第一节 集合的概念与运算-教师版
1-1_集合的概念与运算课件

补集: 补集:∁UA={x|x∈U且x∉A}. = ∈ 且 ∉ . U为全集,∁UA表示 相对于全集 的补集. 为全集, 表示A相 于全集U的 表示 (2)集合的运算性质 集合的运算性质 集合的运算性 ①A∪B=A⇔B⊆A,A∩B=A⇔ A⊆B ∪ = ⇔ ⊆ , = ⇔ ⊆ ②A∩A=A,A∩∅= ∅ ; = , ∅ ③A∪A=A,A∪∅=A; ∪ = , ∪ ; ④A∩∁UA=∅,A∪∁UA=U,∁U(∁UA)=A. ∁ = ∪ = , ∁ = ;
考基联动
考向导析
规范解答
限时规范训练
②若 B≠∅,
m+1≤2m-1, 则-2≤m+1, 2m-1≤5.
(2)若 A⊆B,
解得 2≤m≤3.由①②得,m 的取值范围是(-∞,3].
2m-5.
∴m 的取值范围是[3,4].
第 1 讲 集合的概念与运算
1.了解集合的含义、元素与集合的“属于”关系,能用自然语言、图形语言、 .了解集合的含义、元素与集合的“属于”关系,能用自然语言、图形语言、 集合语言(列举法或描述法 描述不同的具体问题 集合语言 列举法或描述法)描述不同的具体问题,理解集合之间包含与相等 列举法或描述法 描述不同的具体问题, 的含义,能识别给定集合的子集,在具体情境中,了解全集与空集的含义. 的含义,能识别给定集合的子集,在具体情境中,了解全集与空集的含义. 2.理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集,理解 .理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集, 在给定集合中一个子集的补集的含义,会求给定子集的补集, 在给定集合中一个子集的补集的含义,会求给定子集的补集,能使用韦恩图 (Venn)表达集合的关系及运算. 表达集合的关系及运算. 表达集合的关系及运算
高中数学新人教A版必修1课件:第一章集合与函数概念1.1.3集合的基本运算(第1课时)并集和交集

集合运算时忽略空集致错
• 典例 4 集合A={x|x2-3x+2=0},B={x|x2-2x+a- 1=0},A∩B=B,求a的取值范围.
• [错解] 由题意,得A={1,2}.∵A∩B=B,∴1∈B,或者 2∈B,∴a=2或a=1.
• [错因分析] A∩B=B⇔A⊇B.而B是二次方程的解集,它
可能为空集,如果B不为空集,它可能是A的真子集,也可
B.{x|-4<x<-2}
• C.{x|-2<x<2} D.{x|2<x<3}
• [解析] N={x|x2-x-6<0}={x|(x-3)(x+2)<0}={x|- 2<x<3},
• ∴M∩N={x|-4<x<2}∩{x|-2<x<3}
• ={x|-2<x<2},故选C.
• 4.(202X·江苏,1)已知集合A={-1,0,1,6},B={x|x>0, x∈R},则A∩B=___{_1,_6_} ______.
• 2.并集和交集的性质并集
简单 性质
A∪A=___A___; A∪∅=___A___
常用 结论
A∪B=B∪A; A⊆(A∪B); B⊆(A∪B);
A∪B=B⇔A⊆B
交集
A∩A=___A___; A∩∅=___∅___
A∩B=B∩A; (A∩B)⊆A; (A∩B)⊆B;
A∩B=B⇔B⊆A
• 1.(202X·全国卷Ⅲ理,1)已知集合A={-1,0,1,2},B= {x|x2≤1},则A∩B= ( A )
• 将x=-2代入x2-px-2=0,得p=-1,∴A={1,-2},
• ∵A∪B={-2,1,5},A∩B={-2},∴B={-2,5},
高中数学(新人教A版)必修第一册:集合的基本运算【精品课件】

的交集仍存在,此时A∩B=∅.
(三)交集
【做一做】
【探究2】
已知集合A={0,2},B={-2,-1,0,1,2},
则A∩B=(
)
A.{0,2}
C.{0}
B.{1,2}
D.{-2,-1,0,1,2}
交集的性质:
[答案]
A
①A∩B=B∩A;②A∩A=A;
③A∩∅=∅; ④若A⊆B,则A∩B=A;
(四)集合的交并运算
【巩固练习1】
(1) 已知集合A={x|(x-1)(x+2)=0},B={x|(x+2)(x-3)=0},则集合A∪B是(
A.{-1,2,3}
B.{-1,-2,3}
C.{1,-2,3}
D.{1,-2,-3}
(2) 若集合A={x|-2≤x<3},B={x|0≤x<4},则A∪B=________.
⑤(A∩B)⊆A;(A∩B)⊆B.
(四)集合的交并运算
1.集合的并集运算
例1.
(1)设集合M={x| 2 +2x=0,x∈R},N={x| 2 -2x=0,x∈R},则M∪N=(
A.{0}
B.{0,2} C.{-2,0} D.{-2,0,2}
(2)已知A={x|x≤-2,或x>5},B={x|1<x≤7},求A∪B。
(2)在解决问题时,用到了哪些数学思想?
