北师大版数学七年级下册 第一章 整式的乘除知识点总结及专题训练
北师大版七下数学知识点总结

北师大版七下数学知识点总结北师大版七年级下册数学知识点总结。
一、整式的乘除。
1. 同底数幂的乘法。
- 法则:a^m· a^n=a^m + n(m、n为正整数)。
例如2^3×2^4=2^3 + 4=2^7。
- 推广:a^m· a^n· a^p=a^m + n+p(m、n、p为正整数)。
2. 幂的乘方。
- 法则:(a^m)^n=a^mn(m、n为正整数)。
例如(3^2)^3=3^2×3=3^6。
3. 积的乘方。
- 法则:(ab)^n=a^nb^n(n为正整数)。
例如(2×3)^2=2^2×3^2=4×9 = 36。
4. 同底数幂的除法。
- 法则:a^m÷ a^n=a^m - n(a≠0,m、n为正整数且m>n)。
例如5^6÷5^3=5^6 - 3=5^3。
- 零指数幂:a^0=1(a≠0)。
- 负整数指数幂:a^-p=(1)/(a^p)(a≠0,p为正整数)。
5. 整式的乘法。
- 单项式乘单项式:系数相乘,同底数幂相乘。
例如3x^2·2x^3=(3×2)x^2 + 3=6x^5。
- 单项式乘多项式:m(a + b)=ma+mb。
例如2x(x + 3)=2x^2+6x。
- 多项式乘多项式:(a + b)(c + d)=ac+ad+bc+bd。
例如(x + 2)(x+3)=x^2+3x+2x + 6=x^2+5x + 6。
6. 整式的除法。
- 单项式除以单项式:系数相除,同底数幂相除。
例如6x^5÷2x^3=(6÷2)x^5 - 3=3x^2。
- 多项式除以单项式:(a + b)÷ m=(a)/(m)+(b)/(m)。
例如(4x^2+2x)÷2x =4x^2÷2x+2x÷2x = 2x + 1。
二、相交线与平行线。
1. 相交线。
第一章 整式的乘除(单元小结)七年级数学下册(北师大版)

考点专练
【要点指导】幂的运算包括同底数幂的乘法、幂的乘方、 积的乘方、同底数幂的除法以及零指数幂、负整数指数 幂的运算, 计算时, 要熟练掌握各自的运算法则, 并能灵活 运用这些运算法则进行计算. 幂的运算法则还可以逆用.
考2y2-xy)-y(x2-x3y)]×3x2y,其中x=1,y=3. 解:原式=(x3y2-x2y-x2y+x3y2) ×3x2y
=(2x3y2-2x2y) ×3x2y = 6x5y3-6x4y2 . 当x=1,y=3时,原式=6×27-6×9=108.
谢谢~
新课标 北师大版 七年级下册
第一章 整式的乘除
单元小结
本章知识架构
整式的乘法
同底数幂的乘法,幂的乘方,积的乘方 单项式乘以单项式 单项式乘以多项式 多项式乘以多项式 (平方差公式,完全平方公式)
整式的除法
同底数幂的除法(零指数,负指数次幂,科学计数法) 单项式除以单项式 多项式除以单项式
知识专题
知识专题
1.零指数幂. 任何不等于0的数的零次幂都等于1.
a0=1 (a≠0)
2.负指数幂.
a≠0,p是正整数
知识专题
3.科学记数法 一般地,一个绝对值小于1的数可以用科学记数法表示为:
a×10-n(其中1≤|a|<10,n是整数) 注意: (1) 1≤|a|<10 ,
(2) n从左起第一个非零数前零的个数.
(三)积的乘方. 积的乘方等于把积的每一个因式分别乘方,再把 所得的幂相乘,即, (ab)n=anbn(n是正整数).
