机器人的运动轴和坐标系
机器人的运动轴和坐标系

机器人的运动轴和坐标系概述机器人的运动轴和坐标系是机器人系统中的重要概念。
机器人通过运动轴控制自身的运动,并通过坐标系来描述和规划任务中的各个位置和方向。
本文将介绍机器人系统中常见的运动轴类型和常用的坐标系。
运动轴关节运动轴关节运动轴是机器人系统中最常见的一种运动轴类型。
它是由关节驱动器控制的旋转或者转动运动。
关节运动轴通常用于工业机器人中,例如6轴工业机器人。
旋转关节运动轴旋转关节运动轴使机器人的动作类似于人的手臂,可以在各个关节上进行旋转运动。
这种类型的运动轴广泛应用于工业生产线,如焊接、装配等。
平移关节运动轴平移关节运动轴使机器人可以沿着某个轴线上下平移运动。
这种类型的运动轴一般用于需要上下移动的操作,如搬运和装卸。
直线运动轴直线运动轴使机器人能够沿直线轨迹进行移动。
它通常由线性导轨和电机驱动器组成,使机器人的运动更加精准和灵活。
直线运动轴广泛应用于需要精密定位的任务,如数控加工、激光切割等。
柔性运动轴柔性运动轴是指可以进行柔性调整形状的运动轴。
它通过使用弹性元件或软管来实现灵活的形变。
柔性运动轴常用于需要进行复杂路径和形状移动任务的场合,例如机器人手指和灵巧手的设计。
坐标系机器人基座坐标系机器人基座坐标系是机器人系统中最常见的坐标系之一。
它通常以机器人的基座为原点建立,用来描述机器人的位置和方向。
机器人的所有其他坐标系都是相对于基座坐标系来定义的。
世界坐标系世界坐标系是机器人系统中使用的全局坐标系。
它通常以工作场地的某个固定点为原点建立,用于描述机器人在工作场地中的位置和方向。
世界坐标系可以作为参考坐标系,用于描述机器人在工作场地中的绝对位置。
工具坐标系工具坐标系是机器人系统中的一种相对坐标系,通常用于描述机器人末端执行器(例如夹具、工具)的位置和方向。
工具坐标系通常通过标定和测量得到,可以根据具体任务的需求进行调整和校准。
关节坐标系关节坐标系是机器人系统中用于描述机器人各个关节的位置和方向的坐标系。
4.3工业机器人的轴与坐标系

工业机器人的基坐标系
基坐标系在机器人基座中有相应的零点。 优点:使固定安装的机器人的移动具有 可预测性!
机器人的基坐标系
工业机器人的基坐标系
在默认情况下,世界坐标系 与基坐标系是一致的!
A:机器人1的基坐标系 B:世界坐标系 C:机器人2的基坐标系
世界坐标系与基坐标系
工业机器人的工件坐标系
A:世界坐标系 B:工件坐标系1 C:工件坐标系2
基坐标系、工件坐标系和用户坐标系。
工业机器人的轴与坐标系
主要内容
• 掌握关节机器人轴的概念和重要性。 • 掌握机器人系统相关的坐标系以及它们的关系。
工业机器人的轴
U-3
L-2
R-4 B-5 T-6
S-1
工业机器人的轴参数
笛卡尔坐标系
在二维笛卡尔坐标系的基础上根据右 手定则增加第三维坐标(即Z轴)形 成三维笛卡尔坐标系,是直角坐标系 和斜角坐标系的统称。
利用右手定则定义直角坐标系
工业机器人相关坐标系
机器人系统有哪些坐标系?