第一章 集合与常用逻辑用语
1.3 集合的基本运算(第2课时)
教材分析
本小节内容选自:
《普通高中数学必修第一册》
人教A版(2019)
第一课时
课时内容
集合的并集、交集运算
集合的补集、综合运算
所在位置
教材第10页
第01讲第一章集合与简易逻辑集合的概念与运算课件新人教A版课件

新疆 源头学子小屋 http://w ww .xj /w xc/ 特级教师 王新敞
w xckt@
6.描述法及两种表述形式:把集合中的元素的公
共属性描述出来,写在大括号内表示集合的方 法. ①数式形式 如由不等式x-3>2的所有解组成的集合,
可表示为 {x│x-3>2};
w xckt@
例6 已知A={x∈R|x2+ax+1=0},B={1,2},且 A B,求实数a的取值范围.
解:由已知,得:A ,或{1},或{2}.
若A , a 2 4 0, 2 a 2.
若A
{1},
12
a
2
a 1 40
10.全集定义:如果集合S含有我们所要研究的各 个集合的全部元素,这个集合就可以看作一个全 集,记作U.
1/2/2020
湖北省随州市第二中学 操厚亮
8
新疆 王新敞
奎屯
二名、称 知识点归纳交集新疆 源头学子小屋 http://w ww .xj /w xc/ 特级教师 王新敞 w xckt@
已知: (1)(CUA)∩(CUB)={4,6,8}; (2)(CUA)∩B={1,9};(3)A∩B={2}.求A、B.
解:∵(CUA)∩(CUB)={4,6,8}
∴ CU(A∪B)= {4,6,8}
∴A∪B={1,2,3,5,7,9}
UB
1,9
2
A
3,5,7
4,6,8
∴B= [(CUA)∩B]∪(A∩B)={1,2,9}
当集合A不包含于集合B,或集合B不包含集合A,则 记作A B(B A)
8.真子集的定义:如果A B,并且 A ≠B,则 集合A是集合B的真子集.
人教版新课标高一数学必修一 第一章 集合与函数的概念 1..1 集合 集合的运算 教案及课后习题

微课程2:集合的运算子集真子集定义对于两个集合A、B,如果集合A中的任意一个元素都是集合B中的元素,称集合A为集合B的子集若集合A⊆B,但存在元素x ∈B,且x∉A,称集合A是集合B的真子集符号语言若任意x∈A,有x∈B,则A⊆B。
若集合A⊆B,但存在元素x ∈B ,且x∉A,则A B表示方法A为集合B的子集,记作A⊆B或B⊇A。
A不是B的子集时,记作A B或B A。
若集合A是集合B的真子集,记作A B或B A。
性质①A⊆A ②∅⊆A③A⊆B,B⊆C⇒A⊆CA B,且B C⇒A C子集个数含n个元素的集合A的子集个数为n2含n个元素的集合A的真子集个数为n2-1空集不含任何元素的集合,记为∅。
空集是任何集合的子集,用符号语言表示为∅⊆A;若A非空(即A≠∅),则有∅A。
集合的运算:1. 并集的概念(1)自然语言表示:由所有属于集合A或属于集合B的元素所组成的集合,称为集合A与B的并集。
(2)符号语言表示:A∪B={x|x∈A,或x∈B}。
(3)图形语言(Venn图)表示:。
2. 交集的概念(1)自然语言表示:由属于集合A且属于集合B的所有元素所组成的集合,称为集合A与B的交集。
(2)符号语言表示:A∩B={x|x∈A,且x∈B}。
(3)图形语言表示(Venn图):。
3. 补集的概念(1)自然语言表示:对于集合A,由全集U中不属于集合A的所有元素所组成的集合,称为集合A相对于全集U的补集,简称为集合A的补集。
(2)符号语言表示:A={x|x∈U,且x∉A}。
(3)图形语言表示(Venn图):,阴影部分表示A。
【典例精析】例题1 判断下列说法是否正确,如果不正确,请加以改正。
(1){∅}表示空集;(2)空集是任何集合的真子集;(3){1,2,3}不是{3,2,1};(4){0,1}的所有子集是{0},{1},{0,1};(5)如果A ⊇B 且A≠B ,那么B 必是A 的真子集; (6)A ⊇B 与B ⊆A 不能同时成立。
高中数学第一章集合与函数概念1.1.3集合的基本运算第一课时并集、交集课件新人教A版必修14

(2)已知A={x|x≤-2,或x>5},B={x|1<x≤7},求A∪B,A∩B.
解:(2)将x≤-2或x>5及1<x≤7在数轴上表示出来, 据并集的定义,图中所有阴影部分即为A∪B, 所以A∪B={x|x≤-2,或x>1}. 据交集定义,图中公共阴影部分即为A∩B, 所以A∩B={x|5<x≤7}.
(2)并集的运算性质
性质 A∪B=B∪A (A∪B)∪C=A∪(B∪C)
A∪A=A A∪ = ∪A=A 如果 A⊆ B,则 A∪B=B A⊆ (A∪B),B⊆ (A∪B)
说明 并集运算满足交换律 并集运算满足结合律 集合与本身的并集仍为集合本身 任何集合与空集的并集仍为集合本身 任何集合与它子集的并集都是它本身 任何集合都是该集合与另一个集合的并集的子集
解:(2)①因为9∈(A∩B),所以9∈B且9∈A,所以2a-1=9或a2=9,所以 a=5或a=±3.检验知a=5或a=-3. ②因为{9}=A∩B,所以9∈(A∩B),所以a=5或a=-3.当a=5时,A={-4,9, 25},B={0,-4,9},此时A∩B={-4,9},与A∩B={9}矛盾,故舍去;当a=-3 时,A={-4,-7,9},B={-8,4,9},A∩B={9},满足题意. 综上可知a=-3.
