环介导等温扩增技术原理ppt课件
第8章环介导等温扩增

扩增分两个阶段
第1阶段为起始阶段,任何一个引物向双链 DNA的互补部位进行碱基配对延伸时,另 一条链就会解离,变成单链。
扩增分两个阶段
上游内部引物FIP的F2 序列首先与模板F2c结合 (如图B所示),在链置 换型DNA聚合酶的作用下 向前延伸启动链置换合成 。
扩增分两个阶段
外部引物F3与模板F3c结 合并延伸,置换出完整的 FIP连接的互补单链(如图 C所示)。FIP上的F1c与 此单链上的Fl为互补结构 。自我碱基配对形成环状 结构(如图C所示)。
F3引物:上游外部引 物(Forward Outer Primer),由F3区组 成,并与靶基因的 F3c区域互补。
BIP引物:下游内部引物 (Backward Inner Primer ),由B1C和B2区域 组成,B2区与靶基因3’ 端的 B2c区域互补,B1C域与靶 基因5’端的Blc区域序列相同。
B3引物:下游外部引物 (Backward Outer Primer ),由B3区域组成, 和靶基因的B3c区域互补。
2.扩增原理
60—65℃是双链DNA复性及延伸的中间温 度,DNA在65℃左右处于动态平衡状态。 因此,DNA在此温度下合成是可能的。利 用4种特异引物依靠一种高活性链置换DNA 聚合酶。使得链置换DNA合成在不停地自 我循环。
结合。开始链置换合成,解离出的单链核 酸上也会形成环状结构。迅速以3’末端的 B1区段为起点,以自身为模板。进行DNA 合成延伸及链置换.
扩增分两个阶段
第2阶段是扩增循环阶段。 形成长短不一的2条新茎环状结构的DNA,BIP
引物上的B2与其杂交。启动新一轮扩增。且产物 DNA长度增加一倍。在反应体系中添加2条环状 引物LF和LB,它们也分别与茎环状结构结合启动 链置换合成,周而复始。
lamp环介导等温扩增原理

lamp环介导等温扩增原理
LAMP(Loop-mediated isothermal amplification)是一种新型的等温扩增技术,它可以在恒定温度下快速扩增DNA序列,因此被广泛应用于分子生物学和医学领域。
LAMP技术的原理如下:
1.引物设计
LAMP技术需要设计4-6个特异性引物,其中包括两个外部引物(F3和B3),两个内部引物(FIP和BIP)和一个环形引物(loop primer)。
这些引物的设计基于目标DNA序列的特异性,以及引物之间的相互作用,以确保扩增的特异性和高效性。
2.等温扩增
LAMP技术的扩增过程是在恒定温度下进行的,一般为60-65℃。
引物结合到目标DNA序列上后,FIP和BIP引物通过自身的反向和正向扩增,形成一个DNA 环,这个环可以作为模板,引导F3和B3引物的扩增。
同时,环形引物也可以加速扩增速度和提高扩增效率。
3.产物检测
LAMP技术的产物是大量的DNA片段,可以通过凝胶电泳或实时荧光检测来进行检测。
实时荧光检测可以在扩增过程中实时监测DNA量的增加,从而确定扩增的特异性和灵敏度。
总之,LAMP技术是一种快速、特异性和高效的等温扩增技术,可以广泛应用于分子生物学和医学领域,例如病原体检测、基因突变分析和DNA测序等。
环介导等温扩增技术

谢谢欣赏!
