),直线AB 与以C 为圆心的圆相切于点P ,且P 为线段AB 的中点.求直线AB 的方程.19. 已知{a n }为等差数列,{b n }为等比数列,a 1=b 1=1,a 5=5(a 4−a 3),b 5=4(b 4−b 3).(Ⅰ)求{a n }和{b n }的通项公式;(Ⅱ)记{a n }的前n 项和为S n ,求证:S n S n+2<S n+12(n ∈N ∗);(Ⅲ)对任意的正整数n ,设c n ={(3a n −2)b na n a n+2,n 为奇数,a n−1bn+1,n 为偶数.求数列{c n }的前2n 项和.20.已知函数f(x)=x3+klnx(k∈R),f′(x)为f(x)的导函数.(Ⅰ)当k=6时,(ⅰ)求曲线y=f(x)在点(1,f(1))处的切线方程;(ⅰ)求函数g(x)=f(x)−f′(x)+9的单调区间和极值;x> (Ⅱ)当k≥−3时,求证:对任意的x1,x2∈[1,+∞),且x1>x2,有f′(x1)+f′(x2)2f(x1)−f(x2).x1−x2答案和解析1.【答案】C【解析】【分析】本题主要考查列举法的定义,以及补集、并集的运算,属于基础题. 进行补集、交集的运算即可. 【解答】解:全集U ={−3,−2,−1,0,1,2,3},集合A ={−1,0,1,2},B ={−3,0,2,3}, 则∁U B ={−2,−1,1}, ∴A ∩(∁U B)={−1,1}, 故选:C . 2.【答案】A【解析】【分析】本题考查了不等式的解法、简易逻辑的判定方法,考查了推理能力与计算能力,属于基础题.解得a 的范围,即可判断出结论. 【解答】解:由a 2>a ,解得a <0或a >1,故a >1”是“a 2>a ”的充分不必要条件, 故选:A . 3.【答案】A【解析】【分析】本题考查了函数图象的识别,属于基础题. 根据函数的奇偶性和函数值的正负即可判断. 【解答】解:函数y =f(x)=4xx 2+1,则f(−x)=−4xx 2+1=−f(x),则函数y =f(x)为奇函数,故排除C ,D , 当x >0是,y =f(x)>0,故排除B , 故选:A . 4.【答案】B【解析】【分析】本题考查了频率分布直方图,属于基础题.根据频率分布直方图求出径径落在区间[5.43,5.47)的频率,再乘以样本的个数即可. 【解答】解:直径径落在区间[5.43,5.47)的频率为(6.25+5)×0.02=0.225,则被抽取的零件中,直径落在区间[5.43,5.47)内的个数为0.225×80=18个, 故选:B . 5.【答案】C【解析】【分析】本题考查球的表面积,考查学生空间想象能力,球的内接体问题,是基础题. 正方体的对角线就是球的直径,求出半径后,即可求出球的表面积. 【解答】解:由题意,正方体的对角线就是球的直径,所以2R=√3×2√3=6,所以R=3,S=4πR2=36π.故选:C.6.【答案】D【解析】【分析】本题考查了指数函数和对数函数的性质,属于基础题.根据指数函数和对数函数的性质即可求出.【解答】解:a=30.7,b=(13)−0.8=30.8,则b>a>1,log0.70.8<log0.70.7=1,∴c<a<b,故选:D.7.【答案】D【解析】【分析】本题考查了双曲线的渐近线方程,抛物线的焦点坐标,直线的平行和垂直,属于中档题.先求出直线l的方程和双曲线的渐近线方程,根据直线平行和垂直即可求出a,b的值,可得双曲线的方程.