第一章 随机事件 第一节 样本空间和随机事件第二节 事件关系和运算共20页

合集下载

1-2节 样本空间和随机事件

1-2节 样本空间和随机事件
(3) 分配律 A ( B C ) ( A B) ( A C ),
A ( B C ) ( A B) ( A C ),
(4)德 摩根律 : A B A B, A B A B.
(对偶律)
A A,
i 1 i i 1 i
样本空间的元素由试验的目的所确定.
二、随机事件
随机事件 在一次试验中可能发生也可能不发
生的结果称为随机事件, 简称事件.事件常用A、
B、C表示. 随机事件是由样本空间的某些样本点构成的. 例如 抛掷一枚骰子, 观察出现的点数. 试验中,骰子“出现1点”, “出现2点”, … ,“出现6 点”, “点数不大于4”, “点数为偶数” 等都为随机事件.
空集 和样本空间S都是样本空间S的子集, 在每次试验中 必不发生,称 为不可能事件; S 必发生,称 S为必然事件. 为叙述方便,把不可能事件和必然事件都包括 在随机事件中.
三、事件间的关系及运算
设试验 E 的样本空间为 S , 而 A, B, Ak (k 1,2,) 是 S 的子集.
个事件,称此事件为事件 A与事件B的积事
件. 记作 A I B或AB 显然 A I B {e | e A且e B}.
A AB
B
S
图示:事件A与B 的积事件.
积事件具有如下性质:
(1)若A B, 则A B A; B A, 则A B B.
(2) A B A; A B B.
3. 和事件
“事件 A与事件B至少有一个发生”也是 一 个事件, 称此事件为事件 A 与事件B的和事件. 记作A B,显然A B {e | e A或e B}.
B A
S

第02讲 随机事件的关系与运算

第02讲 随机事件的关系与运算

概率论与数理统计主讲:四川大学四川大学第2讲随机事件的关系与运算1第2讲随机事件的关系与运算四川大学四川大学第2讲随机事件的关系与运算3在上一讲第1 讲随机试验样本空间随机事件我们介绍了样本空间、样本点和事件的概念这一讲我们来讲事件的运算四川大学第2讲随机事件的关系与运算4§1.2样本空间随机事件四川大学第2讲随机事件的关系与运算5(三)随机事件的关系与运算四川大学第2讲随机事件的关系与运算6回忆事件的概念随机试验E 的样本空间S的子集A 称为E 的随机事件,简称事件。

当A 中某一个样本点出现时,就说事件A 发生了。

由一个样本点e 组成的单点集{e} 称为基本事件。

一般的事件是由基本事件复合而成的,而基本事件是不能再分解的事件。

四川大学第2讲随机事件的关系与运算7一个事件A 是样本空间S的一个子集,因此事件之间的关系以及事件的运算可以用集合之间的关系和集合运算来处理。

设试验E的样本空间为S,而A, B,(k=1, 2,…)是S的子集。

Ak四川大学第2讲随机事件的关系与运算8事件间的关系四川大学第2讲随机事件的关系与运算10第2讲随机事件的关系与运算12四川大学2. 事件的相等如果事件A 包含事件B ( ),事件B 也包含事件A ( ) ,即A 与B 有相同的样本点,则称事件A 与事件B 相等,记作A B=即A B =⇔and A B B A⊂⊂A B ⊃A B ⊂第2讲随机事件的关系与运算13四川大学例如,记A =“考试及格”,B =“考试成绩为90分”记C =“至少有50人排队”,D =“至少有30人排队”抛两颗骰子,两颗骰子出现的点数分别记为x 和y .记E =“x +y 为奇数”,F =“两次的骰子点数奇偶性不同”{|60100}A x x =≤≤C D ⇒⊂E F⇒=A B ⇒⊃{90}B ={50,51,...}C ={30,31,...}D =事件的运算四川大学第2讲随机事件的关系与运算14第2讲随机事件的关系与运算16四川大学1kk A ∞=∑1k k A ∞= 12...n A A A n 个事件A 1, A 2, …, A n 中至少有一个发生的事件称为这些事件的和事件,1nkk A == 12...n A A A +++1nkk A ==∑或可列个事件A 1, A 2, …A n , …中至少有一个发生的事件称为这些事件的和事件,或事件的并(和)可以推广到有限或可列个事件。

