平行四边形的性质和判定小结

合集下载

平行四边形的判定知识点小结

平行四边形的判定知识点小结

平行四边形的判定知识点小结一、平行四边形的判定方法。

1. 定义判定。

- 两组对边分别平行的四边形是平行四边形。

- 用符号语言表示:如果AB∥CD,AD∥BC,那么四边形ABCD是平行四边形。

这是平行四边形最基本的判定方法,它是从平行四边形的定义直接得出的。

2. 边的判定。

- 两组对边分别相等的四边形是平行四边形。

- 符号语言:若AB = CD,AD = BC,则四边形ABCD是平行四边形。

- 一组对边平行且相等的四边形是平行四边形。

- 符号语言:若AB∥CD且AB = CD(或者AD∥BC且AD = BC),则四边形ABCD 是平行四边形。

3. 角的判定。

- 两组对角分别相等的四边形是平行四边形。

- 符号语言:若∠A = ∠C,∠B = ∠D,则四边形ABCD是平行四边形。

4. 对角线的判定。

- 对角线互相平分的四边形是平行四边形。

- 符号语言:若OA = OC,OB = OD(其中O为对角线AC、BD的交点),则四边形ABCD是平行四边形。

二、平行四边形判定方法的证明思路。

1. 定义法证明。

- 一般通过已知条件中的平行关系,如角相等推出直线平行(同位角、内错角相等,两直线平行)等方法来证明两组对边分别平行。

- 例如:已知∠1 = ∠2,∠3 = ∠4,可推出AD∥BC,AB∥CD,从而证明四边形ABCD是平行四边形。

2. 边的判定证明。

- 对于两组对边分别相等的判定方法,通常利用三角形全等的知识来证明。

- 例如:连接AC,在△ABC和△CDA中,已知AB = CD,BC = DA,AC = CA(公共边),通过SSS(边 - 边 - 边)全等判定定理证明△ABC≌△CDA,进而得出∠1 = ∠2,∠3 = ∠4,所以AD∥BC,AB∥CD,四边形ABCD是平行四边形。

- 对于一组对边平行且相等的判定方法,可通过平移线段构造平行四边形或者利用三角形全等和平行线的判定来证明。

- 例如:已知AB∥CD且AB = CD,延长AB到E,使BE = CD,连接CE,可证明四边形BECD是平行四边形,从而得出BD∥CE,再结合已知条件证明四边形ABCD是平行四边形。