解:如图,要使 S∪T=R,
则只需
a a
7 4, 1 2,
即-3≤a≤-1.
故 a 的取值范围为{a|-3≤a≤-1}.
一题多变2:本题(2)中,将集合A变为A={x|a-2≤x≤2a},其他条件不变, 求a的范围.
高中数学 第一讲 集合的概念与运算教案(教师版) 新人教版
第一讲 集合的概念与运算教学目的: 理解集合、子集、交集、并集、补集的概念。
了解空集和全集的意义,了解属于、包含、相等关系的意义,能正确进行“集合语言”、“数学语言”“图形语言”的相互转化.教学重点: 交集、并集、补集的定义与运算.教学难点: 交集、并集、补集的定义及集合的应用.【知识概要】新课标教学目标: 1.集合的含义与表示(1)通过实例,了解集合的含义,体会元素与集合的“属于”关系;(2)能选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用; 2.集合间的基本关系(1)理解集合之间包含与相等的含义,能识别给定集合的子集; (2)在具体情境中,了解全集与空集的含义; 3.集合的基本运算(1)理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集; (2)理解在给定集合中一个子集的补集的含义,会求给定子集的补集;(3)能使用Venn 图表达集合的关系及运算,体会直观图示对理解抽象概念的作用. 知识点1 集合某些指定的对象集在一起就成为一个集合。
集合中每个对象叫做这个集合的元素 点评:(1)集合是数学中不加定义的基本概念.构成集合的元素除了常见的数、式、点等数学对象之外,还可以是其他任何对象. (2)集合里元素的特性确定性:集合的元素,必须是确定的.任何一个对象都能明确判断出它是或者不是某个集合的元素.互异性:集合中任意两个元素都是不相同的,也就是同一个元素在集合中不能重复出现. 无序性:集合与组成它的元素顺序无关.如集合{a, b, c}与{c, a, b}是同一集合. (3)元素与集合的关系如果a 是集合A 的元素,就说a 属于集合A ,记作a ∈A ;如果a 不是集合A 的元素,就说a 不属于集合A ,记作a ∉A (或a ∈A ).(4)集合的分类集合的种类通常可分为有限集、无限集、空集(用记号φ表示).有限集:含有有限个元素的集合(单元素集:只有一个元素的集合叫做单元素集。
1.1集合的概念与运算.pptx
间 的
子 集
集合 A 中任意一个元素均为集合 B 中的元素
基
本 为集合 B 中的元素,且集合 B 中至少有一个元素不是集合 A 中的元素
示关系 文字语言
空集 空集是任何集合的子集,是任何非空集合的真子集
符号语 言 A=B A⊆ B
A⫋ B
第1讲 集合的概念与运算
A∪B=B∪A A∪A=A A∪⌀=⌀∪A=A 如果 A⊆ B,则 A∪B=B
A∪∁UA=U A∩∁UA=⌀ ∁U(∁UA)=A
第1讲 集合的概念与运算 要点梳理 考点自测
考纲解读 主主干干梳梳理理 考点层析
12345
1.已知集合 A={x∈N|- 3≤x≤ 3},则必有( )
A.-1∈A
B.0∈A
第1讲 集合的概念与运算
考纲解读 主干梳理
考点层析
考向1
考向2
考向2
考向4 易错辨析点拨
考向 1 集合的基本概念
【例 1】 (1)已知集合 A={0,1,2},则集合 B={x-y|x∈A,y∈A}中元素的个数 是( )
A.1
B.3
C.5
D.9
(2)已知集合 A={m+2,2m2+m},若 3∈A,则 m 的值为
B=( )
A.[-2,-1]
B.[-1,2)
C.[-1,1]
D.[1,2)
解析:由已知,可得 A={x|x≥3 或 x≤-1},则 A∩B={x|-2≤x≤-1}=[-2,-1].故选
A.