1.2样本空间、随机事件

1.2样本空间、随机事件

二、随机事件的概念
1. 基本概念
随机试验 E 的样本空间 S 的子集称为 E 的随 机事件, 简称事件.
每次实验中, 当且仅当这一子集中的一个样本 点出现时, 称这一事件发生.
由一个样本点组成的单点集, 称为基本事件.
样本空间 S包含所有的样本 , 它点是S自身的 子集, 在每次实验中它总是发生的, S称为必然事 件.
A S
某种产品的合格与否是由该产品的长度与直
径是否合格所决定, 因此 “产品不合格”是“长
不合格”与“直径不度合格”的并.
n
推广 称 A k为 n个事 A 1,A 2 件 , ,A n的和事 k1
件, 称 A k为可列 A 1,A 个 2, 的 事和 件 . 事件 k1
3 . 事 A B x x 件 A 且 x B , 称为事件A
它既可以作为抛掷硬币出现正面或出现反面的模 型, 也可以作为产品检验中合格与不合格的模型, 又能用于排队现象中有人排队与无人排队的模型.
课堂练习
写出下列随机试验的样本空间. 1. 同时掷三颗骰子,记录三颗骰子之和. 2. 生产产品直到得到10件正品,记录生产产品的 总件数.
所以在具体问题的研究 中, 描述随机现象的第一步 就是建立样本空间.
对立事件与互斥事件的区别
A、B 互斥
A、B 对立
A
BS
AB
互斥
A
B A S
A B S 且 A B
对立
事件间的运算规律 设A,B,C为事,件 则有
(1)交换律 AB BA; AB BA.
(2)结合律 A(BC) (AB)C; A(BC) (AB)C.
(3)分配律 A(BC) (A B ) (A C ); A(BC) (A B ) (A C ).

随机事件及其运算

随机事件及其运算

Ω 1={正面,反面}
E2:投掷一枚硬币两次,观察其出现正面还是反面的试验.
Ω 2={(正,正),(正,反),(反,正),(反,反)}
E3:测量一根粉笔长度的试验. Ω 3={x|0≤x≤a}, E4:观察一只羊在羊圈中的位臵的试验. Ω 4={(x,y)|0≤x≤a , 0≤y≤b}
第 一章 随机事件及其概率
基本事件: 只包含一个试验结果的事件,用ω 来表示.
随机事件与基本事件之间的关系:
例,掷一枚骰子试验 出现的点数ωi= “出现i点” (i=1,…,6) A=“出现奇数点” 都是基本事件
是随机事件,但不是基本事件
由ω1, ω3, ω5组合成的,记A={ω1,ω3,ω5},当且仅当这三 个基本事件之一发生时事件A才发生.
A1 A2 A1 A3 A2 A3
考虑逆事件:A1 A2 A1 A3 A2 A3
第 一章 随机事件及其概率 例2 一名射手连续向某个目标射击三次,事件Ai表示该射手 第i次射击时击中目标.试用文字叙述下列事件 : (1)A1 A2 A3 ;(2) A2 (4)A1 A2 A3 ;(3) A1 A2 A3 ;
(8)三次中至少两次击中.
第 一章 随机事件及其概率

一、概念 1.随机试验;

2.随机事件;
两个特殊事件:必然事件,不可能事件. 3.样本空间. 二、事件之间的关系及运算 注意互不相容事件与互逆事件、二者的关系
第 一章 随机事件及其概率
课后作业: 习题一 2 ;3.
P19
8.完备事件组
若事件 A1,…,An为两两互不相容事件, 且A1∪…∪An= Ω,则称A1,…,An 构成一个完备事件组(或称事件的划分). 当n为2时,完备事件组为互逆事件. 例 设Ω={1,2,3,4,5,6},A={1,3,5},B={2,4},C={6},则 (1)A,B,C构成完备事件组. (2)AB=Φ,即A,B互不相容,但不是互逆. 因为A∪B={1,2,3,4,5}, 但A∪B≠Ω.