平行四边形知识点总结

平行四边形知识点总结

平行四边形知识点总结一、平行四边形的定义两组对边分别平行的四边形叫做平行四边形。

需要注意的是,平行四边形的定义既是它的一个性质,即两组对边分别平行;也是判定一个四边形是否为平行四边形的依据之一。

二、平行四边形的性质1、边的性质(1)平行四边形的两组对边分别平行且相等。

(2)平行四边形的邻边之和等于周长的一半。

2、角的性质(1)平行四边形的两组对角分别相等。

(2)平行四边形的邻角互补,即相邻的两个角之和为 180 度。

3、对角线的性质(1)平行四边形的对角线互相平分。

(2)两条对角线把平行四边形分成的四个三角形的面积相等。

4、对称性平行四边形是中心对称图形,对称中心是两条对角线的交点。

三、平行四边形的判定1、两组对边分别平行的四边形是平行四边形。

这是根据平行四边形的定义直接得出的判定方法。

2、两组对边分别相等的四边形是平行四边形。

如果一个四边形的两组对边分别相等,那么可以通过平移其中一组对边,使其与另一组对边重合,从而证明该四边形是平行四边形。

3、一组对边平行且相等的四边形是平行四边形。

先证明一组对边平行,如果再能证明这组对边相等,就可以判定为平行四边形。

4、两组对角分别相等的四边形是平行四边形。

因为平行四边形的两组对角分别相等,所以如果一个四边形的两组对角分别相等,那么它就是平行四边形。

5、对角线互相平分的四边形是平行四边形。

通过证明对角线互相平分,可以得出四边形的两组对边分别平行,从而判定为平行四边形。

四、平行四边形面积的计算平行四边形的面积=底×高需要注意的是,底和高必须是相对应的,即底边上对应的高。

五、平行四边形中的常见题型1、利用性质求边长、角度或对角线的长度已知平行四边形的一些边、角或对角线的关系,通过性质列方程求解。

2、证明一个四边形是平行四边形根据给定的条件,选择合适的判定方法进行证明。

3、求平行四边形的面积给出底和高的长度,或者通过其他条件求出底和高,进而计算面积。

4、与三角形结合的问题例如,平行四边形的对角线把平行四边形分成两个全等的三角形,或者通过三角形的全等或相似来解决平行四边形中的问题。

平行四边形的性质与判定方法

平行四边形的性质与判定方法

平行四边形的性质与判定方法平行四边形是几何学中重要的一类四边形,具有独特的性质和判定方法。

在本文中,我们将介绍平行四边形的性质和判定方法,并探讨其应用。

一、平行四边形的性质1. 对边相等性质:平行四边形的对边相等。

即平行四边形的对边AB与CD相等,对边AD与BC相等。

2. 对角线互相平分性质:平行四边形的对角线互相平分。

即对角线AC平分对角线BD,同时对角线BD平分对角线AC。

3. 内角和为180度:平行四边形的内角和为180度。

即∠A + ∠B + ∠C + ∠D = 180°。

4. 侧边对应角相等性质:平行四边形的侧边对应角相等。

即∠A = ∠C,∠B = ∠D。

5. 相邻内角互补性质:平行四边形的相邻内角互补。

即∠A + ∠B = 180°,∠B + ∠C = 180°。

6. 对角线长度关系:平行四边形的对角线长度关系。

即对角线AC 与对角线BD长度相等。

二、平行四边形的判定方法1. 对边相等法:若一个四边形的对边相等,则它是平行四边形。

例如,已知AB = CD,AD = BC,可以判定ABCD是平行四边形。

2. 一组对角线互相平分法:若一个四边形的对角线互相平分,则它是平行四边形。

例如,已知AC平分BD,BD平分AC,可以判定ABCD是平行四边形。

3. 内角和为180度法:若一个四边形的内角和为180度,则它是平行四边形。

例如,已知∠A + ∠B + ∠C + ∠D = 180°,可以判定ABCD是平行四边形。

4. 一组侧边对应角相等法:若一个四边形的侧边对应角相等,则它是平行四边形。

例如,已知∠A = ∠C,∠B = ∠D,可以判定ABCD 是平行四边形。

5. 一组相邻内角互补法:若一个四边形的相邻内角互补,则它是平行四边形。

例如,已知∠A + ∠B = 180°,∠B + ∠C = 180°,可以判定ABCD是平行四边形。

三、平行四边形的应用平行四边形的性质和判定方法在几何学中有广泛的应用。

平行四边形及特殊平行四边形知识点总结

平行四边形及特殊平行四边形知识点总结

平行四边形及特殊平行四边形知识点总结平行四边形、矩形、菱形、正方形的共同性质是:对边平行且相等,对角线相等。

其中,矩形还有一个特殊性质是有一个角为直角,菱形还有一个特殊性质是四条边相等,正方形则同时满足矩形和菱形的特殊性质。

2.判定方法小结:1)判定平行四边形的方法:①两组对边分别平行;②两组对边分别相等;③两组对角分别相等;④对角线互相平分;⑤一组对边平行且相等。

2)判定矩形的方法:①有一个角是直角;②对角线相等;③有三个角是直角;④对角线相等且互相平分。

3)判定菱形的方法:①有一组邻边相等;②对角线互相垂直;③四边都相等;④对角线互相垂直平分。

4)判定正方形的方法:①有一组邻边相等且有一个角是直角;②对角线互相垂直且相等;③对角线互相垂直平分且相等。

3.基础达标训练:1)两条对角线的四边形是平行四边形;2)两条对角线的四边形是矩形;3)两条对角线的四边形是菱形;4)两条对角线的四边形是正方形;5)两条对角线的平行四边形是矩形;6)两条对角线的平行四边形是菱形;7)两条对角线的平行四边形是正方形;8)两条对角线的矩形是正方形;9)两条对角线的菱形是正方形。

1.以不在同一直线上的三个点为顶点作平行四边形,最多能作1个。

2.若平行四边形的一边长为10cm,则它的两条对角线的长度可以是8cm和12cm。

3.在平行四边形ABCD中,直线通过两对角线交点O,分别与BC和AD相交于点E和F。

已知BC=7,CD=5,OE=2,则四边形ABEF的周长为多少?答案:C。

16解析:根据平行四边形的性质,AE=CD=5,BF=BC=7.由于OE=2,因此EF=BC-OE=5.所以ABEF是一个边长分别为5和7的矩形,周长为2(5+7)=16.4.如图,在矩形ABCD中,对角线AC、BD相交于点O,CE∥BD,DE∥AC,若AC=4,则四边形CODE的周长为多少?答案:B。