世界坐标系:世界坐标系是系统的绝对坐标系,在没有建立用户坐标系之前,机:工具坐标系是一个直角坐标系, 原点位于工具上。 基坐标系:基坐标系位于机器人基座。它是最便于机器人从一个位置移动到另一 个位置的坐标系。 工件坐标系:工件坐标系与工件相关,通常是最适于对机器人进行编程的坐标系。 用户坐标系:用户坐标系在表示持有其他坐标系的设备(如工件)时非常有用。
义工具坐标系,该坐标系被称为 tool0,即为法兰坐标系。 • 所有定义的其他一个或多个新工具 坐标系定义均为为tool0的偏移值
工具坐标系
工业机器人的用户坐标系
A
用户坐标系
B
世界坐标系
工业机器人运动轴与坐标系

为了实现上述两种情况下工具的快速姿态调整,工业机器人提供了工具坐标系。 结论:建立工具坐标系的作用: (1)确定工具的TCP点(即工具中心点),方便调整工具姿态。 (2)确定工具进给方向,方便工具位置调整。
5.3 工具坐标系
5.3.2. 工具坐标系特点
新的工具坐标系是相对于默认的工具坐标系变化得到的,新的工具坐标系的位置和 方向始终同法兰盘保持绝对的位置和姿态关系,但在空间上是一直变化的。 (1)图 5-12(a)为垂直于法兰盘的垂直卡爪,TCP为机械工具坐标系平移即可,无 角度变化。 (2)图 5-12(b)为带弧形的工具,其TCP由机械工具坐标系平移或旋转获得。两种 形式的TCP均与机械工具坐标系之间存在绝对位姿关系。
5.3 工具坐标系
为了分析工具坐标系在工业机器人使用过程中的作用,进行如下探索: 探索1:研究对象和参考对象
运动学中,在研究物体运动过程时,需要选定参考对象和研究对象 思考:机器人在实际应用过程中做些什么?图 5-7所示的三种典型工业机器人应用中 的参考对象和研究对象又会是什么?
(a)弧焊
(b)点焊 图 5-7 工业机器人的典型应用案例
5.2 坐标系
5.2.4. 工具坐标系
(5)工具坐标系,由工具中心点的位置(x,y,z)和姿势(w,p,r)构成。 TCP的位置, 通过相对机械接口坐标系的工具中心点的坐标值 x、y、z 来定义,如图 5-6所示。工具 的姿势,通过机械接口坐标系的 X 轴、Y 轴、Z 轴周围的回转角 w、p、r 来定义。工 具中心点用来对位置数据的位置进行示教。在进行工具的姿势控制时,需要用上工具 姿势。
5.3 工具坐标系
5.3.3. 工具坐标系的标定
机器人坐标系和示教器

位 置
人厂商将工具的有效方向定义为 Z 轴),而 Y 轴、 Z 轴由右手法则确定。 在进行相
———对于工件不改变工具姿态的平移操作时选用该坐标系最为适宜。
—
【 课 堂 认 知 】
Y
Z
X
工具坐标系原点
返回 目录
3.1 机器人运动轴与坐标系
3.1.2 机器人坐标系的种类
所
处 位
(4) 用户坐标系
可根据需要定义用户坐标系。 当机器人配备多个工作台时,选
(1)手持姿势
操作姿势:左手穿过防护带轻放使能 器按键上拖住示教器,右手持触摸笔 进行操作。 使能器:分为三个档位,只有轻按置 于中间档位电机才处于开启状态,重 按或松开为防护装置停止状态手动操 纵机器人不能运行。
• 示教器使用
(2)设置语言
1
ABB菜单栏下
【Control Panel】
3
选择【Chinese】
【 课 堂
机器人操作机(本体)的轴,属 于机器人本身。
认
知
】