【解答】解:抛物线y2=4x的焦点坐标为(1,0),则直线l的方程为y=−b(x−1),∵双曲线C的方程为x2a2−y2b2=1(a>0,b>0)的渐近线方程为y=±b ax,∵C的一条渐近线与l平行,另一条渐近线与l垂直,∴−ba =−b,ba⋅(−b)=−1,∴a=1,b=1,∴双曲线C的方程为x2−y2=1,故选:D.8.【答案】B【解析】【分析】本题以命题的真假判断为载体,主要考查了正弦函数的性质的简单应用,属于中档题.由已知结合正弦函数的周期公式可判断①,结合函数最值取得条件可判断②,结合函数图象的平移可判断③.【解答】解:因为f(x)=sin(x+π3),①由周期公式可得,f(x)的最小正周期T=2π,故①正确;、②f(π2)=sin(π2+π3)=sin5π6=12,不是f(x)的最大值,故②错误;③根据函数图象的平移法则可得,函数y=sinx的图象上的所有点向左平移π3个单位长度,可得到函数y=f(x)的图象,故③正确.故选:B.9.【答案】D【解析】【分析】本题考查函数的零点,参数的取值范围,关键利用分类讨论思想,分析函数的交点,属于难题.问题转化为f(x)=|kx2−2x|有四个根,⇒y=f(x)与y=ℎ(x)=|kx2−2x|有四个交点,再分三种情况当k=0时,当k<0时,当k>0时,讨论两个函数四否能有4个交点,进而得出k的取值范围.【解答】解:若函数g(x)=f(x)−|kx2−2x|(k∈R)恰有4个零点,则f(x)=|kx2−2x|有四个根,即y=f(x)与y=ℎ(x)=|kx2−2x|有四个交点,当k=0时,y=f(x)与y=|−2x|=2|x|图象如下:两图象有2个交点,不符合题意,(x2<x1)当k<0时,y=|kx2−2x|与x轴交于两点x1=0,x2=2k图象如图所示,两图象有4个交点,符合题意,当k>0时,(x2>x1)y=|kx2−2x|与x轴交于两点x1=0,x2=2k)内两函数图象有两个交点,所以若有四个交点,在[0,2k只需y=x3与y=kx2−2x在(2k,+∞)还有两个交点,即可,即x3=kx2−2x在(2k,+∞)还有两个根,即k=x+2x 在(2k,+∞)还有两个根,函数y=x+2x≥2√2,(当且仅当x=√2时,取等号),所以0<2k<√2,且k>2√2,所以k>2√2,综上所述,k的取值范围为(−∞,0)∪(2√2,+∞).故选:D.10.【答案】3−2i【解析】【分析】本题考查了复数的运算,属于基础题.根据复数的运算法则即可求出.【解答】解:i是虚数单位,复数8−i2+i =(8−i)(2−i)(2+i)(2−i)=15−10i5=3−2i,故答案为:3−2i11.【答案】10【解析】【分析】本题主要考查二项式定理的应用,二项式展开式的通项公式,求展开式中某项的系数,属于中档题.在(x+2x2)5的展开式的通项公式中,令x的幂指数等于2,求出r的值,即可得到展开式中x2的系数.【解答】解:∵(x+2x2)5的展开式的通项公式为T r+1=C5r x5−r2r x−2r=2r C5r x5−3r,令5−3r =2,得r =1,∴x 2的系数是2×C 51=10, 故答案为10. 12.【答案】5【解析】【分析】本题考查直线与圆相交的性质,涉及弦长的计算,属于基础题. 根据题意,分析圆的圆心,由点到直线的距离公式可得圆心到直线x −√3y +8=0的距离,结合直线与圆相交的性质可得r 2=d 2+(|AB|2)2,计算可得答案. 【解答】解:根据题意,圆x 2+y 2=r 2的圆心为(0,0),半径为r ; 则圆心到直线x −√3y +8=0的距离d =√1+3=4, 若|AB|=6,则有r 2=d 2+(|AB|2)2=16+9=25,故r =5; 故答案为:513.