答案:A
第1讲 集合的概念与运算 要点梳理 考点自测
考纲解读 主主干干梳梳理理 考点层析
12345
3.设集合 A={x|1≤x≤2},B={x|x≥a},若 A⊆ B,则 a 的取值范围是( )
第一讲 集合的概念与运算
2.完成《学案》知识梳理,双基自测部分.(一)复习导入展示知识梳理模块的PPT,唤醒学生已有的知识储备,激发学习兴趣,导入新课.导语:在高一年级,我们已经学习了集合的概念及运算.下面,我们一起做一下这些填空题,检验一下对过往知识的掌握情况.(二)考点突破·互动探究考点一集合的基本概念——自主练透例1(1)已知集合A={x|x=3k+1,k∈Z},则下列表示不正确的是() A.-2∈A B.2023∈AC.3k2+1∉A D.-35∈A(2)(理)已知集合A =⎩⎨⎧⎭⎬⎫x ⎪⎪x ∈Z ,且32-x ∈Z ,则集合A 中的元素个数为( )A .2B .3C .4D .5(文)(2020·全国Ⅲ卷)已知集合A ={(x ,y )|x ,y ∈N *,y ≥x },B ={(x ,y )|x +y =8},则A ∩B 中元素的个数为( )A .2B .3C .4D .6(3)已知集合A ={a +2,(a +1)2,a 2+3a +3},若1∈A ,则2 023a 的值为 ;若1∉A ,则a 不可能取得的值为 .做题方法:(1)用描述法表示集合,首先要搞清楚集合中代表元素的含义,再看元素的限制条件,明白集合的类型,是数集、点集还是其他类型的集合.(2)集合中元素的互异性常常容易忽略,特别是含有字母的集合,在求出字母的值后,要注意检验集合中元素是否满足互异性.分类讨论的思想方法常用于解决集合问题.考点二 集合之间的基本关系——师生共研例2 (1)(2021·新高考八省联考)已知M ,N 均为R 的子集,且C R M ⊆N ,则M ∪(C R N )=( )A .∅B .MC .ND .R(2)已知集合A =⎩⎨⎧⎭⎬⎫-13,12,B ={x |ax +1=0},且B ⊆A ,则实数a 的值不可能为( )A .-3B .-2C .0D .3(3)(理)设集合M =⎩⎨⎧x ⎪⎪⎭⎬⎫x =k 3+16,k ∈Z ,N =⎩⎨⎧x ⎪⎪⎭⎬⎫x =k 6+13,k ∈Z ,则下面正确的是( ) A .M =N B .M ⊊N C .N ⊊MD .M ∩N =∅(文)已知集合A =⎩⎨⎧⎭⎬⎫x ⎪⎪x =k +12,k ∈Z ,B =⎩⎨⎧⎭⎬⎫x ⎪⎪x =k 2,k ∈Z ,则A 与B 之间的关系是( ) A .A =B B .A ⊊B C .B ⊊AD .无法比较做题方法:判断集合间关系的3种方法列举法根据题中限定条件把集合元素表示出来,然后比较集合元素的异同,从而找出集合之间的关系.(如第(3)题解法一)描述法从元素的结构特点入手,结合通分、化简、变形等技巧,从元素结构上找差异进行判断.(如第(3)题解法二)数轴法在同一个数轴上表示出两个集合,比较端点之间的大小关系,从而确定集合与集合之间的关系.考点三集合的基本运算——多维探究角度1集合的运算例3(1)(2021·新高考Ⅰ,1,5分)设集合A={x|-2<x<4},B={2,3,4,5},则A∩B=()A.{2}B.{2,3}C.{3,4}D.{2,3,4}(2)(2020·课标Ⅱ)已知集合U={-2,-1,0,1,2,3},A={-1,0,1},B={1,2},则∁U(A∪B)=()A.{-2,3}B.{-2,2,3}C.{-2,-1,0,3}D.{-2,-1,0,2,3}(3)(理)(2021·浙江杭州模拟)已知全集U=R,集合A={x|x2-3x+2<0},集合B={x|log3(x+1)<1},则A∪B=,C R A)∩B=.(文)设全集为R,集合A={x|0<x<2},B={x|x≥1},则A∩(C R B)=()A.{x|0<x≤1}B.{x|0<x<1}C.{x|1≤x<2}D.{x|0<x<2}角度2利用集合的运算求参数例4(1)已知集合A={x|x2-3x<0},B={1,a},且A∩B有4个子集,则实数a 的取值范围是()A.(0,3)B.(0,1)∪(1,3)C.(0,1)D.(-∞,1)∪(3,+∞)(2)已知集合A={x|-2≤x≤5},B={x|m+1≤x≤2m-1}≠∅,若A∩B=B,则实数m 的取值范围为.[引申1]本例(2)中若B={x|m+1≤x≤2m-1}情况又如何?解:应对B=∅和B≠∅进行分类.①若B=∅,则2m-1<m+1,此时m<2.②若B≠∅,由例得2≤m≤3.由①②可得,符合题意的实数m的取值范围为(-∞,3].[引申2]本例(2)中是否存在实数m,使A∪B=B?若存在,求实数m的取值范围;若不存在,请说明理由.解:由A ∪B =B ,即A ⊆B 得⎩⎪⎨⎪⎧m +1≤-2,2m -1≥5,即⎩⎪⎨⎪⎧m ≤-3,m ≥3,不等式组无解,故不存在实数m ,使A ∪B =B . [引申3]本例(2)中,若B ={x |m +1≤x ≤1-2m },A ⊊B ,则m 的取值范围为 (-∞,-3] .解:由题意可知⎩⎪⎨⎪⎧m +1≤-2,1-2m ≥5,解得m ≤-3.做题方法:集合的基本运算的关注点1.集合是由元素组成的,从研究集合中元素的构成入手是解决集合运算问题的前提. 2.有些集合是可以化简的,先化简再研究其关系并进行运算,可使问题简单明了,易于解决.3.注意数形结合思想的应用,常用的数形结合形式有数轴、坐标系和Venn 图. 4.根据集合运算结果求参数,先把符号语言译成文字语言,然后应用数形结合求解.考点四 集合中的新定义问题例5 定义集合的商集运算为A B =⎩⎨⎧x ⎪⎪⎭⎬⎫x =m n ,m ∈A ,n ∈B ,已知集合A ={2,4,6},B =⎩⎨⎧x ⎪⎪⎭⎬⎫x =k 2-1,k ∈A ,则集合⎝⎛⎭⎫B A ∪B 中的元素个数为( B ) A .6 B .7 C .8D .9做题方法:集合新定义问题的“3定”(1)定元素:确定已知集合中所含的元素,利用列举法写出所有元素.(2)定运算:根据要求及新定义运算,将所求解集合的运算问题转化为集合的交集、并集与补集的基本运算问题,或转化为数的有关运算问题.(3)定结果:根据定义的运算进行求解,利用列举法或描述法写出所求集合中的所有元素. 教师活动:通过课件,出示例题,对有难度的题型加以引导. 学生活动:认真审题,独立完成.设计意图:使学生明确本节考点及命题方式. (三)达标检测A∩B={x|x∈A且A∪B={x|x∈A或。
1.3 集合的基本运算(第一课时) 课件(共15张PPT)
课堂小结
并集的概念: 一般地,由所有属于集合A或属于集合B的元素所组成的 集合,称为集合A与B的并集.记作:A∪B(读作:“A并B”)即: A∪B ={x|x∈A,或x∈ B}.