6解析:由于CE∥BD,DE∥AC,因此三角形AOD和BOC相似,三角形COE和DOE相似。

平行四边形的判定定理总结

平行四边形的判定定理总结

1、在下列条件中,不能判定四边形是 平行四边形的是( D ) (A)AB∥CD,AD∥BC
(B) AB=CD,AD=BC (C)(C)AB∥CD,AB=CD (D)(D) AB∥CD,AD=BC (E)(E) AB∥CD, ∠A=∠C
例1 :已知:如图,在□ABCD中,E、F分别
A
D
是AB,CD的中点。
A
E
D
B
F
C
已知:平行四边形ABCD中,E, F分别是边AD,BC的中点(如图)
求证:EB=DF
A
E
DБайду номын сангаас
B
F
C
已知:平行四边形ABCD中,E,F分
别是边AD,BC的中点(如图)
求证:EB=DF
A
E
D
证明:∵四边形ABCD 是平行
四边形
∴AD BC
B
F
C
∵ED=1/2AD BF=1/2BC
∴ED BF ∴四边形EBFD是平行四边形 (一组对边平行且相等的四边形是平行四边形)
∴EB=DF
作业题:2、已知:E、F是平行四边形ABCD
对角线AC上的两点,并且AE=CF。
大 显 身
求证:四边形BFDE是平行四边形
证明:
Q
四边形ABCD是平行四边形
AD ∥ BC且AD =BC
手A
EAD= FCB
D 在 AED和 CFB中
E
B
AE=CF
F
EAD=
FCB
C
AD=BC AED ≌ CFB(SAS)
∴四边形ABCD是平行四边形 (根平据行什四么边?形)的定义) ∴该命题是真命题
定理1:

