静电场的边界条件
静电场的边界条件

∴ n (D1 D2 ) s 或 D1n- D2n = s Normal
完纯介质分界面上,s= 0,则
n D1 n D2
或
D1n= D2n
二.不同介质分界面上切线方向的边界条件
n E1t E1
1 l
1
h
2 E2 2
c
E2t
Tangential
E
c
dl
E1
l
E2
l
0
l = s n l
在界面上,矢量场基本方程的微分形式不再适用
但积分形式仍然成立 SD dS q cE dl 0
边界条件: 两种介质分界面上,矢量场所满足的关系。
一.不同介质分界面上法线方向的边界条件
SD dS q
D S
பைடு நூலகம்
dS
D1
nS
D2
nS
sS
s 自由电荷面密度
D1n n D1
1 S
1
2
h
D2
2
D2n
n E,D
当分界面为导体与电介质的交界面时,由
于导体内电场和电位移矢量均为零,所以
D2 = E2 = 0
分界面上的衔接条件变为:
n D s
Dn s
Φ n
s
nE 0
Et 0
Φ c
结论:
(1)导体表面是一等位面;电力线与导体表面垂直,电场强度
只能垂直与导体表面;
(2)导体表面上任一点的D 就等于该点的自由电荷面密度 s。
E1 ( s n ) l = E2 ( s n ) l
s (n E1) = s (n E2)
回路 c 任意,所围s 也任意
n l s
∴ n E1 = n E2
第2章 静电场(6) 分界面上的边界条件(P20)

电后断开电源,然后在板间放入一块均匀介质板,
r=9。设介质的厚度比d略小一点,留下一小的空 气隙。求放入介质板前后平行板间的电场强度。
解:放入介质板前,平行板间的电场为均匀电场:
E0
d
U d
方向:从正极板指向负极板。
20
下极板与空气的分界面上:
D1n D2 n
d 1
D1 E1
sin 1 sin 2 D2 2 E2 2500 sin 20 sin 8
12
E2 E1
6144(V / m)
8.854 10
6144 5.44 10 (C / m )
2
ห้องสมุดไป่ตู้
8
24
思考题
介电常数为的无限大均匀各向同性、 线性介质中的电场强度为 E , 如果在介质中沿电场方向挖一窄缝, 则缝中电场强度的大小为( 垂直
(导体内场强为0)
E
D
D2
r 0
D0 9 0
0 U
9 0 d
U 9d
22
此即放入介质后平行板间的电场强度, 方向:从正极板指向负极板。
例2-13 P71
在聚苯乙烯( =2.60 )与空气的分界面两边,聚苯 乙烯中的电场强度E1=2500V/m,电场方向与分界面 法线的夹角是1=20°。 求:(1) 空气中电场方向与分界面法线的夹角2 ; (2) 空气中的电场强度E2和电位移D2 。
2 75.1
cos1 cos 2
由边界条件 D1 cos 1 D2 cos 2 可知
D2 D1 1 E1
2.6静电场的边界条件