并集的性质:(1)A∪A=A; (2)A∪ =A; (3)若A⊆(A∪B),B⊆(A∪B); (4)若A⊆B,则A∪B=B,反之也成立
交集的概念:一般地,由所有属于集合A且属于集合B的元素组成的集合, 称为集合A与B的交集.记作:A∩B(读作:“A交B”) 即: A∩B ={ x | x ∈ A ,且 x ∈ B}.
交集的性质:(1)A∩A=A; (2)A∩ = ; (3)(A∩B)⊆B,(A∩B)⊆A; (4)若A⊆B,则A∩B=A,反之也成立.
解:A∩B就是立德中学高一年级中那些既参加百米赛跑又参加跳高 比赛的同学组成的集合.所以,
A∩B={x|x是立德中学高一年级既参加百米赛跑又参加跳高比赛的 同学}.
例题精讲
【例4】设平面内直线l1上的点的集合为L1, 直示线l1,l2上l2的点位的置集关合系为.L2,试用集合的运算表
解:(1)直线l1与直线l2相交于一点P可表示为:L1∩L2={P};
上述两个问题中,集合A、B和C之间都具有这样一种关系:集合C是 由所有属于A或属于集合B的元素组成的.
并集
一般地,由所有属于集合A或属于集合B的元素所
组成的集合,称为集合A与B的并集。
记作:A∪B(读作:“A并B”)
即:
A∪B ={ x | x ∈ A ,或 x ∈ B}
这说明:两个集合求并集,结果还是一个集合,是由集合A与B 的所有 元素组成的集合(由集合的互异性,重复元素只看成一个元素,不能重复写出).
思考
下列关系式成立吗? (1)A∪A=A;(2)A∪ =A
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
集合与常用逻辑用语第一节集合的概念与运算考纲1.集合的含义与表示(1)了解集合的含义、元素与集合的“属于”关系.(2)能用自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题.2.集合间的基本关系(1)理解集合之间包含与相等的含义,能识别给定集合的子集.(2)在具体情境中,了解全集与空集的含义.3.集合的基本运算(1)理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集.(2)理解在给定集合中一个子集的补集的含义,会求给定子集的补集.(3)能使用Venn图表示集合的关系及运算.,整知识1.集合与元素(1)集合元素的三个特征:确定性、互异性、无序性.(2)元素与集合的关系是属于或不属于关系,用符号∈或∉表示.(3)集合的表示法:列举法、描述法、图示法.(1)集合关系图解真子集集合相等A=B(2)不含任何元素的集合叫做空集,记作,并规定空集是任何集合的子集,是任何非空集合的真子集.3.集合的基本运算集合的并集集合的交集集合的补集悟方法1.集合的运算性质并集的性质:交集的性质:补集的性质:2.判断集合关系的三种方法(1)一一列举观察;(2)集合元素特征法:首先确定集合的元素是什么,弄清集合元素的特征,再利用集合元素的特征判断集合关系;(3)数形结合法:利用数轴或Venn图.3.数形结合思想数轴和V enn图是进行交、并、补集运算的有力工具,数形结合是解集合问题的常用方法,解题时要先把集合中各种形式的元素化简,使之明确化,尽可能地借助数轴、直角坐标系或Venn图等工具,将抽象的代数问题具体化、形象化、直观化,然后利用数形结合的思想方法解题.测基础1.判断下面结论是否正确(请在括号中打“√”或“×”)(1).()(2).()(3)在集合中,可用符号表示为.()(4)N⊆N A AA⊆Z.()(5)若,则A=B=C.()答案:(1)×(2)√(3)×(4)×(5)×2.已知集合,则( )解析: 解答案: B3.(2015·山东卷)已知集合,则=( )解析: 由已知可得集合A ={x |1<x <3},又因为B ={x |2<x <4},所以A ∩B =(2,3),故选C . 答案: C4.(2015·湖南卷)已知集合则=________.解析:答案:5.已知集合若,则=________.解析: 由知 log2n =m n =1,或log2n =1,n =m , ∴n =1m =0,或n =2.m =2, 答案: -1或0考向1. 集合的基本概念1.设集合A ={-1,0,2},集合B ={-x |x ∈A 且2-x ∉A },则B =( ) A .{1} B .{-2} C .{-1,-2} D .{-1,0}解析: 当x =-1时,2-x =3∉A ,此时-x =1∈B , 当x =0时,2-0=2∈A , 当x =2时,2-2=0∈A , 所以B ={1},故选A . 答案: A2.已知集合M ={1,m +2,m 2+4},且5∈M ,则m 的值为( ) A .1或-1 B .1或3 C .-1或3 D .1,-1或3解析: ∵5∈{1,m +2,m 2+4},∴m +2=5或m 2+4=5, 即m =3或m =±1.当m =3时,M ={1,5,13};当m =1时,M ={1,3,5}; ∴m 的值为3或1. 答案: B 3.已知集合,若A =ϕ,则实数a 的取值范围为________.解析: ∵A =ϕ,∴方程ax 2-3x +2=0无实根, 当a =0时,x =32不合题意, 当a ≠0时,Δ=9-8a <0,∴a >89. 