知识专题
(四)同底数幂的除法. 同底数幂相除,底数不变,指数相减.即 am÷an=am-n (a≠0,m,n都是正整数,m>n). 注:(1)底数必须相同. (2)适用于两个或两个以上的同底数幂相除. (3)逆运用常考am-n= am÷an
新北师大版七下第一章《整式的乘除与因式分解》知识点

整式的加减、乘除【知识点一】代数式的概念:①代数式中出现的乘号,通常写作“·”或省略不写,如6×b 常写作6·b 或6b ;②数字与字母相乘时,数字写在字母前面,如6b 一般不写作b6;③除法运算写成分数形式,如1÷a 通常写作()01≠a a④系数1或-1,通常省略1,如1a 写作a ,-1a 写作-a.⑤211a 通常写作23a. 例1、下列代数式中,书写正确的是( ) A. ab ·2 B. a ÷4 C. -4×a ×b D. xy 213E. mn 35 F. -3× 【知识点二】单项式的概念:由 与 的 构成的代数式叫做单项式。
单独的一个数或一个字母也是单项式。
单项式的数字因数叫做单项式的系数,字母指数和叫单项式的次数。
例2、bc a 22-的 系数为 ,次数为 ,单独的一个非零数的次数是 。
【知识点三】多项式:几个单项式的 叫做多项式。
多项式中每个单项式叫多项式的项,次数最高项的次数叫多项式的次数。
例3、122++-x ab a ,项有 ,二次项为 ,一次项为 ,常数项为 ,各项次数分别为 ,系数分别为 ,这个多项式叫 式。
【知识点四】整式:单项式和多项式统称整式。
【注意:凡分母含有字母代数式都不是整式。
也不是单项式和多项式。
】【知识点五】 升幂排列与降幂排列 例4、多项式121322233-+-+-a a b b a ab b a 按字母a 升幂排列为:【知识点六】 同类项:所含字母相同,并且相同字母的指数也分别相等的项,另外所有的常数项都是同类项。
【注意:同类项与系数大小无关,与字母的排列顺序无关。
】例5、下列各题中的两个项是不是同类项?(1)3x 2y 与-3x 2y (2)0.2a 2b 与0.2ab 2 (3)11abc 与9bc (4)3m 2n 3与-n 3m 2 (5)4xy 2z 与4x 2yz (6)62与x 2【知识点七】合并同类项法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数保持不变。
新版北师大七年级数学下册第一章《整式的乘除运算》知识点总结及习题

第一章整式的乘除知识点总结一、单项式:数字与字母的乘积组成的代数式叫做单项式。
单独的一个数或一个字母也是单项式。
一个单项式中,数字因数叫做这个单项式的系数,所有字母的指数和叫做这个单项式的次数。
注意:π是数字,而不是字母,它的系数是π,次数是0. 二、多项式几个单项式的代数和叫做多项式。
其中每个单项式叫做这个多项式的项。
多项式中不含字母的项叫做常数项。
多项式中次数最高的项的次数,叫做这个多项式的次数。
三、整式:单项式和多项式统称为整式。
四、整式的加减法:整式加减法的一般步骤:(1)去括号;(2)合并同类项。
五、幂的运算性质:1、同底数幂的乘法:),(都是正整数n m aa a nm nm+=∙2、幂的乘方:),(都是正整数)(n m a a mnn m =3、积的乘方:)()(都是正整数n b a ab nnn= 4、同底数幂的除法:)0,,(≠=÷-a n m a a a nm nm都是正整数六、零指数幂和负整数指数幂: 1、零指数幂:);0(10≠=a a 2、负整数指数幂:),0(1是正整数p a aa p p≠=- 七、整式的乘除法:1、单项式乘以单项式:法则:单项式与单项式相乘,把它们的系数、相同字母的幂分别相乘,其余的字母连同它的指数不变,作为积的因式。
2、单项式乘以多项式:法则:单项式与多项式相乘,就是根据分配律用单项式去乘多项式的每一项,再把所得的积相加。
3、多项式乘以多项式:多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加。
4、单项式除以单项式:单项式相除,把系数、同底数幂分别相除后,作为商的因式;对于只在被除式里含有的字母,则连同它的指数一起作为商的一个因式。
5、多项式除以单项式:多项式除以单项式,先把这个多项式的每一项分别除以单项式,再把所得的商相加。
八、整式乘法公式:1、平方差公式: 22))((b a b a b a -=-+2、完全平方公式: 2222)(b ab a b a ++=+ 2222)(b ab a b a +-=-七年级数学(下)第一章《整式的运算》一、 知识点:1、都是数与字母的乘积的代数式叫做单项式(单独的一个数或一个字母也是单项式);几个单项式的和叫做多项式;单项式和多项式统称整式。
北师大版七年级下册数学《第一章 整式的乘除--完全平方公式》知识点讲解!