基座轴
机器人整体移动的轴,如行走轴 (滑移平台或导轨)。
工装轴
机器人轴和基座轴以外的轴,指 使工装夹具翻转和回转的轴。
机器人系统中个运动轴的定义
返回 目录
3.1 机器人运动轴与坐标系
3.1 机器人运动轴与坐标系
所 3.1.1 机器人运动轴的名称
J5
轴6
J6
B轴
手腕
A5
弯曲运动
T轴
手腕
A6
扭曲运动
返回 目录
3.1 机器人运动轴与坐标系
关节坐标系的原点位 置在机器人关节中心点处 ,用于确定该关节处每个 轴相对该关节坐标系原点 位置的绝对角度。
工业机器人运动轴与坐标系的确定

工业机器人运动轴与坐标系的确定1. 引言工业机器人是一种用于自动化生产的设备,它能够执行各种任务,如搬运、组装、焊接等。
在工业机器人的运动控制中,运动轴和坐标系的确定是非常重要的一步。
本文将详细介绍工业机器人运动轴和坐标系的概念、确定方法以及其在工业机器人控制中的应用。
2. 工业机器人运动轴工业机器人通常由多个运动轴组成,每个运动轴都可以实现某种特定的转动或平移运动。
常见的工业机器人通常包括6个自由度,即6个独立控制的运动轴。
2.1 旋转轴旋转轴允许工业机器人在一个平面内进行旋转运动。
常见的旋转轴有A、B、C三个,分别对应于绕X、Y、Z三个坐标轴旋转。
2.2 平移轴平移轴允许工业机器人在一个平面内进行平移运动。
常见的平移轴有X、Y、Z三个,分别对应于沿X、Y、Z三个坐标轴的平移。
3. 工业机器人坐标系工业机器人坐标系是用来描述工业机器人运动状态和位置的数学模型。
在工业机器人控制中,通常使用基座标系和工具座标系来描述机器人的位置和姿态。
3.1 基座标系基座标系是工业机器人运动轴的参考坐标系,通常由机器人控制系统定义。
基座标系通常与固定参考物体或地面相连,用于确定机器人起始位置以及运动轴的相对关系。
3.2 工具座标系工具座标系是用来描述工业机器人末端执行器(如夹爪、焊枪等)的位置和姿态。
它是一个相对于基座标系移动的坐标系,通常由用户定义并通过传感器测量得到。
4. 工业机器人运动轴与坐标系的确定方法在实际应用中,确定工业机器人运动轴和坐标系通常需要进行以下步骤:4.1 坐标系统校准首先需要进行坐标系统校准,确保基座标系与实际场景中固定参考物体或地面对齐。
这可以通过使用测量工具和传感器进行测量和校准来实现。
4.2 运动轴的定义根据机器人的结构和运动方式,确定每个运动轴的定义。
通常需要考虑机器人的自由度、旋转方向以及坐标系间的转换关系。
4.3 坐标系转换在确定了运动轴的定义后,需要建立运动轴与坐标系之间的转换关系。
2.3.1 工业机器人的坐标系

O
Y
X
二、基坐标系:
基坐标系是机器人其它坐标系的参照基础,是 机器人示教与编程时经常使用的坐标系之一,它的 原点位置没有硬性的规定,一般定义在机器人安装 面与第一转动轴的交点处。
右手定则: X轴:机器人机械零点
时,由基座指向机械手抓 TCP的水平方向。
Z轴:机器人机械零点 时,由基座指向机械手抓 TCP的垂直方向。
需要注意的是,以上讲解是一般机器人坐 标的定义,但不同品牌的不同的机器人型号, 可能采用不同的坐标定义,在使用机器人前, 一定要熟悉机器人坐标的正方向。
我们看一下ABB机器人的坐标截图:
很显然,在ABB机器人中没有关节坐标,却 多出一个大地坐标,这又是为什么呢?