D2n
用矢量表示 作的圆柱形表面。
将电场基本方程 D d S Q 用于所
s
n D1 D2 s
小圆 量柱 ,侧 该面 面积 积, 趋 于为 零无 穷 h
s为分界面上的自由电荷面密度
因为: D E
1E1n 2 E2n S
假设导体下标为2,介质下标为1。 导体内部有
E2 0,
D2 0
则在导体与电介质分界面上:
D1n D2n s
E1t E2t
D1n s
变为
E1t 0
2
2 1 1 S n S n S
1
1 S n S
1 2
1 2
2
E1
b
所以
tg1 E1t E2 n E2 n tg 2 E1n E2t E1n
E2 n D2 n
2 d
c
又由
2
E1n
D1n
E2t
1
D1n D2n ( s 0)
故
tg1 1 tg 2 2
可见,电场在分界面处发生了折射。
二、导体与电介质分界面上的边界条件
因为分界面上无电荷,故有边界条件 D1n D2n 60 0 所以 D1 0 (50i 60 j )
1
D1 E1 10i 12 j
【例2】 同心球电容器的内导体半径为a,外导体的内半径为b,
其间填充两种介质,上半部分的介电常数为 1 ,下半部分的介电 常数为 2 ,如图,设内外导体带电分别为q和-q。求各部分的电位 移矢量和电场强度。
当分界面上无自由电荷时
[理学]静电场边界条件证明
![[理学]静电场边界条件证明](https://img.taocdn.com/s3/m/def2f6fa112de2bd960590c69ec3d5bbfd0ada8f.png)
采用基本方程的积分形式。
、分解为与分界面垂直和平行的两个分量:
2.请考虑一下,下面的证明应该采用哪个定律或方程:
电场的环流方程高斯通量定律
在分界面上取一小的矩形闭合路径,两个边
与分界面平行并分居于分界面
的两侧,高h为无限小量(如下图所示)。
对于此矩形回路,电场强度变量在此回路上的环量为零,可写作
是取矩形回路的边构成的矢量,其方向与介质1中绕行回路的方向一
取回路包围的矩形面积的法向单位矢量为,则有
,代入
得
或改写成
图1.6.2 边界条件的证明2
因回路是任取的,对于不同的取向上式总成立,表明有
,
即
或写成
所以,在不同的介质分界面上的电场强度变量的切向分量应该是连续的。
电
场强度的切向分量连续的边界条件用电位函数表示时,可得到
表明
分界面上的电位函数也是连续的。
采用基本方程的积分形式。
、分解为与分界面垂直和平行的两个分量:
2.请考虑一下,下面的证明应该采用哪个定律或方程:
电场的环流方程 高斯通量定律
首先在分界面上取一个小的柱形
闭合面,其上、下底面与分界面
平行并分居于分界面两侧,高h
为无 限小量(如图所示)。
对于
此闭合面,高斯通量定律写成
得
是分界面上的自由电荷密度。
当分界面上没有自由电荷时则有或
, 可得分界面上
的法向分量的边界
条件。
图1.6.1 边界条件的证明1。
2.6静电场的边界条件

1 2 lim E dl lim( E1n
12 1 d 0
2
d d E2 n ) 0 2 2
因此
图2.6.5电位的衔接条件
1 2
2 n
表明: 在介质分界面上,电位是连续的。
D1n 1 E1n 1
1 n
,
D2 n 2 E2 n 2
( D E )
E dl 0 D dS q
l
S
A 3 xe x 4 ye y 5 ze z ,
ey y Ay
试判断它能否表示个静电场?
解:根据静电场的旋度恒等于零的性质,
ex A x Ax
ez Ay Ax Ax Az Az Ay z ( y z )e x ( z x )e y ( x y )e z 0 Az
D2 n D1n E1t E2 t
图2.6.3 导体与电介质分界面
D2 n E2 t 0
表明:(1)导体表面是一等位面,电力线与导体表面垂直,电场仅有法向分 量;(2)导体表面上任一点的D 就等于该点的自由电荷密度 。 在交界面上不存在 时,E、D满足折射定律。
二、电位移矢量D的边界条件 以分界面上点P作为观察点,作一 小扁圆柱高斯面( L 0)。 根据
D dS q
D1n S D2 n S S
D2 n D1n
则有
图2.6.1 在电介质分界面上应用高斯定律
分界面两侧的 D 的法向分量不连续。当
0
时,D 的法向分量连续。
1 E1 2 E2
E1d1 E2 d 2 U0
静电场的边界条件