北师大版七年级下册数学《第一章整式的乘除--完全平方公式》知识点讲解!1.完全平方公式:(a+b)2=a2+b2+2ab (a-b)2=a2+b2-2ab两数和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍。
叫做完全平方公式.为了区别,我们把前者叫做两数和的完全平方公式,后者叫做两数差的完全平方公式。
2.派生公式:(a+b)2-2ab=a2+b2(a-b)2+2ab=a2+b2(a-b)2+(a+b)2=2(a2+b2) (a+b)2-(a-b)2=4ab考点解析完全平方公式是进行代数运算与变形的重要知识基础。
该知识点重点是对完全平方公式的熟记及应用,难点是对公式特征的理解(如对公式中积的一次项系数的理解)。
两数和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍,叫做完全平方公式。
为了区别,我们把前者叫做两数和的完全平方公式,后者叫做两数差的完全平方公式。
理解公式左右边特征(一)学会推导公式(这两个公式是根据乘方的意义与多项式的乘法法则得到的),真实体会随意“创造”的不正确性;(二)学会用文字概述公式的含义:两数和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍.都叫做完全平方公式.为了区别,我们把前者叫做两数和的完全平方公式,后者叫做两数差的完全平方公式.(三)这两个公式的结构特征是:1、左边是两个相同的二项式相乘,右边是三项式,是左边二项式中两项的平方和,加上或减去这两项乘积的2倍;2、左边两项符号相同时,右边各项全用“+”号连接;左边两项符号相反时,右边平方项用“+”号连接后再“-”两项乘积的2倍(注:这里说项时未包括其符号在内);3、公式中的字母可以表示具体的数(正数或负数),也可以表示单项式或多项式等数学式.(四)两个公式的统一:因为所以两个公式实际上可以看成一个公式:两数和的完全平方公式。
这样可以既可以防止公式的混淆又杜绝了运算符号的出错。
北师大版七年级数学下册期末复习:第一单元 整式的乘除

期末复习第一章:整式的乘除①本章考点及公式:一、单项式:都是数字与字母的乘积的代数式叫做单项式。
二、多项式:几个单项式的和叫做多项式。
三、整式:单项式和多项式统称为整式。
四、整式的加减:整式加减的理论根据是:去括号法则,合并同类项法则,以及乘法分配率。
五、同底数幂的乘法:同底数幂乘法的运算法则:同底数幂相乘,底数不变,指数相加。
即:a m ﹒a n =a m+n。
六、幂的乘方:幂的乘方运算法则:幂的乘方,底数不变,指数相乘。
(a m )n =a mn。
七、积的乘方:1、积的乘方是指底数是乘积形式的乘方。
2、积的乘方运算法则:积的乘方,等于把积中的每个因式分别乘方,然后把所得的幂相乘。
即(ab )n =a n b n 。
3、此法则也可以逆用,即:a n b n =(ab )n。
八、同底数幂的除法:同底数幂的除法法则:同底数幂相除,底数不变,指数相减,即:a m ÷a n =a m-n(a ≠0)。
九、零指数幂:零指数幂的意义:任何不等于0的数的0次幂都等于1,即:a 0=1(a ≠0)。
十、负指数幂:任何不等于零的数的―p 次幂,等于这个数的p 次幂的倒数,即:1(0)p p a a a -=≠十一。
单项式与单项式相乘:单项式乘法法则:单项式与单项式相乘,把它们的系数、相同字母的幂分别相乘,其余字母连同它的指数不变,作为积的因式。
(二)单项式与多项式相乘:单项式与多项式乘法法则:单项式与多项式相乘,就是根据分配率用单项式去乘多项式中的每一项,再把所得的积相加。
即:m(a+b+c)=ma+mb+mc 。
(三)多项式与多项式相乘:多项式与多项式乘法法则:多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加。
即:(m+n)(a+b)=ma+mb+na+nb 。
十二、平方差公式:(a+b )(a-b)=a 2-b 2,即:两数和与这两数差的积,等于它们的平方之差。
(完整版)北师大版七年级下册数学各章知识点总结(最新整理)

北师大版《数学》(七年级下册)知识点总结第一章整式的运算单项式式多项式同底数幂的乘法幂的乘方积的乘方同底数幂的除法零指数幂负指数幂整式的加减单项式与单项式相乘单项式与多项式相乘整式的乘法多项式与多项式相乘 整式运算平方差公式完全平方公式单项式除以单项式整式的除法多项式除以单项式一、单项式、单项式的次数:只含有数字与字母的积的代数式叫做单项式。