概率论第一章

概率论第一章
例如:在检查某些圆柱形产品时, 例如:在检查某些圆柱形产品时,如果规定只有它的长度及直径 都合格时才算产品合格,那么“产品合格” 直径合格” 都合格时才算产品合格,那么“产品合格”与“直径合格”、 长度合格”等事件有着密切联系。 “长度合格”等事件有着密切联系。
下面我们讨论事件之间的关系与运算
1、包含关系
⑶ 两个特殊事件
必然事件U ★ 必然事件U ★ 不可能事φ 不可能事φ
3、随机试验
如果一个试验可能的结果不止一个, 如果一个试验可能的结果不止一个,且事先不能肯定 会出现哪一个结果,这样的试验称为随机试验。 会出现哪一个结果,这样的试验称为随机试验。
例如, 掷硬币试验 例如, 寿命试验 测试在同一工艺条件下生产 掷骰子试验 掷一枚硬币,观察出正还是反. 掷一枚硬币,观察出正还是反 出的灯泡的寿命. 出的灯泡的寿命 掷一颗骰子, 掷一颗骰子,观察出现的点数
第一章 随机事件及其概率
随机事件及样本空间 频率与概率 条件概率及贝努利概型
§1 随机事件及样本空间
一、随机事件及其有关概念
1、随机事件的定义
试验中可能出现或可能不出现的情况叫“随机事件” 试验中可能出现或可能不出现的情况叫“随机事件”, 简称“事件” 记作A 简称“事件”。记作A、B、C等任何事件均可表示为样本空 间的某个子集。称事件A发生当且仅当试验的结果是子集A 间的某个子集。称事件A发生当且仅当试验的结果是子集A中 的元素。 的元素。
例如,一个袋子中装有10个大小、形状完全相同的球。 例如,一个袋子中装有10个大小、形状完全相同的球。 10个大小 将球编号为1 10。把球搅匀,蒙上眼睛,从中任取一球。 将球编号为1-10。把球搅匀,蒙上眼睛,从中任取一球。
因为抽取时这些球是完全平等的, 因为抽取时这些球是完全平等的, 我们没有理由认为10个球中的某一个会 我们没有理由认为10个球中的某一个会 10 比另一个更容易取得。也就是说,10个 比另一个更容易取得。也就是说,10个 球中的任一个被取出的机会是相等的, 球中的任一个被取出的机会是相等的, 均为1/10 1/10。 均为1/10。