采自奶场的125份样品进行了检测。结果表明,LAMP检 测出阳性样品81份, GB/T 4789.10- 2003检测出阳性样品84 份,LAMP阳性检出率为96.43%。
图5 金黄色葡萄球菌LAMP特异性的检测结果
M:DL2000 DNA Marker; 1:金黄色葡萄球菌ATCC25923;2:沙门氏菌 CGMCC 111552; 3:沙门氏菌ATCC13067;4:沙门氏菌HJ- 004; 5: ETEC: 44247 (6∶15∶16) ;6: EPEC: 44706 (111∶58∶- ) ; 7:荧光假单胞菌 CGMCC 111802;8:恶臭假单胞菌CGMCC111819; 9:铜绿假单胞菌 ATCC27853;
散法、免疫学方法、基因芯片法、基因探针法、 测试片法、PCR 法等。
环介导恒温扩增技术( loop -mediated isothermal amp lification, LAMP)是Notomi等2000年发明的一种 新颖的扩增技术,其特点是针对靶基因的6个区域设计4 种特异引物,在DNA聚合酶(B st DNA polymerase)的 作用下,恒温条件下进行核酸扩增,具有操作简单、特异 性强特点。另外通过环引物的添加,大大加快了反应的 速度 。国外报道,LAMP被广泛食品等病原菌的检测中, 如巴西芽生菌、锥虫病 、沙门氏菌 、虾中的白斑综合
测金黄色葡萄球菌特异性强、灵敏度高、时间 短且操作简便,有望成为快速检测金黄色葡萄 球菌的新方法。
简介:金黄色葡萄球菌( S taphy lococcus
aureus)是引起食物中毒的主要致病菌之一,也是 引起奶牛患乳房炎的重要病原菌 ,在自然界中广 泛存在,食品受污染的机会很多。近年来随着抗 生素的大量使用,耐甲氧西林金黄色葡萄球菌
大学课程遗传学实验实验九 环介导 jc课件

8U/µl
dNTPs
2.5mM of each
F3、B3、FIP、BIP
25µM
琼脂糖凝胶
2﹪
10×Thermopol缓冲液
实验步骤
1、提取含有目的片段的质粒作为阳性模板(为了便于提取 目的DNA,我பைடு நூலகம்将靶序列克隆到质粒中)。
2、将各成分按以下次序在0.5ml灭菌离心管内混合:
阳性模板(质粒DNA) 1µl
环介导的等温扩增(Loop–mediated isothermal amplification,LAMP):针对 靶基因的六个区域设计四条特异性引物,利 用链置换DNA聚合酶(Bst DNA Polymerase)在等温条件下高效、快速、 特异地扩增靶序列。
实验目的
1. 掌握LAMP扩增单纯疱疹病毒II型 DNA的 基本原理。
第2阶段是扩增循环阶段。以茎环状结构为模 板,FIP与茎环的F2c区结合。开始链置换合成, 解离出的单链核酸上也会形成环状结构。迅速以3’ 末端的B1区段为起点,以自身为模板。进行DNA 合成延伸及链置换.形成长短不一的2条新茎环状 结构的DNA,BIP引物上的B2与其杂交。启动新 一轮扩增。且产物DNA长度增加一倍。扩增的最 后产物是具有不同个数茎环结构、不同长度DNA 的混合物。且产物DNA为扩增靶序列的交替反向 重复序列。
6、 取15µl DNA扩增产物,在含0.5μg/ml溴 化乙锭的2%琼脂糖凝胶上电泳30 min,电 压5V/cm,紫外灯下观察结果。
思考题
1、与PCR相比,LAMP有哪些优势? 2、LAMP与PCR的电泳条带有什么差别?
乙肝病毒检测
起始阶段
任何一个引物向双链DNA的互补部位进行碱基配对延 伸时,另一条链就会解离,变成单链。上游内部引物FIP 的F2序列首先与模板F2c结合,在链置换型DNA聚合酶的 作用下向前延伸启动链置换合成。外部引物F3与模板F3c 结合并延伸,置换出完整的FIP连接的互补单链。FIP上的 F1c与此单链上的Fl为互补结构。自我碱基配对形成环状 结构。以此链为模板。下游引物BIP与B3先后启动类似于 FIP和F3的合成,形成哑铃状结构的单链。迅速以3’末端 的Fl区段为起点,以自身为模板,进行DNA合成延伸形成 茎环状结构。该结构是LAMP基因扩增循环的起始结构。
