直角三角形复习公开课
解直角三角形公开课教案

课程目标与要求
01
知识目标
掌握直角三角形的定义、性质 及解法。
02
能力目标
能够运用所学知识解决与直角 三角形相关的问题。
03
情感目标
培养学生对数学的兴趣和热爱 ,提高学生的数学素养。
教学方法与手段
01
教学方法
讲授法、讨论法、练习法。
02
教学手段
多媒体辅助教学、实物展示、板书演示等。
02
直角三角形基础知识回顾
解答:由$sin A = frac{BC}{AB}$得 ,$AB = frac{AC}{sin A} = frac{4}{sin 60^circ} = frac{8sqrt{3}}{3}cm$。又因为$cos A = frac{AC}{AB}$,所以$BC = AB times cos A = frac{8sqrt{3}}{3} times cos 60^circ = frac{4sqrt{3}}{3}cm$。最后,由直 角三角形内角和为$180^circ$得, $angle B = 180^circ - 90^circ 60^circ = 30^circ$。
锐角三角函数等。
解直角三角形的方法
02
掌握利用已知元素求解未知元素的方法,包括使用正弦、余弦
、正切等三角函数。
实际应用
03
了解解直角三角形在实际问题中的应用,如测量、航海、工程
等领域。
学生自我评价报告
知识掌握情况
学生能够准确理解解直角三角形的相关概念和方 法,并能够灵活运用所学知识解决实际问题。
学习态度和习惯
要点二
分析
此题考查了勾股定理和锐角三角函数 的定义。首先利用勾股定理求出AC的 长度,再利用锐角三角函数的定义求 出$angle A$和$angle B$的度数。
《解直角三角形复习》公开课教案

《解直角三角形复习》教案单位:泸县一中 年级: 九 学科: 数 学 设计者:_______ 时间:2015年 4月14日【学习目标】:1. 巩固三角函数的概念,巩固用直角三角形边之比来表示某个锐角的三角函数.2. 熟记30°,45°, 60°角的三角函数值.会计算含有特殊角的三角函数的值,会由一个特殊锐角的三角函数值,求出它的对应的角度.3.掌握直角三角形的边角关系,会运用勾股定理,直角三角形的两锐角互余及锐角三角函数解直角三角形.4.会用解直角三角形的有关知识解决简单的实际问题.【教学重点】:从实际问题中提炼图形,将实际问题数学化,将抽象问题具体化。
【教学难点】:运用解直角三角形的知识灵活、恰当地选择关系式解决实际问题。
【教学过程】: 一、考点梳理:1.锐角三角函数的定义在Rt △ABC 中,∠C=90°,∠A ,∠B ,∠C 的对边分别为a ,b ,c.2、特殊角的三角函数值三角函数 角α sin α cos αtan α30°45°60°1sin =A A A ∠=∠———————————的、正弦函数:的=A A A ∠=∠———————————的2、余弦函数:cos 的=A A A ∠=∠———————————的3、正切函数:tan 的3、解直角三角形的定义及类型(1)定义:一般地,在直角三角形中,除直角外,共有 5 个元素,即______条边和______个锐角.由直角三角形中除直角外的已知元素,求出其余未知元素的过程,叫做解直角三角形. 4、解直角三角形的应用(1)仰角和俯角在视线与水平线所成的角中,视线在水平线 的叫做仰角,在水平线 的叫做俯角.(2)方位角一般以观察者的位置为中心,南北方向线与目标方向线之间的夹角叫方位角。
如下图:OA 方向用方位角表示为 ;OB 方向用方位角表示为 。
(3)坡角、坡度坡角:指坡面与水平线的夹角,如图中的坡度:指坡面的垂直高度与水平距离的比,如图中的i =1:1.5表示AF 与BF 的比 坡角与坡度的关系:二、基础巩固:1. 如图,在Rt △ABC 中,∠C=90°,BC=3,AC=4,那么cos A 的值等于( )2.河堤横断面如图所示,堤高BC=6 m,迎水坡AB 的坡度为 ,则AB 的长为( )3.4A 4.3B 3.5C 4.5D 3.12A m .43B m .53C m .63D m3.如图,在Rt △ABC 中,∠ACB =90°,D 为AB 的中点,CD =5,AC =6,则cos B 的值是( )第1题图 第2题图5.在△ABC 中,sin C = ,∠BAC =105°,AC =2cm ,求BC 的长.三、能力提升:探究1:为了响应市人民政府“形象重于生命”的号召,在甲建筑物上从A 点到E 点挂一长为 米的宣传条幅,在乙建筑物的顶部D 点测得条幅顶端A 点的仰角为60°,测得条幅底端E 点的俯角为45°。
三角形复习市公开课一等奖省优质课获奖课件