答案: ,+∞9[归纳升华] 解决集合问题的一般思路(1)研究集合问题,一定要抓住元素,看元素应满足的属性,对于含有字母的集合,在求出字母的值后,要注意检验集合的元素是否满足互异性.(2)对于集合相等首先要分析已知元素与另一个集合中哪一个元素相等,分几种情况列出方程(组)进行求解,要注意检验是否满足互异性.2. 集合间的基本关系(1)已知集合A ={x |y =,x ∈R },B ={x |x =m 2,m ∈A },则( )(2)已知集合,若,则实数m 的取值范围为________. 解析:(1)由题意知(2) ∴①若,则此时②若B ≠ϕ,则2m -1≤5.m +1≥-2,解得2≤m ≤3.由①、②可得,符合题意的实数m 的取值范围为m ≤3. 答案: (1)B (2)(-∞,3] [跟踪训练]1.已知M ={a ||a |≥2},A ={a |(a -2)(a 2-3)=0,a ∈M },则集合A 的子集共有( )A .1个B .2个C .4个D .8个解析: |a |≥2⇒a ≥2或a ≤-2.又a ∈M ,(a -2)(a 2-3)=0⇒a =2或a =±(舍),即A 中只有一个元素2,故A 的子集只有2个,选B . 答案: B2.设a ,b ∈R ,集合{1,a +b ,a }=,b b,则b -a =( ) A .1 B .-1 C .2D .-2解析: 因为{1,a +b ,a }=,b b ,a ≠0,所以a +b =0,则a b=-1,所以a =-1,b =1.所以b -a =2.答案: C3. 集合的基本运算(1)(2015·天津卷)已知全集U ={1,2,3,4,5,6,7,8},集合A ={2,3,5,6},集合B ={1,3,4,6,7},则集合A ∩∁U B =( )A .{2,5}B .{3,6}C .{2,5,6}D .{2,3,5,6,8}(2)(2015·浙江卷)已知集合P ={x |x 2-2x ≥0},Q ={x |1<x ≤2},则(∁R P )∩Q =( ) A .[0,1) B .(0,2] C .(1,2) D .[1,2]解析: (1)由题意得∁U B ={2,5,8}, ∴A ∩∁U B ={2,3,5,6}∩{2,5,8}={2,5}.(2)由x 2-2x ≥0,得x ≤0或x ≥2,即P ={x |x ≤0或x ≥2},所以∁R P ={x |0<x <2}=(0,2).又Q ={x |1<x ≤2}=(1,2],所以(∁R P )∩Q =(1,2). 答案: (1)A (2)C1.(2015·安徽合肥模拟)已知全集U =R ,A ={x |x >1},B ={x |x 2-2x >0},则∁U (A ∪B )=( ) A .{x |x ≤2} B .{x |x ≥1}C .{x |0≤x ≤1}D .{x |0≤x ≤2} 解析: 由x 2-2x >0得x >2或x <0, 即B ={x |x <0,或x >2}, ∴A ∪B ={x |x <0,或x >1},∴∁U (A ∪B )={x |0≤x ≤1}. 答案: C2.(2015·安徽皖南八校联考)已知集合A =,x ∈R 1,B ={-2,-1,1,2},则下列结论正确的是( )A .A ∩B ={-2,-1} B .(∁R A )∪B =(-∞,0)C .A ∪B =(0,+∞)D .(∁R A )∩B ={-2,-1}解析: 因为A =(0,+∞),所以A ∩B ={1,2},(∁R A )∪B ={y |y ≤0或y =1,2},A ∪B ={y |y >0或y =-1,-2},(∁R A )∩B ={-1,-2}.所以D 正确. 答案: D3.已知A ,B 均为集合U ={1,3,5,7,9}的子集,且A ∩B ={3},(∁U B )∩A ={9},则A =( ) A .{1,3} B .{3,7,9} C .{3,5,9} D .{3,9}解析: 因为A ∩B ={3},所以3∈A ,又(∁U B )∩A ={9},所以9∈A .若5∈A ,则5∉B (否则5∈A ∩B ),从而5∈∁U B ,则(∁U B )∩A ={5,9},与题中条件矛盾,故5∉A .同理1∉A,7∉A ,故A ={3,9}. 答案: D4.(2015·江西南昌调研)设全集U =R ,A ={x |x 2-2x ≤0},B ={y |y =cos x ,x ∈R },则图中阴影部分表示的区间是( )A .[0,1]B .[-1,2]C .(-∞,-1)∪(2,+∞)D .(-∞,-1]∪[2,+∞)解析: 因为A ={x |0≤x ≤2}=[0,2],B ={y |-1≤y ≤1}=[-1,1],所以A ∪B =[-1,2],所以∁R (A ∪B )=(-∞,-1)∪(2,+∞). 答案: C5.(2015·新乡市一中月考)设集合A ={x ||x -a |<1,x ∈R },B ={x |1<x <5,x ∈R },若A ∩B =ϕ,则实数a 的取值范围是( )A .{a |0≤a ≤6}B .{a |a ≤2或a ≥4}C .{a |a ≤0或a ≥6}D .