【答案】16 23【解析】【分析】本题考查了互斥事件的概率公式,考查了运算求解能力,属于基础题. 根据互斥事件的概率公式计算即可. 【解答】解:因为甲、乙两球落入盒子的概率分别为12和13, 则甲、乙两球都落入盒子的概率12×13=16,甲、乙两球至少有一个落入盒子的概率为1−(1−12)(1−13)=1−13=23, 故答案为:16,23.14.【答案】4【解析】【分析】本题考查了基本不等式的应用,考查了运算求解能力,属于中档题. 由12a +12b +8a+b =a+b 2ab+8a+b =a+b 2+8a+b ,利用基本不等式即可求出.【解答】解:a >0,b >0,且ab =1, 则12a+12b +8a+b =a+b 2ab+8a+b =a+b 2+8a+b ≥2√a+b 2⋅8a+b =4,当且仅当a+b 2=8a+b ,即a =2+√3,b =2−√3或a =2−√3,b =2+√3 取等号,故答案为:415.【答案】16 132【解析】【分析】本题考查了向量在几何中的应用,考查了向量的共线和向量的数量积,以及二次函数的性质,属于中档题.以B 为原点,以BC 为x 轴建立如图所示的直角坐标系,根据向量的平行和向量的数量积即可求出点D 的坐标,即可求出λ的值,再设出点M ,N 的坐标,根据向量的数量积可得关于x 的二次函数,根据二次函数的性质即可求出最小值. 【解答】解:以B 为原点,以BC 为x 轴建立如图所示的直角坐标系, ∵∠B =60°,AB =3, ∴A(32,3√32), ∵BC =6,∴C(6,0), ∵AD ⃗⃗⃗⃗⃗⃗ =λBC ⃗⃗⃗⃗⃗ , ∴AD//BC , 设D(x 0,3√32), ∴AD ⃗⃗⃗⃗⃗⃗ =(x 0−32,0),AB ⃗⃗⃗⃗⃗ =(−32,−3√32), ∴AD ⃗⃗⃗⃗⃗⃗ ⋅AB ⃗⃗⃗⃗⃗ =−32(x 0−32)+0=−32,解得x 0=52,∴D(52,3√32), ∴AD ⃗⃗⃗⃗⃗⃗ =(1,0),BC ⃗⃗⃗⃗⃗ =(6,0), ∴AD ⃗⃗⃗⃗⃗⃗ =16BC ⃗⃗⃗⃗⃗ ,∴λ=16,∵|MN⃗⃗⃗⃗⃗⃗⃗ |=1, 设M(x,0),则N(x +1,0),其中0≤x ≤5, ∴DM⃗⃗⃗⃗⃗⃗⃗ =(x −52,−3√32),DN ⃗⃗⃗⃗⃗⃗ =(x −32,−3√32), ∴DM ⃗⃗⃗⃗⃗⃗⃗ ⋅DN ⃗⃗⃗⃗⃗⃗ =(x −52)(x −32)+274=x 2−4x +212=(x −2)2+132,当x =2时取得最小值,最小值为132, 故答案为:16,132.16.【答案】解:(Ⅰ)由余弦定理以及a =2√2,b =5,c =√13,则cosC =a 2+b 2−c 22ab=8+25−132×2√2×5=√22, ∵C ∈(0,π), ∴C =π4;(Ⅱ)由正弦定理,以及C =π4,a =2√2,c =√13,可得sinA = asinC c =2√2×√22√13=2√1313;(Ⅲ)由a <c ,及sinA =2√1313,可得cosA =√1−sin 2A =3√1313, 则sin2A =2sinAcosA =2×2√1313×3√1313=1213,∴cos2A =2cos 2A −1=513,∴sin(2A +π4)=√22(sin2A +cos2A)=√22(1213+513)=17√226.【解析】本题考了正余弦定理,同角的三角形函数的关系,二倍角公式,两角和的正弦公式,属于中档题.(Ⅰ)根据余弦定理即可求出C 的大小; (Ⅱ)根据正弦定理即可求出sin A 的值;(Ⅲ)根据同角的三角形函数的关系,二倍角公式,两角和的正弦公式即可求出.17.