概率论-1-2随机事件间的关系及运算

概率论-1-2随机事件间的关系及运算

若事件 A 的出现必然导致事件 B 不出现, B 出现也必然导致 A不出现,则称事件 A与B互不相
容, 即
A B AB .
实例 抛掷一枚硬币, “出现正面” 与 “出现反面” 是互不相容的两个事件.
实例 抛掷一枚骰子, 观察出现的点数 . “骰子出现1点”互斥 “骰子出现2点”
图示 A 与 B 互斥.
四、小结
1. 随机试验、样本空间与随机事件的关系
随机试验
样本空间 子集 随机事件
基本事件,复合事件,必然事件, 不可能事件都是随机事件
学习了事件的运算及运算律,运算的 目的是什么?
用简单事件表示复合事件(复合事件分解 成简单事件)
(*)2. 概率论与集合
S 样本空间,必然事件
互为对立事件
二、随机事件间的关系及运算
事件是集合,就可以用集合间的关系和运 算来处理,我们结合 p4 图来学习:
设试验 E 的样本空间为S, 而 A, B, Ak (k 1,2,)是 S 的子集.
二、随机事件间的关系及运算(续)
1. 包含关系 子事件 A B.
实例 “长度不合格” 必然导致 “产品不合格” 所以B=“产品不合格”包含A=“长度不合格”. 图示 B 包含 A.
(2) 三个事件都出现;
(3)三个事件至少有一个出现;
(4) 不多于一个事件出现; (5) A, B 至少有一个出现, C 不出现; (6) A, B, C 中恰好有两个出现.
解(1) ABC; (2) ABC; (3) A B C;
(4) ABC ABC ABC ABC;
(5) ( A B) C; (6) ABC ABC ABC.
复合事件—由若干个基本事件组合而成的事件.

§1.1随机事件与样本空间

§1.1随机事件与样本空间

§1.1随机事件与样本空间§1.1 随机事件与样本空间随机事件与样本空间是概率论中的两个最基本的概念。

⼀、基本事件与样本空间对于随机试验来说,我们感兴趣的往往是随机试验的所有可能结果。

例如掷⼀枚硬币,我们关⼼的是出现正⾯还是出现反⾯这两个可能结果。

若我们观察的是掷两枚硬币的试验,则可能出现的结果有(正、正)、(正、反)、(反、正)、(反、反)四种,如果掷三枚硬币,其结果还要复杂,但还是可以将它们描述出来的,总之为了研究随机试验,必须知道随机试验的所有可能结果。

1、基本事件通常,据我们研究的⽬的,将随机试验的每⼀个可能的结果,称为基本事件。

因为随机事件的所有可能结果是明确的,从⽽所有的基本事件也是明确的,例如:在抛掷硬币的试验中“出现反⾯”,“出现正⾯”是两个基本事件,⼜如在掷骰⼦试验中“出现⼀点”,“出现两点”,“出现三点”,……,“出现六点”这些都是基本事件。

2、样本空间基本事件的全体,称为样本空间。

也就是试验所有可能结果的全体是样本空间,样本空间通常⽤⼤写的希腊字母Ω表⽰,Ω中的点即是基本事件,也称为样本点,常⽤ω表⽰,有时也⽤A,B,C 等表⽰。

在具体问题中,给定样本空间是研究随机现象的第⼀步。

例1、⼀盒中有⼗个完全相同的球,分别有号码1、2、3……10,从中任取⼀球,观察其标号,令=i {取得球的标号为i },=i 1,2,3,…,10. 则Ω={1,2,3,…,10},=i ω{标号为i },=i 1,2,3,…,101ω,2ω,…, 10ω为基本事件(样本点)例2 在研究英⽂字母使⽤状况时,通常选⽤这样的样本空间:Ω={空格,A,B,C,…,X,Y,Z}例 1,例 2讨论的样本空间只有有限个样本点,是⽐较简单的样本空间。

例3讨论某寻呼台在单位时间内收到的呼叫次数,可能结果⼀定是⾮负整数⽽且很难制定⼀个数为它的上界,这样,可以把样本空间取为Ω={0,1,2,3,…}这样的样本空间含有⽆穷个样本点,但这些样本点可以依照某种顺序排列起来,称它为可列样本空间。