单独的一个数或一个字母也是单项式。
一个单项式中,所有字母的指数的和叫做这个单项式的次数。
二、多项式1、多项式、多项式的次数、项几个单项式的和叫做多项式。
其中每个单项式叫做这个多项式的项。
多项式中不含字母的项叫做常数项。
多项式中次数最高的项的次数,叫做这个多项式的次数。
三、整式:单项式和多项式统称为整式。
四、整式的加减法: 整式加减法的一般步骤:(1)去括号;(2)合并同类项。
五、幂的运算性质:1、同底数幂的乘法:a m ﹒a n =a m+n (m,n 都是正整数);2、幂的乘方:(a m )n =a mn (m,n 都是正整数);3、积的乘方:(ab )n =a n b n (n 都是正整数);4、同底数幂的除法:a m ÷a n =a m-n (m,n 都是正整数,a≠0) ;六、零指数幂和负整数指数幂:1、零指数幂:a 0=1(a≠0);2、负整数指数幂:1(0)ppa aa -=≠p 是正整数。
七、整式的乘除法: 1、单项式乘以单项式:法则:单项式与单项式相乘,把它们的系数、p 是正整数相同字母的幂分别相乘,其余的字母连同它的指数不变,作为积的因式。
2、单项式乘以多项式:法则:单项式与多项式相乘,就是根据分配律用单项式去乘多项式的每一项,再把所得的积相加。
3、多项式乘以多项式:多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加。
4、单项式除以单项式:单项式相除,把系数、同底数幂分别相除后,作为商的因式;对于只在被除式里含有的字母,则连同它的指数一起作为商的一个因式。
北师大版七年级下册数学知识点总结(最新最全)

北师大版数学七年级下册知识点总结第一章 整式的乘除1、单项式的概念:由数与字母的乘积构成的代数式叫做单项式。
单独的一个数或一个字母也是单项式。
单项式的数字因数叫做单项式的系数,字母指数和叫单项式的次数。
2、多项式:几个单项式的和叫做多项式。
多项式中每个单项式叫多项式的项,次数最高项的次数叫多项式的次数。
3、整式:单项式和多项式统称整式。
注意:凡分母含有字母代数式都不是整式。
也不是单项式和多项式。
4、同底数幂的乘法法则:n m n m a a a +=•(n m ,都是正整数)同底数幂相乘,底数不变,指数相加。
注意:底数可以是多项式或单项式。
如:532)()()(b a b a b a +=+•+5、幂的乘方法则:mn n m a a =)((n m ,都是正整数)幂的乘方,底数不变,指数相乘。
如:10253)3(=-幂的乘方法则可以逆用:即m n n m mn a a a )()(==如:23326)4()4(4==6、积的乘方法则:n n n b a ab =)((n 是正整数)积的乘方,等于各因数乘方的积。
如:(523)2z y x -=5101555253532)()()2(z y x z y x -=•••-7、同底数幂的除法法则:n m n m a a a -=÷(n m a ,,0≠都是正整数,且)n m同底数幂相除,底数不变,指数相减。
如:3334)()()(b a ab ab ab ==÷8、零指数和负指数;10=a ,(ɑ≠0)即任何不等于零的数的零次方等于1。
pp a a 1=-(p a ,0≠是正整数),即一个不等于零的数的p -次方等于这个数的p 次方的倒数。
9、科学记数法:如:0.00000721=6-1021.7⨯(第一个非零数字前零的个数)10、单项式的乘法法则:单项式与单项式相乘,把他们的系数,相同字母的幂分别相乘,其余字母连同它的指数不变,作为积的因式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章 整式的乘除一、 同底数幂的乘法同底数幂的乘法法则: n m n m a a a +=⋅(m,n 都是正数)是幂的运算中最基本的法则,在应用法则运算时,要注意以下几点:①法则使用的前提条件是:幂的底数相同而且是相乘时,底数a 可以是一个具体的数字式字母,也可以是 一个单项或多项式;②指数是1时,不要误以为没有指数;③不要将同底数幂的乘法与整式的加法相混淆,对乘法,只要底数相同指数就可以相加;而对于加法,不仅底数相同,还要求指数相同才能相加;④当三个或三个以上同底数幂相乘时,法则可推广为p n m p n ma a a a ++=⋅⋅(其中m 、n 、p 均为正数);⑤公式还可以逆用:n m nm a a a ⋅=+(m 、n 均为正整数)二.幂的乘方与积的乘方1. 幂的乘方法则:mn nm a a =)((m,n 都是正数)是幂的乘法法则为基础推导出来的,但两者不能混淆.2.),()()(都为正数n m a a a mn m n n m ==.3. 底数有负号时,运算时要注意,底数是a 与(-a)时不是同底,但可以利用乘方法则化成同底,如将(-a )3化成-a 3⎩⎨⎧-=-).(),()(,为奇数时当为偶数时当一般地n a n a a n n n4.底数有时形式不同,但可以化成相同。