【答案】解:以C 为原点,CA ⃗⃗⃗⃗⃗ ,CB ⃗⃗⃗⃗⃗ ,CC 1⃗⃗⃗⃗⃗⃗⃗ 的方向为x 轴,y 轴,z 轴的正方向建立空间直角坐标系,如图所示,则C(0,0,0),A(2,0,0),B(0,2,0),C 1(0,0,3),A 1(2,0,3),B 1(0,2,3),D(2,0,1),E(0,0,2),M(1,1,3),(Ⅰ)证明:依题意,C 1M ⃗⃗⃗⃗⃗⃗⃗⃗ =(1,1,0),B 1D ⃗⃗⃗⃗⃗⃗⃗⃗ =(2,−2,−2),∴C 1M ⃗⃗⃗⃗⃗⃗⃗⃗ ⋅B 1D ⃗⃗⃗⃗⃗⃗⃗⃗ =2−2+0=0,∴C 1M ⊥B 1D ;(Ⅱ)依题意,CA⃗⃗⃗⃗⃗ =(2,0,0)是平面BB 1E 的一个法向量, EB 1⃗⃗⃗⃗⃗⃗⃗ =(0,2,1),ED ⃗⃗⃗⃗⃗ =(2,0,−1), 设n⃗ =(x,y ,z)为平面DB 1E 的法向量, 则{n ⃗ ⋅EB 1⃗⃗⃗⃗⃗⃗⃗ =0n ⃗ ⋅ED ⃗⃗⃗⃗⃗ =0,即{2y +z =02x −z =0,不妨设x =1,则n ⃗ =(1,−1,2), ∴cos <CA ⃗⃗⃗⃗⃗ ,n ⃗ >=CN ⃗⃗⃗⃗⃗⃗ ⋅n ⃗⃗|CN ⃗⃗⃗⃗⃗⃗ |⋅|n ⃗⃗ |=√66, ∴sin <CA⃗⃗⃗⃗⃗ ,n ⃗ >=√1−16=√306, ∴二面角B −B 1E −D 的正弦值√306;(Ⅲ)依题意,AB ⃗⃗⃗⃗⃗ =(−2,2,0),由(Ⅱ)知,n⃗ =(1,−1,2)为平面DB 1E 的一个法向量, ∴cos <AB ⃗⃗⃗⃗⃗ ,n ⃗ >=AB ⃗⃗⃗⃗⃗⃗ ⋅n ⃗⃗|AB ⃗⃗⃗⃗⃗⃗ |⋅|n ⃗⃗ |=−√33,∴直线AB 与平面DB 1E 所成角的正弦值为√33.【解析】(Ⅰ)建立空间坐标系,根据向量的数量积等于0,即可证明; (Ⅱ)先平面DB 1E 的法向量n ⃗ ,再根据向量的夹角公式,求出二面角B −B 1E −D 的正弦值;(Ⅱ)求出cos <AB ⃗⃗⃗⃗⃗ ,n⃗ >值,即可求出直线AB 与平面DB 1E 所成角的正弦值. 本题考查了空间向量在几何中的应用,线线平行和二面角和线面角的求法,考查了运算求解能力,转化与化归能力,逻辑推理能力,属于中档题.18.【答案】解:(Ⅰ)由已知可得b =3,记半焦距为c ,由|OF|=|OA|可得c =b =3,由a 2=b 2+c 2,可得a 2=18, ∴椭圆的方程为 x 218+y 29=1,(Ⅱ):∵直线AB 与C 为圆心的圆相切于点P , ∴AB ⊥CP ,根据题意可得直线AB 和直线CP 的斜率均存在,设直线AB 的方程为y =kx −3, 由方程组{y =kx −3x 218+y 29=1,消去y 可得(2k 2+1)x 2−12kx =0,解得x =0,或x =12k2k 2+1,依题意可得点B 的坐标为(12k2k 2+1,6k 2−32k 2+1),∵P 为线段AB 的中点,点A 的坐标为(0,−3), ∴点P 的坐标为(6 k 2k 2+1,−32k 2+1),由3OC⃗⃗⃗⃗⃗ =OF ⃗⃗⃗⃗⃗ ,可得点C 的坐标为(1,0), 故直线CP 的斜率为−32k 2+16k2k 2+1−1=32k 2−6k+1,∵AB ⊥CP , ∴k ⋅32k 2−6k+1=−1, 整理可得2k 2−3k +1=0, 解得k =12或k =1,∴直线AB 的方程为y =12x −3或y =x −3.