那是因为我们使用的是外国的机器人,机 器人的定义在世界都没有完全的分界线,何况 一个坐标,肯定也会出现命名的不同,而且翻 译也不见得准确。
我们看一下英文版的:
我们看英文单词,可能还会翻译成世界坐 标。同样,还有把基坐标称为机械坐标的。
我们简单的看看这几个坐标: Nhomakorabea节坐标 基坐标 工具坐标 工件坐标 大地坐标 机械坐标 世界坐标
捏柿子
1、判断图中各轴的正 方向:
J1: J2: J3: J4: J5: J6:
捏柿子
2、说出下列坐标的名称
2、横向关节:ABB的, 末端执行器落下即为关节坐 标正方向。
四、工件坐标系:
工件坐标系是用户 自定义的坐标系,用户 坐标系也可以定义为工 件坐标系,可根据需要 定义多个工件坐标系, 当配备多个工作台时, 选择工件坐标系操作更 为简单。
五、工具坐标系:
工具坐标系是原点安装 在机器人末端的工具中心点 (TCP:Tool Center Point) 处的坐标系,原点及方向都 是随着末端位置与角度不断 变化的,该坐标系实际是将 基坐标系通过旋转及位移变 化而来的。工具坐标系也是 用户自定义的坐标系。
机器人4大坐标系讲解

机器人4大坐标系讲解
机器人的坐标系,你知道多少?真的会使用坐标系吗?下面我来带你来剖析机器人的坐标系吧!(以ABB机器人举例说明)
1. 基坐标系
基坐标系是以机器人安装基座为基
准、用来描述机器人本体运动的直角坐标系。
任何机器人都离不开基坐标系,也是机器人TCP在三维空间运动空间所必须的基本坐标系(面对机器人前后:X轴,左右:Y轴,上下:Z轴)。
坐标系遵守右手准则:
2. 大地坐标系
大地坐标系:大地坐标系是以大地作为参考的直角坐标系。
在多个机器人联动的和带有外轴的机器人会用到,90%的大地坐标系与基坐标系是重合的。
但是在以下两种情况大地坐标系与基坐标系不重合:
(1)机器人倒装。
如图1-0,倒装机器人的基坐标与大地坐标Z轴的方向是相反,机器人可以倒过来,但是大地却不可以倒过来。
(2)带外部轴的机器人。
如图1-1,大地坐标系固定好位置,而基坐标系却可以随着机器人整体的移动而移动。
3. 工具坐标系
工具坐标系:是以工具中心点作为零点,机器人的轨迹参照工具中心点,不再是机器人手腕中心点Tool0(如图1-2)了,而是新的工具中心点(如图1-3)。
机器人常用的坐标系

机器人常用的坐标系机器人是一种自动化机械设备,具有无人值守、精度高、效率高等优点,广泛应用于工业制造、军事、医疗等领域。
在机器人的运动控制中,坐标系是一个非常重要的概念,不同的坐标系具有不同的特点和应用,下面将介绍机器人常用的坐标系。
笛卡尔坐标系笛卡尔坐标系是最为常用的坐标系之一,使用三个互相垂直的轴线(X、Y、Z)描述物体的位置和姿态。
该坐标系以物体的质心为原点,X轴正方向指向右侧,Y轴正方向指向前方,Z轴正方向指向上方。
笛卡尔坐标系适用于描述机器人的绝对位置,对机器人工作空间的描述较为精确。
极坐标系极坐标系也称为柱面坐标系,使用两个参数(半径r和极角θ)描述物体的位置和姿态。
该坐标系以物体的质心为原点,在平面内定义一个极坐标系,半径r表示物体到原点的距离,极角θ表示物体到X轴正方向的旋转角度。
极坐标系适用于描述机器人的相对位置,且具有较好的旋转性能,在一些特定的应用中可以取代笛卡尔坐标系。
欧拉角坐标系欧拉角坐标系是使用三个角度(俯仰角、偏航角、横滚角)描述物体的绝对方位和姿态。
该坐标系以物体的姿态(方向)为原点,其中俯仰角表示物体在Y轴(XZ平面)上的旋转角度,偏航角表示物体在Z 轴(XY平面)上的旋转角度,横滚角表示物体在X轴上的旋转角度。