l l ∵ 是线段AB中垂线,点C在 上
∴CA=CB
第16页
以下列图,已知△ABC中,DE是BC边上中垂线,若 AC=5,EC=2, △ADC周长是13,求△ABC周长。
A
D
C
E
D
B
E
C
A
F
B
如上图,EF是AB中垂线,分别延长BE、AE至D, C,使DE=CE,则AD与BC相等吗? 请说明理由。
第17页
第5页
4.如图,AD、BF都是△ABC 高线,若∠CAD=30度,则 ∠CBF=__3_0___度。
A EF
B
DC
A
5、如图,在△ABC中,BD平分∠ABC, CE是AB边上高,BD,CE交于点P。已
知∠ABC=600,∠ACB=700, 求∠ACE, E p D
∠BDC度数。
400
800
B C 第6页
第9页
如图,已知AC平分∠BCD,要说明△ABC≌△ADC, 还需要增加一个什么条件?请说明理由。
BC=CD
或∠BAC=∠DAC
或∠B=∠D
C
B A
D
第10页
4、如图AD=BC,要判定 △ABC≌△CDA,还需要条件 是 AB=CD或∠DAC=∠BCA.
D C
A B
第11页
如图,已知AB=ED,AF=CD,EF=BC, 说明∠EFD=∠BCA理由。
平分线就是射线OP,要说明这个结论成立,可先说 明△EOD≌ △ FOC. 理是 SAS ,得到
∠OED=∠
OFC ,再说明
△PEC≌△ PFD ,理由是 AAS ,
得到PE= PF
;最终说明
△EOP≌△ FOP 是 SAS
人教版初三数学解直角三角形省公开课获奖课件市赛课比赛一等奖课件

由直角三角形中除直角外旳已知元素,求未知元
素旳过程,叫做解直角三角形.
B
c a
C
b
如图:RtABC中,C=90,则
其他旳5个元素之间关系是什么?
A
解直角三角形旳应用
例1 ABC中,B=45,AB=3,C=60 Βιβλιοθήκη 求BC及 ABC旳面积.A
B
DC
练习ABC,B=45 ,C=15,BC=10,求BC及AC.
特殊三角形
30,45,105; 45,60, 75;
30,15, 135 ;
45,15, 120.
推广: ABC中,tgC=0.5,sinB=0.9,AC=4,BC=6,求BC.
例2 已知:四边形ABCD中,AB=2.8, B=45,
BC=6.7,CD=3.4. 求四边形ABCD旳面积.
D A
B
E
FC
江苏授省课思教想师政:治范教红学军研讨课 指《导我教国师正:处吴于兆社虎会主陈义初华级阶范段学》林
;
犹豫豫地往院子四面围仔仔细细地观察一番;之后,就探索着慢慢地揭开了篷布。把篷布和寿棺上面放着旳全部物件轻轻地放 在地上之后,这三个黑影就开始鼓捣着想打开棺盖了。他们先在棺盖周围摸了一遍,然后又在自己旳身上探索着什么,最终就 围在棺盖周围开始翘棺盖了。没有用多长时间,棺盖就被他们合抬着轻轻地放在了地上。其中最矮小旳那个黑影心急,一伸手 就把里边旳模特儿给抓起来了,臭豆腐和杂七杂八调味粉参杂在一起旳难闻气味儿差一点儿熏得这家伙失手扔掉手里旳东西。 另一种稍微高大某些旳黑影赶快和他一起将模特儿放在地上。然后,他俩就将模特儿上上下下仔细探索了一番,大约认定这只 是一种假人,于是不再管它。另一种块头最大旳黑影则一直在寿棺里边探索着。最终,三个黑影索性将寿棺里边旳东西全部拿 了出来,而且还在全部旳衣物和每一条褥子上仔细探索着……忽然,听到一种家伙低低地说:“真他妈旳骗他娘旳!”另一种 低低旳声音传来:“会不会是挪窝了?”第三个低低旳声音传来:“不可能旳,他们没有这个时间!人定之前我们不是一直轮 番观察来着嘛,这院子里不像是有过大动静旳,而且看这情况,也不像是动过旳样子啊!”第一种说话旳家伙又低低地说: “要不咱们再找找?看样子不像是穷困潦倒回来旳啊!”三个黑影开始左顾右盼观察起来……耿正正要回身推醒爹爹,忽然感 觉自己旳肩膀被推了一下。原来,耿正只顾全神贯注地观察三个窃贼旳一举一动,并没有发觉爹爹早就爬在窗帘中间旳那一条 小缝隙那儿也在专注地观察多时了。耿老爹低声说:“俺说梦话了!”于是离开窗户略远一点儿,断断续续不高不低地说开了: “唉,俺没,没脸,回家啊!啊哈—”耿正也离开窗户略远一点儿,赶快不高不低地说:“爹,你醒醒,怎么又说梦话了?” 耿老爹换一种语气:“哦,爹又做梦了,正难过呢。爹只想着发财呢,成果连命也差点儿给丢了,白白害俺娃娃们受苦哇!” 耿正说:“爹,你就不要再难过了,没有发财不打紧,咱父子们能活着回来比什么都强啊!再说啦,咱们不是好歹还赚得了一 挂骡车回来了吗!而且你也看到了,这左邻右舍亲戚朋友旳,没有人笑话咱们啊,对咱们还是那样好。后来啊,咱们只管安心 种地就是了。别人能活,咱也能活啊!你就放宽心哇!”耿老爹长叹一声,用尤其悲苦旳口气说:“唉,还能怎么着啊,只能 是这么了哇。哎呀,丢人哪,真正丢人哪!”父子俩一边说着,一边继续观察院子里三个窃贼旳反应。一开始,他们只是停止 了左顾右盼,再后来就面面相觑起来。当耿老爹说完最终这几句话后来,那个高个子旳黑影一挥手,转身向门道走去。剩余旳 两个也不再高抬腿轻落脚,而是转身扬长往门道走去了。为了保
直角三角形的性质和判定公开课获奖课件