§1.2随机事件及其运算

§1.2随机事件及其运算
6
D包含了所有样本点,即全部试验结果, 包含了所有样本点,即全部试验结果, 在任何一次试验中都必然发生,称为必然事 在任何一次试验中都必然发生,称为必然事 常用Ω 件,常用Ω表示; E不包含任何的样本点,也即不包含任何 不包含任何的样本点, 试验结果 在每次试验中都一定不发生, 试验结果,在每次试验中都一定不发生,称为 不可能事件, 表示. 不可能事件,常用 Æ 表示.
10
2、相等关系
A=B ⇔ A⊂B且B⊂A. = ⊂ 且 ⊂
它表示在任何一次试验中,A,B两个事件同 它表示在任何一次试验中,A,B两个事件同 ,A,B 时发生或同时不发生. 时发生或同时不发生. 3、互不相容 若事件A与B在任何一次试验中都不能同时 若事件A 发生,则称A 互不相容,否则称A 相容. 发生,则称A与B互不相容,否则称A与B相容. 在例1.1中,A={掷出奇数点},B={掷出的 在例1.1中 A={掷出奇数点} B={掷出的 1.1 掷出奇数点 点数不小于3 也不超过5} C={掷出的点数能 5}, 点数不小于3,也不超过5},C={掷出的点数能 整除} E={掷出的点数超过8}, 掷出的点数超过8} 被4整除},E={掷出的点数超过8},A与C、A与E 都互不相容, 相容. 都互不相容,而A与B相容.
i =1 n
表示事件
至少有一个发生 发生” “A1 , A2 ,L , An 至少有一个发生”.
163、Βιβλιοθήκη 运算和对立运算 设A,B是两个集合,A − B 的准确含义是 是两个集合,
ω ∈ A − B ⇔ ω ∈ A且ω ∉ B ,
如果把这个蕴涵关系式翻译成概率论的语 表示A发生且B不发生. 言,那么事件 A − B 表示A发生且B不发生.称 的差. 事件 A − B 为 A与B的差. 表示“前者发生且后者不发生” “− ”表示“前者发生且后者不发生”.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
况; E4:抛一颗骰子,观察出现的点数; E5:记录电话交换台一分钟内接到的呼唤次数; E6:在一批灯泡中任意取一只,测试其寿命(以小时
计); E7:记录某地一昼夜的最高温度t2,最低温度t1。
解: Ω1={H,T},H–正面,T–反面 Ω2={0,1,2,3},i=0,1,2,3为正面出现的次数 Ω3={HHH,HHT,HTH,THH,HTT,THT,TTH,TT T}
A A,AA,AA
事件之间的运算律与集合之间的运算规律一 致
交 : A 换 B B A 律 A B B A 结 合A 律 (B : C)(AB)C
A(BC)(AB)C
分 配 A 律 (B C : )(A B )(A C ) A (B C )(A B ) (A C )
德 摩 :A 根 B A B 律 A B A B
2、随机试验
(1) 试验=对自然现象的观察+科学实验
(2) 随机试验(通常用E表示)的三个特点:
1)试验能在相同条件下重复进行; 2)每次试验的可能结果不止一个,且能事先
明确试验的所有可能结果; 3)每一次试验之前不能确定哪一个结果会出
现;
(3) 检查一个试验是否是随机试验可查上 述三点是否满足。
练习:试判断下列试验是否为随机试验: 1、在恒力作用下一质点作匀加速运动。 2、在一定条件下进行射击,观察是否击中 靶上红心。 3、在5个同样的球(标号1,2,3,4,5)中,任意取 一只,观察所取球的标号。 4、在分析天平上称量一小包白糖,并记录 称量结果。
答:1不是,2是,3是,4是
二、随机事件
1、包含关系:若事件A发生必 导致事件B发生,则称A包含 于B,或事件B包含事件A,记 为AB。见维恩图:
AB Ω
若AB且BA,则A=B,称A与B相等,即 为同一事件。