欧拉角坐标系适用于描述机器人在工作过程中的姿态变化。
四元数坐标系四元数坐标系是一种超复数形式的坐标系,使用四个参数(实部+三个虚部)描述物体的方向和姿态。
该坐标系以物体的姿态为原点,其中实部表示物体在该方向上的放大倍数,三个虚部表示物体围绕该方向上的旋转情况。
四元数坐标系适用于描述机器人运动过程中的转动变化,具有计算复杂度低、适用范围广等优点。
总结以上是机器人常用的坐标系,它们各具特点,可根据具体应用选择合适的坐标系。
在机器人的运动控制中,坐标系是机器人的位置和姿态的基本描述方式,熟练掌握坐标系的应用可以提高机器人运动的精度和效率。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
V轴 绕Y轴 旋转
动作图示
沿 Z 轴平 Z 轴 行移动
绕末端工 W 轴 具所指方
向旋转
Z
X Y
沿 X 轴平行移动
Z
X Y
沿 Y 轴平行移动
(3) 工具坐标系 原点定义在 TCP 点,并且假定工具的有效方
所 处
向为
X
轴(有些机器人厂商将工具的有效方向定义为
Z
轴),
位 置
而
Y
轴、
Z
轴由右手法则确定。
3.3 机器人安全操作规程
3.3.1 示教和手动机器人时 3.3.2 再现和生产运行时
3.4 手动移动机器人
3.4.1 移动方式
返回
3.4.2 典型坐标系下的手动操作
目录
学习目标
所
处
位
置
——— —
掌握机器人
【 学
运动轴与坐标
习 目 标
系
】
能够熟练进 行机器人坐标 系和运动轴的 选择
返回 目录
3.1.2 机器人坐标系的种类
所
目前,大部分商用工业机器人系统中,均可使用关节坐标
处 位
系、直角坐标系、工具坐标系和用户坐标系,
而工具坐标系和用
置——户— 坐标系同属于直角坐标系范畴 。
—
【
课
堂
认 知
机器人坐
】
标系种类
关节坐标系
工具坐标系
直角坐标系
用户坐标系
TCP 为机器人系统控制点,出厂是默认位于最后一 个运动轴或安装法兰的中心,安装工具后 TCP 点将发生改变。
【 课
经常用到。
堂
认
知
】
动作后
动作前
动作中
动作后 动作前 动作中
关节坐标系下的单轴运动
直角坐标系下的多轴协调运动
A5
轴5
A4
轴4
———
— Z轴向上, Y 轴按右手法则确定。
【 课 堂 认 知 】
Z
X
Y
直角坐标系原点
直角坐标系下的各轴动作
所 处 位
轴类型
轴 名称
动作 说明
置
———
—
【 课
X 轴 沿 X 轴平 行移动
堂
认
知
】
主轴 (基本轴 )
Y轴
沿 Y 轴平 行移动
动作图示
轴类型
轴 名称
动作 说明
U轴 绕Z轴 旋转
次轴 (腕部
(1) 关节坐标系
所 处
在关节坐标系下,机器人各轴均可实现单独正向或反向
位置运动。对大范围运动,且不要求 TCP 姿态的,可选择关节坐标
——系— — 。轴类型
ABB
轴名称 FANUC YASKAWA
KUKA
动作说明
动作图示
【
课
轴1
J1
堂
认
知
】轴
主 轴2
J2
S轴 L轴
A1
本体 左右回转
A2
大臂 上下运动
(基本轴)
轴3
J3
U轴
A3
小臂 前后运动
轴4
J4
次轴
(腕部轴) 轴 5
J5
R轴 B轴
A4
手腕 回旋运动
A5
手腕 上下摆运动
轴6
J6
T轴
A6
手腕 圆周运动
(2) 直角坐标系(世界坐标系、大地坐标系)
所 处
机器人示教与编程时经常使用的坐标系之一 ,原点
位 置
定义在机器人安装面与第一转动轴的交点处, X 轴向前,
工业机器人技术及应用
— 手动操纵工业机器人
主 编:兰 虎
所 工业机器人的主要技术指标
【
课 前
有哪些?
回
顾 】
工业机器人的点位运动和连续
路径运动?