静电场的边界条件一、介绍静电场是电荷相互作用的结果,它在物理学中有着重要的应用。
在讨论静电场的问题时,我们需要考虑边界条件,即影响电荷分布和电场分布的物体或介质的边界条件。
本文将对静电场的边界条件进行全面、详细、完整的探讨。
二、电场的基本概念回顾在深入讨论静电场的边界条件之前,我们先回顾一下电场的基本概念。
电场是指空间中某一点周围的电力场,它由电荷所产生。
电场的强度用电场强度表示,通常用符号E表示,其单位为N/C(牛顿/库仑)。
电场的方向是从正电荷指向负电荷。
三、边界条件的意义静电场的边界条件对于解决各种实际问题非常重要。
在处理实际问题时,我们常常需要考虑到材料接触面上的边界条件,以确定电场分布和电荷分布。
四、电场的边界条件在讨论静电场的边界条件时,我们主要关注以下几个方面:4.1 自由边界条件自由边界条件指在物体表面没有约束电荷和电场的存在。
在这种情况下,电荷和电场可以自由传播。
4.2 导体表面的边界条件导体表面的边界条件是我们最常见的一种情况。
导体表面上,电场与导体表面垂直。
这是因为在导体表面上,导体内部的电荷会受到表面电荷的驱动,沿着导体表面朝水平方向运动,最终达到平衡状态。
4.3 介质表面的边界条件介质表面的边界条件与导体表面的边界条件相似,但不完全相同。
在介质表面上,电场仍然与表面垂直,但电场的强度在介质表面的两侧有所变化。
4.4 电势的边界条件电势是电场的一种特殊形式,它表示单位正电荷在电场中移动所具有的能量。
在讨论边界条件时,我们也需要考虑电势的变化情况。
五、总结静电场的边界条件是解决静电场问题的关键之一。
在实际问题中,我们需要根据具体情况来确定相应的边界条件。
不同的边界条件将会对电场和电荷分布产生影响,因此我们必须认真考虑边界条件的选择和分析。
通过对静电场的边界条件的全面、详细、完整的探讨,我们可以更好地理解和应用静电场的理论,解决实际问题。
关于静电场和恒定磁场的边界条件的几点讨论

关于静电场和恒定磁场的边界条件的几点讨论赵东广(安徽大学 文典学院 安徽 合肥 230039)摘要:本文对不同介质组成的静电场和恒定磁场场域的边界条件进行了整理和讨论,并用高斯定理等对两种介质分界面上的电磁场边值关系进行了简洁推导并以这种普遍关系为基础导出了理想导体表面上的边界条件,并对该边界条件做了详细说明。
关键词:静电场,恒定磁场,边界面。
引言:对于不同媒质所组成的电磁场场域在分界面上介质性质有突变,则电磁场在分界面两侧发生突变。
而我们把分界面电磁场突变关系称为电磁场的边值关系或边界条件。
1 静电场的边界条件1.1 法向边界条件或 ,如果界面上没有自由电荷,即,边界条2121()S S D n S D n S q S n D D ρρ⋅∆-⋅∆==∆⋅-=21n n S D D ρ-=0S ρ=2121()00n n n D D D D ⋅-=-=件变为 或 。
1.2 切向边界条件即静电场的切向分量连续,意味着电位连续,即 ,又因为所以法向分量的边界条件用电位表示为在 时,则即为静电场的折射定律。
导体内的静电场在静电平衡时为零,设导体外部的场为E ,D ,导体的法向量为n ,则导体表面的边界条件简化为 。
2 恒定磁场的边界条件2121()0t tn E E E E ⨯-==21ϕϕ=nE D n E D n n n n ∂∂-==∂∂-==2222211111ϕεεϕεεSnnρϕεϕε=∂∂-∂∂22110S ρ=2121tan tan εεθθ=0=t E S n D ρ=2.1 法向边界条件 即 ,SB d s ⋅=⎰120B n S B n S -⋅∆+⋅∆=12n nB B =2.2 切向边界条件即 当分界面上没有自由电流时, ,当分界面两边为理想介质,分界面上无自由电流,则上式表面媒质两边的磁场方向与媒质本身特性有关。
下面我们讨论几种特殊情况l J l H l H S t t ∆=∆-∆21S t t J H H =-210S J = tt H H 21=12n H n H ⨯=⨯ 12n nB B =tt H H 21=1221112212tan tan μμθθ===nn nt n t H H H H H H1 若当媒质1为空气,媒质2为铁磁媒质。
静电场的边界条件