2、并事件:AB={ωA或 ωB}称为事件A、B的并事 件,即当且仅当A,B中至少 有一个发生时,AB发生, 见维恩图
AB Ω
推广:
1、随机事件:在随机试验中,对某些 现象或某种情况的陈述。简称事件, 通常用A,B,C,…表示。
2、样本点:试验的每一个可能出现的 结果。记为ω。
3、样本空间:试验所有可能结果的集 合,即样本点的全体。记为Ω。
例1.1 给出下述随机试验的样本空间
E1:抛一枚硬币,观察正面H,反面T出现的情况; E2:将一硬币抛三次,观察出现正面的次数; E3:将一硬币抛三次,观察正面H,反面T出现的情
推广: 若A1,A2,…,An中任意两个事件都是互不 相容的,则称n个事件A1,A2,…,An两两互 不相容。
即,ij,AiAj=,i,j=1,2,,n
6、补事件(对立事件):若AB=, 且AB=Ω,
则称事件A与事件B互为补事件。又称事件A 与事件B互为对立事件。
A
A
A的 补 事 件A常 ,记 即为 有
i1
Ai A1 A2 A1,A2,..同 . 时发 生
i1
4、差事件:A–B={ω|ωA且ωB}称 为事件A与事件B的差事件,即当且仅 当A发生,B不发生时,事件A–B发生, 见图
AB Ω
5、不相容性:若AB=,则称事件A与
B互不相容,或称为互斥,即指事件A 与B不能同时发生,见图
AB Ω
C3B 3A 1A 2A 3
更多精品资请 Ω5={0,1,2…} Ω6={t|t≥0},t为灯泡寿命 Ω7={(t1,t2)|T1<t1<t2<T2},T1,T2为这一地区最低、 最高温度限,t1,t2为可能出现的最低、最高温 度。
例1.2 在随机事件E5中试写出下列事件包含 的样本点: A={一分钟内至少接到两次呼唤信号} B={一分钟内接到的呼唤次数在6到10之间} C={一分钟内接到的呼唤次数不多于8次} D={一分钟内接到的呼唤次数至少为0次} E={一分钟内接到的呼唤次数少于0次}
例2.1 设某射手对一目标连续进行三次射击,
记Ai {第i次击中目标},那么,Ai {第i次 射击未中目标},试用Ai,i 1,2,3表示事件: 1)Bj {三次射击中恰好有j次击中目标},
j 0,1,2,3 2)Ck {三次射击中至少有k次击中目标},
k 0,1,2,3
解 :1)B 0A 1A 2A 3
第一节 样本空间和随机事件
一、随机试验
1、自然界现象的分类
(1)确定性现象:在一定条件下必然发生的现象。 例如:每天早晨太阳从东方升起;
(2)不确定现象:在一定条件下不一定发生的现 象。
a)个别现象:不能在相同条件下重复出现的现 象。
b)随机现象:在相同条件下可以重复出现,但 其结果无法预知,且在大量重复试验或观察中 呈现出某种统计规律性的现象。
n
Ai A1 A2 ... AnA1,A2,.A .n .中至少有
i1
Ai A1 A2 ...A1,A2,.中 .. 至少有一个
i1
3、交事件:AB={ωA且ωB}称为事 件A、B的交事件,即当且仅当A,B同时 发生时, AB才发生, 可简记为AB。
推广:
n
Ai A1 A2 AnA1,A2,..A.n同时发 生
解:因为Ω5={0,1,2,…},故知 A={2,3,4,…},B={6,7,8,9,10},
C={0,1,2,3,4,5,6,7,8},D=Ω5,E=
4、三种特殊情形
基本事件:只含有一个样本点
必然事件Ω:包括试验的全部样 本点,每次试验都发生
不可能事件:不包括任何样本
点,每次试验都不发生
第二节 事件关系和运算
B 1 A 1 A 2 A 3 A 1 A 2 A 3 A 1 A 2 A 3 B 2 A 1 A 2 A 3 A 1 A 2 A 3 A 1 A 2 A 3
B3 A1A2A3
2 )C 0 B 0 B 1 B 2 B 3 C 1 B 1 B 2 B 3 A 1 A 2 A 3 C 2 B 2 B 3 A 1 A 2 A 2 A 3 A 1 A 3
相关文档
最新文档