章节目录
3.1 机器人运动轴与坐标系
3.1.1 机器人运动轴的名称 3.1.2 机器人坐标系的种类
3.2 认识和使用示教器
学习目标 导入案例 课堂认知 扩展与提高 本章小结 思考练习
次轴 (腕部轴) Ry 轴 绕 Y 轴
旋转
动作图示
Z 轴 沿 Z 轴平 行移动
Rz 轴 绕 Z 轴 旋转
(4) 用户坐标系
所 处
可根据需要定义用户坐标系。 当机器人配备多个工作
位 置
台时,选择用户坐标系可使操作更为简单
。在用户坐标系中,
———TCP 点将沿用户自定义的坐标轴方向运动。
—
【
课
堂
Z
认
知
置——轴— , 基座轴 和工装轴 统称 外部轴 。
—
机器人轴
【 课
机器机器人人操操作作机(机本体()本的轴机,)属
堂
的轴,属于机器人本身。
认
知
】
基座轴
机器人整体移动的轴,如行走 轴(滑移平台或导轨)。
工装轴
机器人轴和基座轴以外的 轴,指使工装夹具翻转和 回转的轴
机器人系统中各个运动轴的定义
3.1 机器人运动轴与坐标系
在进行相对于工件不改变工
——具— 姿态的平移操作时选用该坐标系最为适宜。
—
【 课 堂 认 知 】
Y
Z
X
工具坐标系原点
工具坐标系下的各轴动作
所 处 位
轴类型
轴 名称
动作 说明
置
———
—
【
X轴
沿 X 轴平 行移动
课
堂
认
知
】
主轴 (基本轴) Y
轴
沿 Y 轴平 行移动
动作图示
轴类型
轴 名称
动作 说明
Rx 轴 绕 X 轴 旋转
导入案例
所 处
Universal Robots 公司推出革命性的新型工业机
位 置 ———
器人UR5 机器人自重很轻(仅 18.4
— kg ),可以方便地在生产场地移动,而
【 导
且不需要繁琐的安装与设置就可以迅速
入 案
地融入到生产线中,与员工交互合作。
例 】
编程过程可通过教学编程模式实现,用
户可以扶住 UR 机械臂,手动引导机械
所
A5
轴5
处
A4
位
轴4
置 ———
A3
A6 轴6
轴3
—
【
课
堂
认
A2
轴2
知
】
A1
轴1
KUKA 机器人
ABB 机器人
典型机器人操作机各运动轴
A1 、 A2 和 A3 三轴(轴 1 、轴 2 和轴 3 )称为基本轴 或主轴, 用以保证末端执行器达到工作空间的任意位置。
A4 、 A5 和 A6 三轴(轴 4 、轴 5 和轴 6 )称为腕部轴或 次轴, 用以实现末端执行器的任意空间姿态。
臂,按所需的路径及移动模式运行机械
臂一次, UR 机器人就能自动记住移动
路径和模式。机器人通过一套独特的、
友好的图形用户界面操作,在触摸屏幕
上,有一系列范围广泛的功能让用户选
择。任何重复性的生产过程,都能够使
用它并从中受益。
3.1 机器人运动轴与坐标系
3.1.1 机器人运动轴的名称
所
处 位
通常机器人运动轴按其功能可划分为机器人轴、基座轴和工装
】
X
Y
用户坐标系原点
用户坐标系下的各轴动作
轴类型
轴 名称
动作 说明
动作图示
轴类型
轴 名称
动作 说明
动作图示
X轴
沿 X 轴平 行移动
Rx 轴 绕 X 轴 旋转
主轴 (基本轴) Y 轴
沿 Y 轴平 行移动
次轴 (腕部轴) Ry 轴 绕 Y 轴
旋转
Z轴
沿 Z 轴平 行移动
Rz 轴 绕 Z 轴 旋转
3.1 机器人运动轴与坐标系
所 处
不同的机器人坐标系功能等同,即机器人在关节坐标系下完成的 动作,同样可在直角坐标系下实现。
位
置———提示
—
机器人在关节坐标系下的动作是单轴运动,而在直角坐标系下则 是多轴联动。除关节坐标系以外,其他坐标系均可实现控制点不变动
作(只改变工具姿态而不改变 TCP 位置)在进行机器人 TCP 标定时