5.要注意区别(ab )n 与(a+b )n 意义是不同的,不要误以为(a+b )n =a n +b n (a 、b 均不为零)。
6.积的乘方法则:积的乘方,等于把积每一个因式分别乘方,再把所得的幂相乘,即n n nb a ab =)((n为正整数)。
7.幂的乘方与积乘方法则均可逆向运用。
三. 同底数幂的除法1. 同底数幂的除法法则:同底数幂相除,底数不变,指数相减,即n m n ma a a -=÷ (a ≠0,m 、n 都是正数,且m>n).2. 在应用时需要注意以下几点:①法则使用的前提条件是“同底数幂相除”而且0不能做除数,所以法则中a ≠0. ②任何不等于0的数的0次幂等于1,即)0(10≠=a a,如1100=,(-2.50=1),则00无意义.③任何不等于0的数的-p 次幂(p 是正整数),等于这个数的p 的次幂的倒数,即ppa a 1=-( a ≠0,p 是正整数), 而0-1,0-3都是无意义的;当a>0时,a -p 的值一定是正的; 当a<0时,a -p 的值可能是正也可能是负的,如41(-2)2-=,81)2(3-=-- ④运算要注意运算顺序.四. 整式的乘法1. 单项式乘法法则:单项式相乘,把它们的系数、相同字母分别相乘,对于只在一个单项式里含有的字母,连同它的指数作为积的一个因式。
单项式乘法法则在运用时要注意以下几点:①积的系数等于各因式系数积,先确定符号,再计算绝对值。
这时容易出现的错误的是,将系数相乘 与指数相加混淆;②相同字母相乘,运用同底数的乘法法则;③只在一个单项式里含有的字母,要连同它的指数作为积的一个因式; ④单项式乘法法则对于三个以上的单项式相乘同样适用; ⑤单项式乘以单项式,结果仍是一个单项式。
2.单项式与多项式相乘单项式乘以多项式,是通过乘法对加法的分配律,把它转化为单项式乘以单项式,即单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加。
单项式与多项式相乘时要注意以下几点:①单项式与多项式相乘,积是一个多项式,其项数与多项式的项数相同; ②运算时要注意积的符号,多项式的每一项都包括它前面的符号; ③在混合运算时,要注意运算顺序。
3.多项式与多项式相乘多项式与多项式相乘,先用一个多项式中的每一项乘以另一个多项式的每一项,再把所得的积相加。
多项式与多项式相乘时要注意以下几点:①多项式与多项式相乘要防止漏项,检查的方法是:在没有合并同类项之前,积的项数应等于原两个多 项式项数的积;②多项式相乘的结果应注意合并同类项;③对含有同一个字母的一次项系数是1的两个一次二项式相乘ab x b a x b x a x +++=++)())((2,其二次项系数为1,一次项系数等于两个因式中常数项的和,常数项是两个因式中常数项的积。
对于一次项系数不为1的两个一次二项式(mx+a )和(nx+b )相乘可以得到ab x ma mb mnx b nx a mx+++=++)())((2五.平方差公式1.平方差公式:两数和与这两数差的积,等于它们的平方差,即22))((b a b a b a -=-+。
其结构特征是:①公式左边是两个二项式相乘,两个二项式中第一项相同,第二项互为相反数; ②公式右边是两项的平方差,即相同项的平方与相反项的平方之差。
六.完全平方公式1. 完全平方公式:两数和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍, 即2222)(b ab a b a +±=±;口决:首平方,尾平方,2倍乘积在中央;2.结构特征:①公式左边是二项式的完全平方;②公式右边共有三项,是二项式中二项的平方和,再加上或减去这两项乘积的2倍。
3.在运用完全平方公式时,要注意公式右边中间项的符号,以及避免出现222)(b a b a ±=±这样的错误。
七.整式的除法1.单项式除法单项式单项式相除,把系数、同底数幂分别相除,作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式; 2.多项式除以单项式多项式除以单项式,先把这个多项式的每一项除以单项式,再把所得的商相加,其特点是把多项式除以单项式转化成单项式除以单项式,所得商的项数与原多项式的项数相同,另外还要特别注意符号。