{a |2≤a ≤4}解析: |x -a |<1⇔-1<x -a <1⇔a -1<x <a +1,又B ={x |1<x <5},A ∩B =ϕ,故a +1≤1或a -1≥5,即a ≤0或a ≥6. 答案: C[归纳升华] 集合运算问题的常见类型及解题策略(1)离散型数集或抽象集合间的运算,常借助Venn 图求解; (2)连续型数集的运算,常借助数轴求解;(3)已知集合的运算结果求集合,常借助数轴或Venn 图求解;(4)根据集合运算结果求参数,先把符号语言译成文字语言,然后适时应用数形结合求解.追踪集合中的新定义以集合为背景的新定义问题是近几年高考命题创新型试题的一个热点,此类题目常常以“问题”为核心,以“探究”为途径,以“发现”为目的,这类试题只是以集合为依托,考查考生理解问题、解决创新问题的能力.常见的命题形式有新概念、新法则、新运算等,这类试题中集合只是基本的依托.(1)(2015·辽宁铁岭期末)对于集合M 、N ,定义M -N ={x |x ∈M ,且x ∉N },M ⊕N =(M -N )∪(N -M ),设A =,x ∈R 9,B ={x |x <0,x ∈R },则A ⊕B =( ) A .,09B .,09C .49∪[0,+∞)D .49∪(0,+∞)(2)如果集合A 满足若x ∈A ,则-x ∈A ,那么就称集合A 为“对称集合”.已知集合A ={2x,0,x 2+x },且A 是对称集合,集合B 是自然数集,则A ∩B =________.解析: (1)依题意得A -B ={x |x ≥0,x ∈R },B -A =,x ∈R 9,故A ⊕B =49∪[0,+∞). (2)由题意可知-2x =x 2+x ,所以x =0或x =-3.而当x =0时不符合元素的互异性,所以舍去.当x =-3时,A ={-6,0,6},所以A ∩B ={0,6}. 答案: (1)C (2){0,6} [跟踪训练](2015·贵阳市监测考试)已知全集U ={a 1,a 2,a 3,a 4},集合A 是集合U 的恰有两个元素的子集,且满足下列三个条件:①若a 1∈A ,则a 2∈A ;②若a 3∉A ,则a 2∉A ;③若a 3∈A ,则a 4∉A .则集合A =________.(用列举法表示)解析: 若a 1∈A ,则a 2∈A ,则由若a 3∉A ,则a 2∉A 可知,a 3∈A ,假设不成立;若a 4∈A ,则a 3∉A ,则a 2∉A ,a 1∉A ,假设不成立,故集合A ={a 2,a 3}. 答案: {a 2,a 3}[名师点评] 解决集合中新定义问题的两个关键点 (1)紧扣新定义:新定义型试题的难点就是对新定义的理解和运用,在解决问题时要分析新定义的特点,把新定义所叙述的问题的本质弄清楚,并能够应用到具体的解题过程之中. (2)用好集合的性质:集合的性质是破解集合类新定义型试题的基础,也是突破口,在解题时要善于从试题中发现可以使用集合性质的一些因素,在关键之处用好集合的性质.A 级 基础训练1.(2015·全国卷Ⅰ)已知集合A ={x |x =3n +2,n ∈N },B ={6,8,10,12,14},则集合A ∩B 中元素的个数为( )A .5B .4C .3D .2解析: 集合A 中元素满足x =3n +2,n ∈N ,即被3除余2,而集合B 中满足这一要求的元素只有8和14.故选D . 答案: D2.已知集合A =∈Z 3,则集合A 中的元素个数为( ) A .2 B .3 C .4D .5解析: ∵2-x 3∈Z,2-x 的取值有-3,-1,1,3,又∵x ∈Z ,∴x 值分别为5,3,1,-1,故集合A 中的元素个数为4, 故选C . 答案: C3.已知集合A ={-1,0,a },B ={x |0<x <1},若A ∩B ≠ϕ,则实数a 的取值范围是( ) A .(-∞,0) B .(0,1) C .{1} D .(1,+∞)解析: 由题意可知,a ∈B ,即0<a <1. 答案: B 4.(2015·河南洛阳二模)集合A ={x |x <0},B ={x |y =lg[x (x +1)]},若A -B ={x |x ∈A ,且x ∉B },则A -B =( )A .{x |x <-1}B .{x |-1≤x <0}C .{x |-1<x <0}D .{x |x ≤-1} 解析: 由,可知x >0或x <-1,故故A -B =[-1,0).答案: B5.(2015·山东临沂期中)已知全集U =R ,集合若∁U B ⊆A ,则实数a 的取值范围是( )解析: ∵x 2-3x +2>0,∴x >2或x <1. ∴A ={x |x >2或x <1},∵B ={x |x ≤a }, ∴∁U B ={x |x >a }.∵∁U B ⊆A ,借助数轴可知a ≥2,故选D . 答案: D6.已知集合A ={x |x 2-2x +a >0},且1∉A ,则实数a 的取值范围是________. 解析: ∵1∉{x |x 2-2x +a >0},∴1∈{x |x 2-2x +a ≤0}, 即1-2+a ≤0,∴a ≤1. 答案: (-∞,1]7.已知集合A ={x |y =},B =<2x<41,则(∁R A )∩B 等于________.解析: 因为A ={x |y =}={x |x ≥0},所以∁R A ={x |x <0}.