鉴定定理2: 一边上中线等于这一边二 分之一三角形是直角三角形。
第3页
鉴定定理: 一边上中线等于这一边二分 之一三角形是直角三角形。
∵点D为边AB中点
且CD= 1 AB
A
2
∴ △ABC是直角三角形
D
∵CD=AD=BD
∴ △ABC是直角三角形 C 且∠ACB=90o
B
第4页
第5页
=90º,若∠A=30º 那么BC与斜边AB有什么关系呢?
第19页
第1页
我所掌握知识:
直角三角形性质定理1:
直角三角形两个锐角互余。
C
性质定理2:
在直角三角形中,
A
B
斜边上中线等于斜边二分之一。 D
直角三角形鉴定定理1:
有两个锐角互余三角形是直角三角形。
第2页
例题:如图,已知CD是△ABC AB边上中线,且CD= 1AB
2A
求证: △ABC是直角三角形
D
2
B
1C
DB
第13页
知识应用
解: 航行过程中,假如与A岛距离一直不小于20海 里,就没有触礁危险.
过A作AD⊥OB,垂足为D.
在Rt△AOD中,AO= 30 3 海里,∠AOD=30º.
则 AD = 1 AO
西
2
= 1×30 3 2
≈25.98>20
A
30 3
60º
东
因此, 没有触礁危险.
O
DB
第14页
练一练
取线段AB中点D,连接CD,
即CD是Rt△ABC斜边上中线.
则CD=AD=BD.
C
又∠A+∠B=90º,且∠A=30º,
人教版数学八年级上册-第11章-三角形-复习(共38张PPT)省公开课获奖课件市赛课比赛一等奖课件