【典例讲解】(一)填空题(每小题2分,共计20分)1.x 10=(-x 3)2·_________=x 12÷x( )2.4(m -n )3÷(n -m )2=___________.3.-x 2·(-x )3·(-x )2=__________.4.(2a -b )()=b 2-4a 2.5.(a -b )2=(a +b )2+_____________.6.(31)-2+π0=_________;4101×0.2599=__________.7.2032×1931=( )·( )=___________.8.用科学记数法表示-0.0000308=___________.9.(x -2y +1)(x -2y -1)2=( )2-( )2=_______________.10.若(x +5)(x -7)=x 2+mx +n ,则m =__________,n =________.(二)选择题(每小题2分,共计16分)11.下列计算中正确的是………………………………………………………………( ) (A )a n ·a 2=a 2n(B )(a 3)2=a5(C )x 4·x 3·x =x7(D )a2n -3÷a3-n=a3n -612.x2m +1可写作…………………………………………………………………………( )(A )(x 2)m +1(B )(x m )2+1(C )x ·x2m(D )(x m )m +113.下列运算正确的是………………………………………………………………( ) (A )(-2ab )·(-3ab )3=-54a 4b 4(B )5x 2·(3x 3)2=15x 12(C )(-0.16)·(-10b 2)3=-b 7(D )(2×10n)(21×10n )=102n14.化简(a n b m)n ,结果正确的是………………………………………………………( ) (A )a 2n bmn(B )n m n b a 2 (C )mn n b a 2(D )nmn b a 215.若a ≠b ,下列各式中不能成立的是………………………………………………( ) (A )(a +b )2=(-a -b )2(B )(a +b )(a -b )=(b +a )(b -a ) (C )(a -b )2n =(b -a )2n(D )(a -b )3=(b -a )316.下列各组数中,互为相反数的是…………………………………………………( ) (A )(-2)-3与23(B )(-2)-2与2-2(C )-33与(-31)3 (D )(-3)-3与(31)3 17.下列各式中正确的是………………………………………………………………( ) (A )(a +4)(a -4)=a 2-4 (B )(5x -1)(1-5x )=25x 2-1 (C )(-3x +2)2=4-12x +9x2(D )(x -3)(x -9)=x 2-2718.如果x 2-kx -ab =(x -a )(x +b ),则k 应为…………………………………( )(A )a +b (B )a -b (C )b -a (D )-a -b(三)计算(每题4分,共24分)19.(1)(-3xy 2)3·(61x 3y )2;(2)4a 2x 2·(-52a 4x 3y 3)÷(-21a 5xy 2);(3)(2a -3b )2(2a +3b )2;(4)(2x +5y )(2x -5y )(-4x 2-25y 2);(5)(20an -2b n-14a n -1b n +1+8a 2n b )÷(-2a n -3b );(6)(x -3)(2x +1)-3(2x -1)2.20.用简便方法计算:(每小题3分,共9分)(1)982; (2)899×901+1; (3)(710)2002·(0.49)1000.(四)解答题(每题6分,共24分)21.已知a 2+6a +b 2-10b +34=0,求代数式(2a +b )(3a -2b )+4ab 的值.22.已知a +b =5,ab =7,求222b a ,a 2-ab +b 2的值.23.已知(a +b )2=10,(a -b )2=2,求a 2+b 2,ab 的值.24.已知a 2+b 2+c 2=ab +bc +ac ,求证a =b =c .(五)解方程组与不等式(25题3分,26题4分,共7分)25.⎩⎨⎧+=-+=+-++.3)3)(4(0)2()5)(1(xy y x y x y x26.(x +1)(x 2-x +1)-x (x -1)2<(2x -1)(x -3).。