【解析】(Ⅰ)根据可得c =b =3,由a 2=b 2+c 2,可得a 2=18,即可求出椭圆方程; (Ⅱ)根据题意可得直线AB 和直线CP 的斜率均存在,设直线AB 的方程为y =kx −3,联立方程组,求出点B 的坐标,再根据中点坐标公式可得点P 的坐标,根据向量的知识求出点C 的坐标,即可求出CP 的斜率,根据直线垂直即可求出k 的值,可得直线AB 的方程.本题中考查了椭圆与圆的标准方程及其性质、直线与圆相切问题、中点坐标公式等基础知识与基本技能方法,考查了推理能力和计算能力,属于中档题.19.【答案】解:(Ⅰ)设等差数列{a n }的公差为d ,等比数列{b n }的公比为q , 由a 1=1,a 5=5(a 4−a 3),则1+4d =5d ,可得d =1, ∴a n =1+n −1=n ,∵b 1=1,b 5=4(b 4−b 3), ∴q 4=4(q 3−q 2),解得q =2, ∴b n =2n−1; 证明(Ⅱ)由(Ⅰ)可得S n =n(n+1)2,∴S n S n+2=14n(n +1)(n +2)(n +3),(S n+1)2=14(n +1)2(n +2)2,∴S n S n+2−S n+12=−12(n +1)(n +2)<0,∴S n S n+2<S n+12(n ∈N ∗);解:(Ⅲ),当n 为奇数时,c n =(3a n −2)b n a n a n+2=(3n−2)2n−1n(n+2)=2n+1n+2−2n−1n,当n 为偶数时,c n = a n−1b n+1=n−12n,对任意的正整数n ,有∑c 2k−1n k=1=∑(n k=122k 2k+1−22k−22k−1)=22n 2n+1−1,和∑c 2k n k=1=∑2k−14kn k=1=14+342+543+⋯+2n−14n,①, 由①×14可得14∑c 2k n k=1=142+343+⋯+2n−34 n +2n−14n+1,②,①−②得34∑c 2k n k=1=14+242+243+⋯+24 n −14--2n−14n+1, ∴∑c 2k n k=1=59−6n+59×4n,因此∑c 2k 2n k=1=∑c 2k−1n k=1+∑c 2k n k=1=4n 2n+1−6n+59×4n−49.数列{c n }的前2n 项和4n2n+1−6n+59×4n −49.【解析】(Ⅰ)分别根据等差数列的通项公式和等比数列的通项公式即可求出; (Ⅱ)根据等差数列的求和公式和作差法即可比较大小,则课证明; (Ⅲ)分类讨论,再根据错位相减法即可求出前2n 项和.本题考查了等差数列等比数列的通项公式和求和公式,考查了不等式的大小比较,考查了数列求和的方法,考查了运算求解能力,转化与化归能力,分类与整合能力,属于难题.20.【答案】解:(I)(i)当k =6时,f(x)=x 3+6lnx , 故f′(x)=3x 2+6x ,∴f′(1)=9, ∵f(1)=1,∴曲线y =f(x)在点(1,f(1))处的切线方程为y −1=9(x −1),即9x −y −8=0. (ii)g(x)=f(x)−f′(x)+9x =x 3+6lnx −3x 2+3x ,x >0, ∴g′(x)=3x 2−6x +6x −3x 2=3(x−1)3(x+1)x 2,令g′(x)=0,解得x =1, 当0<x <1,g′(x)<0, 当x >1,g′(x)>0,∴函数g(x)在(0,1)上单调递减,在(1,+∞)上单调递增,x=1是极小值点,极小值为g(1)=1,无极大值证明:(Ⅱ)由f(x)=x3+klnx,则f′(x)=3x2+kx,对任意的x1,x2∈[1,+∞),且x1>x2,令x1x2=t,t>1,则(x1−x2)[f′(x1)+f′(x2)]−2[f(x1)+f(x2)]=(x1−x2)(3x12+kx1+3x22+kx2)−2(x13−x23+kln