E d E d U 1 1 2 2 0 2 U 0 E a 1 x d d 12 21
U 1 0 E a 2 x d d 12 21
S1 E ax 1 E 2
S1 S2 1 2
S S
1
电磁场理论基础第二章
0 2
2 C
例 如图(a)与图(b)所示平行板电容器,已知 上总电荷 ,试分别求其中的电场强度。
2
和q0 ,
且填充介质为均匀的。图(a)已知极板间电压U0 , 图(b)已知极板
( a)
( b)
解:忽略边缘效应 图(a)
s
1 1 n
图(b)
S S q S 1 1 S 2 2 0
n 1 1 2 2 S
2 1 2 1 S n n
E E n 1 1 2 2 S
E E 1 1 n 2 2 n S
1、两种媒质为电介质,且 分界面上无自由面电荷。
2-32 在介电常数为 的无限大均匀介质中存在电场强度 E , 0 今在其内开如下的空腔,求空腔中心处附近的 E 和 D: ①平行于的 E0 细长圆柱空腔; ②底面垂直于 E0的薄圆片形空腔。
电磁场理论基础第二章
解:① 由切向场分量的边界条件:通过界面时,
的切向分量连续。 E
n n
2 C
二、切向边界条件
n l1
1
1
E1
l2
E 1 1
E 2 2
E d l E l sin E l sin 0 1 1 1 2 1 2
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1
Φ1 n
2
Φ2 n
1 = 2
四. 理想导体表面的边界条件
n E,D
当分界面为导体与电介质的交界面时,由
于导体内电场和电位移矢量均为零,所以
分界面上的衔接条件变为:
D2 = E2 = 0
n• D s
Dn s
Φ n
s
nE 0
结论:
Et 0
Φ c
1导体表面是一等位面;电力线与导体表面垂直,电场强度 只
第 2 章 静电场
2.5 静电场的边界条件
2.5.1 静电场的边界条件
• 介质表面存在的束缚电荷:
ps P • n s
n—介质的外法线方向
n
0
• 两种介质分界面上存在的束缚电荷:
n
ps P2 • n s P1 • ( n ) s (P2 P1) • n s
1 2
n—由介质2指向介质1
1
1
n
2
2
n
s
表明: 一般情况下,介质分界面上电位的导数是不连续的。
总结
不同介质分界面上的边界条件(衔接条件)为
特别注意:下式中 n 的方向为由介质2指向介质1
D1n- D2n = s E1t = E2t
(s= 0)
D1n= D2n E1t = E2t
1
Φ1 n
2
Φ2 n
s
1 = 2
(s= 0)
D2
•
nS
sS
s 自由电荷面密度
D1n n D1
1 S
1
2
h
D2
2
D2n
∴ n • ( D 1 D2 ) s 或 D1n- D2n = s Normal
完纯介质分界面上,s= 0,则
n • D1 n • D2
或
D1n= D2n
二.不同介质分界面上切线方向的边界条件
n E1t E1
1 l
1
h
2 E2 2
• ps 的存在使 E、D 发生突变,因而场量不连续
• 在界面上,矢量场基本方程的微分形式不再适用
但积分形式仍然成立 SD • d S q c E • dl 0
• 边界条件: 两种介质分界面上,矢量场所满足的关系。
一.不同介质分界面上法线方向的边界条件
SD • dS q
D S
•dS
D1
•
nS
c
E2t
Tangential
E • dl
c
E1
• l
E2
• l
0
l = s n l
E1• ( s n ) l = E2• ( s n ) l
s • (n E1) = s • (n E2)
回路 c 任意,所围s 也任意
n l s
∴ n E1 = n E2
-l
E1sin 1 = E2 sin 2 或 E1t = E2t
能垂直与导体表面;
2 导体表面上任一点的D 就等于该点的自由电荷面密度 s。
五.折 射 关 系
两种理想(完纯)介质的分界面上,
一般不存在自由电荷,s= 0
1
D1n= D2n
1E1 cos1 2 E2 cos2 2
E1t E2t
E1sin1 E2sin 2
E2
tan 1 1 tan 2 2
折射定律
三.用电位表示的介质分界面边界条件
1.切向:
设点1与点2分别位于分界面的两侧,其间
距为d,d →0, 则
1
2
lim 12
2
E
•
dl
1
ldim0(E1n
d 2
E2n
d 2
)
0
∴ 1 2
2.法向:
表明: 在介质分界面上,电位是连续的。Fra bibliotekD1n
1E1n
1
1
n
,
D2n
2E2n
2
2
n
D1n- D2n = s
n
E1
1
2