又B =<2x<41={x |-1<x <2},所以(∁R A )∩B ={x |-1<x <0}.答案: {x |-1<x <0}8.已知集合M ={1,2,3,4},集合A 、B 为集合M 的非空子集,若任意x ∈A 、y ∈B ,x <y 恒成立,则称(A ,B )为集合M 的一个“子集对”,则集合M 的“子集对”共有________个.解析: 当A ={1}时,B 有23-1=7种情况, 当A ={2}时,B 有22-1=3种情况, 当A ={3}时,B 有1种情况,当A ={1,2}时,B 有22-1=3种情况,当A ={1,3},{2,3},{1,2,3}时,B 均有1种情况,∴满足题意的“子集对”共有7+3+1+3+1+1+1=17个. 答案: 17 9.已知集合A ={x |1≤x <5},C ={x |-a <x ≤a +3},若C ∩A =C ,则a 的取值范围是________. 解析: 因为C ∩A =C ,所以C ⊆A . ①当C =ϕ时,满足C ⊆A , 此时-a ≥a +3,得a ≤-23;②当C ≠ϕ时,要使C ⊆A ,则a +3<5,-a≥1,解得-23<a ≤-1.答案: (-∞,-1]10.已知集合A ={-4,2a -1,a 2},B ={a -5,1-a,9},分别求适合下列条件的a 的值. (1)9∈(A ∩B ); (2){9}=A ∩B .解析: (1)∵9∈(A ∩B ), ∴2a -1=9或a 2=9, ∴a =5或a =3或a =-3.当a =5时,A ={-4,9,25},B ={0,-4,9};当a =3时,a -5=1-a =-2,不满足集合元素的互异性; 当a =-3时,A ={-4,-7,9},B ={-8,4,9}, 所以a =5或a =-3.(2)由(1)可知,当a =5时, A ∩B ={-4,9},不合题意, 当a =-3时,A ∩B ={9}. 所以a =-3.11.已知集合A ={x |x 2-2x -3≤0,x ∈R },B ={x |m -2≤x ≤m +2}. (1)若A ∩B =[1,3],求实数m 的值; (2)若A ⊆∁R B ,求实数m 的取值范围.解析: A ={x |-1≤x ≤3},B ={x |m -2≤x ≤m +2}. (1)∵A ∩B =[1,3],∴m +2≥3,m -2=1,得m =3.(2)∁R B ={x |x <m -2或x >m +2}. ∵A ⊆∁R B ,∴m -2>3或m +2<-1. ∴m >5或m <-3.故m 的取值范围为(-∞,-3)∪(5,+∞).12.已知集合A ={y |y =2x -1,0<x ≤1},B ={x |(x -a )[x -(a +3)]<0}.分别根据下列条件,求实数a 的取值范围.(1)A ∩B =A ;(2)A ∩B ≠ϕ.解析:因为集合A是函数y=2x-1(0<x≤1)的值域,所以A=(-1,1],B=(a,a+3).a≤-1,(1)A∩B=A⇔A⊆B⇔a+3>1,即-2<a≤-1,故当A∩B=A时,a的取值范围是(-2,-1].(2)当A∩B=ϕ时,结合数轴知,a≥1或a+3≤-1,即a≥1或a≤-4.故当A∩B≠ϕ时,a的取值范围是(-4,1).B 级 能力提升1.已知数集A ={a 1,a 2,…,a n }(1≤a 1<a 2<…<a n ,n ≥2)具有性质P :对任意的i ,j (1≤i ≤j ≤n ),a i a j 与ai aj 两数中至少有一个属于A ,则称集合A 为“权集”,则( )A .{1,3,4}为“权集”B .{1,2,3,6}为“权集”C .“权集”中元素可以有0D .“权集”中一定有元素1解析: 由于3×4与34均不属于数集{1,3,4},故A 不正确,由于1×2,1×3,1×6,2×3,26,36,11,22,33,66都属于数集{1,2,3,6},故B 正确,由“权集”的定义可知ai aj 需有意义,故不能为0,同时不一定有1,故C ,D 错误,选B .答案: B2.已知集合A 满足条件:当p ∈A 时,总有p +1-1∈A (p ≠0且p ≠-1),已知2∈A ,则集合A的子集的个数至少为________.解析: 依题意,2∈A ,所以2+1-1=-31∈A ,从而+11=-23∈A ,+13=2∈A ,故A 中至少有2,-31,-23三个元素,则集合A 的子集的个数至少为23=8.答案: 83.已知集合A ={x |1<x <3},集合B ={x |2m <x <1-m }.(1)当m =-1时,求A ∪B ;(2)若A ⊆B ,求实数m 的取值范围.(3)若A ∩B =ϕ,求实数m 的取值范围.解析: (1)当m =-1时,B ={x |-2<x <2},则A ∪B ={x |-2<x <3}.(2)由A ⊆B 知1-m≥3,2m≤1,解得m ≤-2,即实数m 的取值范围是(-∞,-2].(3)由A ∩B =ϕ,得①若2m ≥1-m ,即m ≥31时,B =ϕ,符合题意;②若2m <1-m ,即m <31时,需1-m≤1,或2m≥3,,得0≤m <31或ϕ,即0≤m <31.综上知m ≥0,即实数m 的取值范围为[0,+∞).。