x1x2),=x13−x23−3x12x2+3x1x22+k(x1x2−x2x1)−2kln x1x2,=x23(t3−3t2+3t−1)+k(t−1t−2lnt),①令ℎ(x)=x−1x−2lnx,x>1,当x>1时,ℎ′(x)=1+1x2−2x=(1−1x)2>0,∴ℎ(x)在(1,+∞)单调递增,∴当t>1,ℎ(t)>ℎ(1)=0,即t−1t−2lnt>0,∵x2≥1,t3−3t2+3t−1=(t−1)3>0,k≥−3,∴x23(t3−3t2+3t−1)+k(t−1t −2lnt)>t3−3t2+3t−1−3(t−1t−2lnt)=t3−3t2+6lnt+3t−1,②,由(Ⅰ)(ii)可知当t≥1时,g(t)>g(1)即t3−3t2+6lnt+3t>1,③,由①②③可得(x1−x2)[f′(x1)+f′(x2)]−2[f(x1)+f(x2)]>0,∴当k≥−3时,对任意的x1,x2∈[1,+∞),且x1>x2,有f′(x1)+f′(x2)2>f(x1)−f(x2)x1−x2.【解析】(Ⅰ)(i)根据导数的几何意义即可求出切线方程;(ii)根据导数和函数单调性极值的关系,即可求出;(Ⅱ)要证不等式成立,只要证明(x1−x2)[f′(x1)+f′(x2)]−2[f(x1)+f(x2)]>0,根据导数和函数最值的关系,以及放缩法即可证明.本题是利用导数研究函数的单调性、求函数的极值的基本题型,不等式的证明,属于难题.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
天津市各地市2020年高考数学最新联考试题分类大汇编(7)平面向
量
一、选择题:
4、(天津市耀华中学2020届高三第二次月考文科)在△ABC 中,点P 在BC 上,且PC BP 2=,点Q 是AC 的中点,若PA =(4,3),PQ =(1,5),BC =( B ).
(A)(-2,7) (B)(-6,21) (c)(2,-7) (D)(6,-21)
7.(天津市五区县2020届高三上学期期末考试文科)已知P 是边长为2的正ABC ∆边BC 上的动点,则()AP AB AC ⋅+ ( C )
A .最大值为8
B .最小值为2
C .是定值6
D .与P 的位置有关
6.(天津市天津一中2020届高三第二次月考理科)已知点P 为△ABC 所在平面上的一点,
且13
AP AB t AC =
+,其中t 为实数,若点P 落在△ABC 的内部,则t 的取值范围是 A .104t << B .103t << w_w_w.k C . 102t << D .203t << 【答案】D
二、填空题:
13、(天津市六校2020届高三第三次联考文科)已知M 是ABC ∆内的一点,且23,30AB AC BAC ⋅=∠=,若,MBC MCA ∆∆和MAB ∆的面积分别为1,,2x y ,则14x y
+的最小值是 18
2(1,2),(3,),()a x p b x f x a b =++==,且()f x 在区间[12-,+∞] 上是增函数,则方程()0f x x m +-=有且只有一解时m 的取值范围是 。
{}|3m m ≥
13.(天津市天津一中2020届高三第三次月考理科)已知△ABC 内接于以O 为圆心,1为半径的圆,且3450OA OB OC ++=,则OC AB ⋅=________ 51-
14.(天津市天津一中2020届高三第三次月考文科)已知ABC ∆内接于以O 为圆心,1为半径的圆,且0543=++OC OB OA ,则AB OC ⋅的值为 .5
1-。