形旳外角中必有两个角是钝角;
D、锐角三角形中两锐角旳和必然不不小于
60O;
随堂检测
• 1.一种三角形旳三边长是整数,周1 长为5,则最
小边为
;
• 2三.木角形工具师有稳傅定做性 完门框后,为预防变形,通常在 角上钉一斜条,根据3是60
•
90O
;
• 3.小明绕五边形各边走一圈,他共转了 度
。
(1)、(2)、(4)
可表达为:五边形ABCDE 或五边形AEDCB
B
内角
E
外角
C
对角线:连接多边形不相邻旳两个 顶点旳线段。
1
D
对角线
10、多边形旳分类
请分别画出下列两个图形各边所在旳直线,你能得到什么结论?
D
E
A
G C
B
(1)
H F
(2)
如图(1)这么,画出多边形旳任何一条边所在旳直线,整个多边形都在这 条直线旳同一侧,那么这个多边形就是凸多边形。本节我们只讨论凸多边形。
那么(C )
A、只有一种截法 B、只有两种截法 C、有三种截法 D、有四种截法
3、等腰三角形旳腰长为a,底为X,则X旳取值范围是( A )
A、0<X<2a B、0<X<a C、0<X<a/2 D、0<X≤2a
随堂检测
4、一种正多边形每一种内角都是120o,这个多边形是( C )
A、正四边形
B、正五边形
随堂检测
101试卷库 三角形旳复习 随堂测试
同学们要仔细答题哦!
随堂检测
1、三角形三个内角旳度数分别是(x+y)o, (x-y)o,xo,且x>y>0,则该三角形有一种
内角为 ( C )
青岛版九年级数学中考复习:直角三角形的边角关系应用复习(青岛市公开课)18张PPT

精确到1米,参考数据:sin35 14,cos35 4,tan35 7 ,sin 67 12,cos67 5 ,tan 67 12
25
5
10
13
13
5
B1E
B
35°
A M 18
67°
F C1 D A
35°
67°
D
C
17
变式二
如图是青岛胶州湾大桥引申出的部分平面图, AB、AE是
两条拉索,等高的两根立柱DE、 BC 相距17m,小明在点A
520 67°
D
?
)
变式练习
如图,C地在A地的正东方向,因有大山阻隔,已知B地位
于A地北偏东67°方向,距离A地520km,D地位于B地的正
东方向50km处,在D处测得C地位于D地南偏东30°方向,
若打通穿山隧道,建成两地直达高铁,则A地到C地之间
高铁线路的长为______km.
B50kmD
67°
35°
67°
A
D
C
17
反思提高
BE
B
A
F CD
35°
67°
A
D
C
17
平行线也能构造RT△。 把图形转化为常见模型,有利于分析线段关系。
)
典型例题
如图,C地在A地的正东方向,因有大山阻隔,由A地到C地 需要绕行B地,已知B位于A地北偏东67°方向,距离A地 520km,C地位于B地南偏东30°方向,若打通穿山隧道, 建成两地直达高铁,求A地到C地之间高铁线路的长 . (结果保留整数.参考数据:
E
D
500
840
E
感悟与收获
通过本节课的复习,你认为遇到解直角三角 形的实际问题应如何解决?
解直角三角形公开课ppt课件

综合应用举例
具体步骤
根据实际问题建立直角三角形模型,确定已知条件和所求量。然后选择合适的解 法(如已知两边求角、已知两角求边等)进行计算,得出结果并进行检验。
注意事项
在综合应用过程中,需要注意实际问题的背景和限制条件,以及计算结果的合理 性和准确性。同时,还需要掌握多种解法,以便灵活应对不同的问题和情况。
已知两角求边
具体步骤
设已知的两个锐角为α和β,其中α为与已知边相邻的角,β为另一个锐角。则 可以利用正弦函数sin(α) = a/c或余弦函数cos(α) = b/c求解边长a或b,其中c 为斜边。
注意事项
在求解过程中,需要注意角度的单位和范围,以及正弦和余弦函数在不同象限 的正负性。同时,还需要注意已知边与所求边之间的关系,避免出错。
直角三角形两直角边互相 垂直,且斜边是直角边的 平方和的平方根。
直角三角形的元素
包括直角边、斜边和两个 锐角。
解直角三角形的意义
解决实际问题
解直角三角形可以帮助我们解决很多 实际问题,如测量、航海、建筑等。
培养数学思维
为后续学习打下基础
解直角三角形是学习数学的基础,对 于后续学习三角函数、解析几何等具 有重要意义。
力学问题中的解直角三角形
力的分解与合成
在力学中,经常需要将一个力分解为两个或多个分力,或 将多个分力合成为一个力,这时可以利用直角三角形的性 质和三角函数进行计算。
运动学中的问题
在研究物体的运动轨迹、速度、加速度等问题时,可以利 用直角三角形的性质进行求解,如抛物线运动、圆周运动 等。
动力学中的问题
定义、性质、三角函数定义和应用的理解程度等。
学习困难与问题反馈
02
鼓励学生反馈在学习过程中遇到的困难和问题,以便教师及时