环介导等温扩增技术

环介导等温扩增技术
无环介导等温扩增技术,又称无环PCR技术(Loop-less PCR),是一种建立在核酸扩增基础上的空洞检测机制,专门用于精确地发现定位特异性核酸条带。
该技术是由德国Max Planck研究所研究员Gero Steinbacher和其同事于2012年提出的。
无环介导等温扩增(LPCR)技术首先引入Gero Steinbacher提出的标记聚合物链反应(MPCR),并且大大地简化了传统偶联反应扩增的整个过程。
该技术主要通过设计两个特殊的引物,一个引物由正向片段和逆向片段组成,另一个引物只由正向片段组成,双方引物由T4 DNA尾端核酸连接而成,这种新颖的结构就是MPCR技术的核心。
该技术的优点在于:
1、空洞检测的结果更加准确可靠;
2、反应涉及的步骤少,整个扩增过程机械性好,易于操作;
3、可以有效提高检测标记特异性核酸信号强度,准确定位检测到特定碱基;
4、可实现环境友好,加快分析过程。
随着医学和生物技术领域对无环介导等温扩增技术的不断进步,该技术在克隆特异性序列,基因检测,基因组分析,病毒鉴定,抗体反应定量,微生物检测等多个领域得到了广泛的应用。
相比于传统的PCR技术,无环介导等温扩增技术拥有更高的检测效率,更简便的操作过程,并且可以有效实现环境友好。
由于该技术具有上述特点,极大地提高了信息的准确性,广泛应用于各种生命科学相关领域。
环介导等温扩增技术简介

哑铃状模板构造形成的过程
(1)
FIP
(2)
(3)
F3 Primer
(4) (5)
+
解离链
(6) 环状结构
BIP
(7)
(8)
+
解离链
环状结构
B3 Primer
环状结构
循环扩增阶段和延伸循环阶段
环介导等温扩增反应的体系
环介导等温扩增法所需的试剂
DNA扩增
RNA扩增
模板DNA 引物
FIP F3 BIP B3 链置换型DNA聚合酶
dNTPs 反应缓冲液
模板DNA
引物 FIP F3 BIP B3
链置换型DNA聚合酶 逆转录酶 dNTPs 反应缓冲液
PS:当模板是RNA时,仅需加入逆转录酶即可与DNA一样进行扩增。
环介导等温扩增有哪些优点?
优点
不需要使双链DNA先变性成单链,省时。 扩增反应在等温下可持续进行。 扩增的效率极高。 针对6个区段使用4种引物,拥有高度的特异性。 不需要PCR仪器,仅仅使用一种链置换型DNA聚合酶,成本 低廉。 扩增产物是在同一条DNA链上互补序列周而复始形成大小不 一的片段,检测方法简单。
环介导等温扩增的特征是针对目标DNA链上的6个区段设 计4个不同的引物然后再利用链置换型DNA合成酶在一定温度 下进行反应。反应只需要把基因模板、引物、链置换型DNA合 成酶、基质等共同置于一定温度下(60-65℃),经一个步骤 即可完成。其扩增效率极高,可在15~60min内实现109~1010 倍的扩增。而且由于有着高度的特异性,只需很据扩增产物的 有无即可对靶基因序列的存在与否做出判断。
环介导等温扩增技术

1.LAMP法检测结果:应用实时荧光定量方法 检测,测定出的痰标本中细菌浓度分别以1×103拷 贝/ml和1×105拷贝/ml为界值,计算每个界值范 围内阳性结果的例数,具体数据见表1。
中社区获得性肺炎174例,慢性阻塞性肺疾病急性
加重60例,支气管扩张伴感染43例,慢性支气管炎
急性发作8例,医院获得性肺炎4例。人选患者均
测出病原菌185株,其中细菌144株,非典型病原菌 41株;革兰阴性杆菌122株,革兰阳性球菌22株。 革兰阴性杆菌中致病菌依次为铜绿假单胞菌40株 (21.6%),流感嗜血杆菌34株(18.4%),肺炎克雷 伯菌20株(10.8%),嗜麦芽窄食单胞菌12株 (6.5%),鲍曼不动杆菌11株(5.9%),大肠埃希菌 5株(2.7%)。非典型病原菌中肺炎支原体39株
were
compared.Results
The culture
a
method in the 289 patients showed that 44(15.2%)were positive.Tests by the bacteria concentration>1×103 eopies/ml as cutoff value.showed positive results