平行四边形的性质与判定

平行四边形的性质与判定

平行四边形的性质与判定一、平行四边形的性质1.对边平行且相等:平行四边形的对边分别平行且相等。

2.对角相等:平行四边形的对角线互相平分,且对角线交点将平行四边形分为两个相等的三角形,这两个三角形的角相等。

3.对角线互相平分:平行四边形的对角线互相平分,即平行四边形的对角线交点是对角线中点的两倍。

4.相邻角互补:平行四边形的相邻角互补,即它们的和为180度。

5.对边角相等:平行四边形的对边角相等,即平行四边形的对边上的角相等。

6.对角线所在的平行线间的距离相等:平行四边形的对角线所在的平行线间的距离相等。

二、平行四边形的判定1.两组对边分别平行的四边形是平行四边形。

2.两组对边分别相等的四边形是平行四边形。

3.一组对边平行且相等的四边形是平行四边形。

4.对角线互相平分的四边形是平行四边形。

5.相邻角互补的四边形是平行四边形。

6.对边角相等的四边形是平行四边形。

7.对角线所在的平行线间的距离相等的四边形是平行四边形。

8.矩形:矩形是四个角都是直角的平行四边形。

9.菱形:菱形是四条边都相等的平行四边形。

10.正方形:正方形是四个角都是直角且四条边都相等的平行四边形。

四、平行四边形的应用1.计算平行四边形的面积:平行四边形的面积可以通过底边长乘以高得到。

2.证明平行四边形的性质:利用平行四边形的性质证明四边形的形状或关系。

3.解决实际问题:应用平行四边形的性质解决生活中的实际问题,如设计图形、计算面积等。

知识点:__________习题及方法:1.习题:已知ABCD是平行四边形,AB=6cm,AD=4cm,求BC和CD 的长度。

答案:BC和CD的长度分别为6cm和4cm。

解题思路:根据平行四边形的性质,对边相等,所以BC=AD=4cm,CD=AB=6cm。

2.习题:在平行四边形ABCD中,∠B=60°,求∠D的度数。

答案:∠D的度数为120°。

解题思路:根据平行四边形的性质,相邻角互补,所以∠D=180°-∠B=120°。

平行四边形知识点总结

平行四边形知识点总结

平行四边形知识点总结平行四边形是几何中的一种特殊的四边形,具有许多独特的性质和特点。

在学习几何学的过程中,了解平行四边形的各种知识点是非常重要的。

本文将对平行四边形的定义、性质、判定条件、相关定理等知识点进行总结,希望对读者们有所帮助。

一、定义平行四边形是指具有两对对边分别平行的四边形。

换句话说,如果一个四边形的两对对边分别平行,则这个四边形就是平行四边形。

在平行四边形中,相邻的两条边互相平行,而对角线长相等。

此外,平行四边形是菱形和矩形的特殊情况。

二、性质1. 对边平行性:平行四边形的两对对边分别平行。

2. 对角相等性:平行四边形的对角相等,即相对的两个角相等。

3. 交叉角相等性:平行四边形的交叉角相等,即相对的两个对边之间的角相等。

4. 相邻角补角性:平行四边形的相邻角互为补角。

5. 对角和:平行四边形的对角之和为180度。

6. 对角线长相等:平行四边形的对角线长相等。

7. 重心:平行四边形的对角线交点是平行四边形的重心。

8. 对角线相交:平行四边形的对角线彼此相交于中点。

以上是平行四边形的一些基本性质,在解题过程中,可以根据这些性质来判断和推理。

三、平行四边形的判定条件1. 两对对边分别平行根据平行四边形定义可知,平行四边形的判定条件就是具有两对对边分别平行。

2. 对角线长相等对于一个四边形,如果其对角线长相等,则可以判定为平行四边形。

3. 对角相等如果一个四边形的对角相等,则可以判定为平行四边形。

以上是平行四边形的判定条件,可以根据这些条件来判断一个四边形是否为平行四边形。

四、相关定理在学习平行四边形的过程中,还有一些相关定理也是非常重要的。

以下是一些常见的相关定理:1. 单位法则:平行四边形的对边平行,可以利用单位法则进行求解。

2. 等边平行四边形:如果一个四边形的四条边长度相等,则这个四边形是等边平行四边形。

3. 等腰平行四边形:如果一个四边形的两对对边分别平行且具有相等的对边,则这个四边形是等腰平行四边形。

平行四边形的性质与判定

平行四边形的性质与判定

平行四边形的性质与判定平行四边形是一种特殊的四边形,它具有独特的性质和判定方法。

本文将介绍平行四边形的性质以及如何准确地判定一个四边形是否是平行四边形。

一、平行四边形的性质平行四边形有以下几个重要性质:1. 对边平行性质:平行四边形的对边是两两平行的。

也就是说,如果一个四边形的两对边分别平行,则该四边形就是平行四边形。

2. 对角线互相平分性质:平行四边形的对角线互相平分。

也就是说,平行四边形的两条对角线互相平分,并且交点是对角线的中点。

3. 对边长度相等性质:平行四边形的对边长度相等。

也就是说,平行四边形的相对边长是相等的。

4. 内角和性质:平行四边形的内角和为180度。

也就是说,平行四边形的四个内角之和是180度。

二、判定一个四边形是否为平行四边形如果我们给定一个四边形,如何准确判定它是否为平行四边形呢?以下是两种常用的判定方法:1. 使用内角性质:如果一个四边形的两组对边的内角互补(合为180度),那么这个四边形就是平行四边形。

也就是说,如果四边形的相邻内角互补,则这个四边形是平行四边形。

2. 使用对边比例性质:如果一个四边形的对边比例相等,那么这个四边形是平行四边形。

也就是说,如果四边形的对边长度比例相等,则这个四边形是平行四边形。

三、平行四边形的应用平行四边形在几何学中具有广泛的应用。

以下是一些常见的应用场景:1. 建筑设计:在建筑设计中,平行四边形的性质可以用来规划室内空间的布局,以确保房间的结构和面积满足需求。

2. 绘画与设计:在绘画和设计中,平行四边形的形状和性质可以用来创作各种艺术作品,如建筑图、装饰图案等。

3. 几何证明:平行四边形的性质在几何证明中扮演着重要的角色,可以用于解决各种几何问题,如角度计算、边长比较等。

4. 工程测量:平行四边形的特性可以应用于工程测量中的曲线与直线的判定,确保工程的准确度和稳定性。

总结:平行四边形具有对边平行、对角线互相平分、对边长度相等和内角和为180度的性质。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
四个角都是直角
①对角线互相平分
②对角线相等
中心对称,轴对称
①有一个角是直角的平行四边形是矩形
②有三个角是直角的四边形是矩形
对角线相等的平行四边形是矩形
菱形
①对边平行
②四边相等
①对角相等
②邻角互补
①对角线互相垂直平分
②对角线平分每一组对角
中心对称,轴对称
①有一组邻边相等的平行四边形是菱形
②四条边都相等的四边形是菱形
平行四边形的性质和判定
类别
性质
判定


对角线
对称性


对角线
平行四边形
①对边平行
②对边相等
①对角相等
②邻角互补
对角线互相平分
中心对称
①两组对边分别平行的四边形是平行四边形
②一组对边平行且相等的四边形是平行四边形
两组对角分别相等的四边形是平行四边形
对角线互相平分的四边形是平行四边形
矩形
①对边平行
②对边相等
同一底上的两垂直的平行四边形是菱形
正方形
①对边平行
②四边相等
四个角都是直角
①对角线互相垂直平分
②对角线平分每一组对角
中心对称,轴对称
一组邻边相等的矩形是正方形
有一个角是直角的菱形是正方形
对角线互相垂直且相等的平行四边形是正方形
等腰梯形
①两底平行②两腰相等
同一底上的两个角相等
对角线相等
轴对称
两腰相等的梯形是等腰梯形
相关文档
最新文档