痰标本中的细菌浓度(拷贝/m1)=模板浓度
(拷贝/斗1)×100/0.6。以细菌浓度>1×103拷贝/ m1判定为阳性结果p o。 4.统计学处理:结果数据均采用SPSS 17.0统 计软件分析。配对的计数资料之间两两比较采用
McNemar
amplification,LAMP)技术,以其
特异度强、敏感度高、快速准确和操作简单、技术水 平要求相对较低及所需试验器材简单等优点被广泛 应用于生物学的各个领域,可被推广用于感染性疾
LAMP

LAMP(环介导等温扩增)技术2011-07-28 11:46 来源:北京蓝谱点击次数:1341 关键词:LAMP PCR技术环介导等温扩增分享到:收藏夹腾讯微博新浪微博开心网PCR方法在人类及动植物疾病基因诊断、食品分析和环境监测等领域发挥着举足轻重的作用,其灵敏度高、特异性好,是目前最精准的基因诊断方法。
然而PCR方法操作起来较复杂,对仪器和人员要求比较高,不适合基层或现场快速诊断,因此在国内的推广速度并不是很快。
2000年日本学者Notomi在Nucleic Acids Res杂志上公开了一种新的基因诊断技术,即LAMP (L oop-mediated isothermal amplification),中文名为“环介导等温扩增反应”,受到了世卫组织WHO、各国学者和相关政府部门的关注,短短几年,该技术已成功地应用于SARS、禽流感、HIV等疾病的检测中,在这次甲型H1N1流感事件中,日本荣研化学公司接受WHO的邀请进行H1N1 LAMP试剂盒的研制。
通过荣研公司近十年的推广,LAMP技术已广泛应用于日本国内各种病毒、细菌、寄生虫等引起的疾病检测、食品化妆品安全检查及进出口快速诊断中,并得到了欧美国家的认同。
LAMP方法的优势除了高特异性、高灵敏度外,操作十分简单,对仪器设备要求低,一台水浴锅或恒温箱就能实现反应,结果的检测也很简单,不需要像PCR那样进行凝胶电泳,LAMP反应的结果通过肉眼观察白色浑浊或绿色荧光的生成来判断,简便快捷,适合基层快速诊断。
可以预见,在未来的基因诊断领域,LAMP方法将占据大壁江山。
目前,在万方数据库搜索LAMP文章500多篇。
详见:/paper.asp x?q=loop-mediated+isothermal+amplification&o=sortby+CitedCount+CoreRank+date+relevanc e%2fweight%3d5&f=top&n=10&p=11. 优缺点介绍:LAMP方法优点:灵敏度高(比传统的PCR方法高2~5个数量级);反应时间短(30~60min就能完成反应);临床使用不需要特殊的仪器(试剂盒研发阶段推荐用实时浑浊仪);操作简单(不论是DNA还是RNA,检测步骤都是需将反应液、酶和模板混合于PCR管中,置于水浴锅或恒温箱中63℃左右保温30~60min,肉眼观察结果)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3
特异性高 分析速度快 成本低 突变率低 不需要升温降温过程,一台的加热器即可操作 检测核酸成分比检测微生物本身危险性小 方便诊断
4
环介导核酸等温扩增技术(LAMP) 滚环扩增技术 RCA 单引物等温扩增 SPIA 依赖解旋酶的等温扩增技术 HAD 链替代扩增 SDA 交叉引物扩增技术 CPA 核酸依赖性扩增检测技术 NASBA Qβ复制酶反应
形 成
基 础 结 构
14
LAMP
15
16
Effect of reaction time on the LAMP nes1,D NA marker(DL2000) with2000,1000,750 ,500,250 and 100bP:lanes2一 5,LAMP amPlification Produets for 15 min,30min,45min,6 0min,respectively:l ane6,without DNA template in the reaction.
LAMP技术以其特异性强、灵敏度高、快速、 准确和操作简便等优点在核酸的科学研究、疾 病的诊断和转基因食品检测等领域得到了日益 广泛的应用。
8
60—65℃是双链DNA复性及延伸的中间温度, DNA在65℃左右处于动态平衡状态。利用引物 合成的DNA链取代模板互补链。
①扩增目的片段时依赖的是一种具有链置换特 性的Bst DNA聚合酶
②需四条能够识别靶序列六个特异区域的引物 ③LAMP法并不需要对双链DNA进行预变性及
进行温度循环。
9
针对靶基因的六个不同的区域,基于靶基因3’ 端的F3c、F2c 和Flc区以及5’ 端的Bl、B2和B3区等6个不同的位点设计4种 引物。
LAMP反应的开始阶段四条引物都被使用,但在循环阶段则 只有内引物被使用。
乔岩梅. 炭疽芽孢杆菌特征基因恒温扩增检测方法的研究[D]. 中国科学院研究生院(武汉病毒研究所) 2007
17
反应结束后对扩增产物的检测常使用焦磷酸酶沉淀检测 (浊度检测)、荧光检测、凝胶电泳检测等。
焦磷酸酶沉淀的检测(浊度检测):在LAMP反应过程中, dNTP析出的焦磷酸根离子与反应溶液中的Mg2+结合,产 生副产物焦磷酸酶白色沉淀,研究者发现LAMP反应中焦 磷酸镁沉淀的形成与所产生的DNA量之间的关系,发现两 者生成量之间呈线性关系,并且焦磷酸镁沉淀在400 nm处 有吸收峰,从而进行LAMP的定量检测。
5
温度 ℃ 引物
模板
NASBA 42
需要2条 RNA
SPIA 42
1条
RNA
HDA
37/65 需要2条 DNA
SDA LAMP RCA Qβ
37/65 63 37-65 37
不需要 4RNA酶 H,T7RNA聚合酶 反转录酶,T7RNA 聚合酶 解旋酶,扩增片段 小
DNA聚合酶
6
LAMP克服了传统PCR反应需要通过反复热变性获得单链模 板的缺点,避免了反复升降温的过程,实现了恒温条件下的 连续快速扩增,具有更高的灵敏度和扩增效率。
操作简单:只需一个水浴锅
快速高效:不需要预先的双链DNA热变性.避免了温度循环 而造成 的时间损失
特异性强:针对靶序列6个区域设计的4种特异性引物。6个区 域中任何区域与引物不匹配均不能进行核酸扩增。故其特异 性极高。
B3引物:下游外部引物(Backward Outer Primer ),由B3区 域组成,和靶基因的B3c区域互补。
10
LAMP反应引物与对应模板区域
11
内引物FIP的F2与其模板的互补序列F2c结合,在Bst DNA聚合酶作用下,从F2的3’末端开始启动DNA合成, 合成一条以FIP为新的DNA单链并与模板链结合形成新 的双链DNA。
高灵敏度,对于病毒扩增模板可达几个拷贝,比PCR高出数 量级的差异。
缺点:由于LAMP扩增是链置换合成,靶序列长度最好在 300 bp以内。>500 bp则较难扩增。故不能进行长链DNA的 扩增。灵敏度高易造成假阳性结果。
7
环介导等温扩增(Loop-mediated isothermal amplification ,简称LAMP)是利用4个特殊设计 的引物和具有链置换活性的Bst DNA聚合酶,在 恒温条件下特异、高效、快速地扩增DNA的新 技术。
环介导等温扩增技术原理
烟雨莫问
1
等温扩增技术简介 等温扩增技术的应用前景 几种等温扩增技术比较 环介导的等温扩增技术原理 环介导的等温扩增演示 环介导的等温扩增检测
2
等温扩增技术(Isothermal Amplification Technology)是核酸体外扩增技术,其反应过程 始终维持在恒定的温度下,通过添加不同活性 的酶和各自特异性引物(或不加)来达到快速 核酸扩增的目的。
12
以F3为起始合成的新链与模板链形成双链。而原合成的以FIP 为起始的DNA单链被置换而脱离产生一单链DNA,其在5’末端 F1c和F1区发生自我碱基配对,形成茎环状结构。
13
引物BIP的B2与模板链B2c区互补配对,合成以BIP为起始的新链, 并与模板链互补形成DNA双链。同时,F端的环状结构将被打开, 外引物B3与模板上B3c杂交后,以其3’末端为起点也开始合成新链, 并使以BIP为起始的DNA单链从模板链上脱离下来,形成以FIP和 BIP为两端的单链。因为B1C与B1互补,F1C与F1互补,两端自然 发生碱基配对,这条游离于液体中的DNA单链分别在F和B末端形成 两个茎环状结构,于是整条链呈现哑铃状结构,此结构即为LAMP 的基础结构。
FIP(Forward Inner Primer):上游内部引物,由F2区和F1C 区域组成,F2区与靶基因3’端的F2c区域互补,F1C区与靶基 因5’端的Flc区域序列相同。
F3引物:上游外部引物(Forward Outer Primer),由F3区组成, 并与靶基因的F3c区域互补。
BIP引物:下游内部引物(Backward Inner Primer ),由B1C和 B2区域组成,B2区与靶基因3’端的B2c区域互补,B1C域与 靶基因5’端的Blc区域序列相同。