第03章酶生物化学

合集下载

第三章 生物化学课件 酶与辅酶

第三章 生物化学课件 酶与辅酶

发展史
(1)酶是蛋白质: 1926年,James Summer由刀豆制出脲酶结晶确立 酶是蛋白质的观念,其具有蛋白质的一切性质。 (2)核酶的发现: 1981~1982年,Thomas R.Cech实验发现有催化 活性的天然RNA—Ribozyme。
酶催化进行的反应——酶促反应 底物、产物(P50)
能 量 水 平
E1
ES
E2
E+S
G
途径进行,降低反应所
需活化能,所以能加快 反应速度。
P+ E
反应过程
中间产(络合)物学说
• 第一步是酶与底物形成酶-底物中间复合 物。当底物分子在酶作用下发生化学变化 后,中间复合物再分解成产物和酶。 E + S ==== E-S P + E • 许多实验事实证明了E-S复合物的存在。E -S复合物形成的速率与酶和底物的性质有 关。 • (中间产物很不稳定,存在时间非常短暂)
酶专一性的“诱导契合学说”
三、 酶高效催化的因素
(1)临近效应、定向效应: 在酶促反应中,底物分子结合到酶的活性中心,一方面底 物在酶活性中心的有效浓度大大增加,有利于提高反应速 度; 另一方面,由于活性中心的立体结构和相关基团的诱导和 定向作用,使底物分子中参与反应的基团相互接近,并被 严格定向定位,使酶促反应具有高效率和专一性特点。 (2)“张力”和“形变” : 底物与酶结合诱导酶的分子构象变化,变化的酶分子又使 底物分子的敏感键产生“张力”甚至“形变” ,从而促 使酶-底物中间产物进入过渡态。
消化道内几种蛋白酶的专一性
氨肽酶
(芳香) (硷性)
羧肽酶 羧肽酶
(丙)
胰凝乳 蛋白酶
胃蛋白酶
弹性蛋白酶 胰蛋白酶

生物化学第三章 酶

生物化学第三章  酶

(四)酶的比活力(比活性) • 酶的比活力是指每单位质量样品中的酶 活力,即每毫克酶蛋白中所含的活力单 位数或每千克酶蛋白中所含的Kat数。
比活力=
酶活力单位数 酶蛋白质量(mg)
• 比活力是表示酶制剂纯度的一个重要指 标,对同一种酶而言,酶的比活力越高, 纯度越高。
七、酶促反应动力学
• 酶促反应动力学主要研究酶催化的反 应速度及影响反应速度的各种因素。 • 在探讨各种因素对酶促反应速度的影 响时,通常测定其初始速度来代表酶
单纯酶 酶→ 结合酶(全酶)→ 辅助因子→ 酶蛋白 辅酶 辅基 金属离子

●酶蛋白与辅助因子单独存在时均无催化活性,二 者只有结合成完整的分子时,才具有催化活性。 ●一种酶蛋白只与一种辅酶结合,组成一种全酶, 催化一种或一类底物进行某种化学反应。 ●一种辅酶可以和多种酶蛋白结合,组成多种全酶, 分别催化不同底物进行同一类反应。
(三) 诱导契合学说-关于酶作用专一性的假说 ●1890年,Emil Fischer提出“锁钥学说” :底 物的结构和酶活性部位的结构非常吻合,就象 锁和钥匙一样,这样它们就能紧密结合形成中 间产物。
底物
+

酶 –底物复合物
●1958年,Koshland提出“诱导契合学说”: 酶活性部位的结构与底物的结构并不特别 吻合,但活性部位具有一定的柔性,当底 物与酶接近时,可以诱导酶活性中心的构 象发生改 变,使之 成为能与 底物分子 密切结合 的构象 。
促反应速度,即底物转化量 <5% 时的
反应速度。
(一)酶浓度对反应速度的影响 • 当反应系统中底物的浓度足够大时, 酶促反应速度与酶浓度成正比,即 ν =k[E]。
(二) 底物浓度对反应速度的影响

生物化学I 第三章 酶学

生物化学I 第三章 酶学

根据国际生化协会酶命名委员会的规定,每一个酶都用 四个打点隔开的数字编号,编号前冠以EC(酶学委员会缩 写),四个数字依次表示该酶应属的大类、亚类、亚亚类 及酶的顺序号,这种编码一种酶的四个数字即是酶的标码。
例如:EC1.1.1.27(乳酸脱氢酶) 酶
乳酸:NAD+氧化还原
u u u u
第一大类 氧化还原酶 第一亚类 —CHOH被氧化 第一亚亚类 氢受体为NAD+ 排序 顺序号为27
4. 1878年, Kü hne赋予酶统一的名称 “Enzyme”, 其意思为“在酵母中”。
Enzyme 酶
德国生物化学家
5. 1930~1936年,Northrop和Kunitz先后得到了胃蛋 白酶、胰蛋白酶和胰凝乳蛋白酶结晶,并用相应方法 证ቤተ መጻሕፍቲ ባይዱ酶是蛋白质。
为此, Northrop和Kunitz于1949年共同 获得诺贝尔奖。
(1)旋光异构专一性:
(2)顺反异构专一性:
例如:不同的酶有不同的活性中心,故对底物有严格的特异性。例如乳 酸脱氢酶是具有立体异构特异性的酶,它能催化乳酸脱氢生成丙酮酸 的可逆反应:
A、B、C分别为LDH活性中心的三个功能基团
消化道内几种蛋白酶的专一性
氨肽酶
(芳香) (硷性)
羧肽酶 羧肽酶
(丙)
Ser
His 活性中心重要基团: His57 , Asp102 , Ser195
Asp
(4)酶的活性中心与底物形状不是正好互补的。
(5)酶的活性中心是位于酶分子表面的一个裂 缝(Crevice)内。
(6)底物通过次级键较弱的作用力与酶分子结 合,这些次级键为:氢键、离子键(盐键)、 范德华力和疏水相互作用。 (7)酶的活性中心具有柔性或可运动性。

生物化学03 酶

生物化学03 酶

1、酶的别构(变构)效应 •概念:有些酶分子表面除了具有活性中心外,还存在被称为调节位
点(或变构位点)的调节物特异结合位点,调节物结合到调 节位点上引起酶的构象发生变化,导致酶的活性提高或下降, 这种现象称为别构效应,具有上述特点的酶称别构酶。
效应剂

构 中
活性 中心

2、酶的多种分子形式——同工酶
最适 温度
温度
4、pH对酶促反应速度的影响
v
•过酸过碱导致酶蛋白变性
•酶的最适pH不是一个固定 不变的常数

pH

pH
5、激活剂对酶作用的影响
凡是能提高酶活力的物质,称为酶的激活剂。
类别
金属离子:K+、Na+、 Mg2+、Cu2+、Mn2+、Zn2+、Se3+ 、 Co2+、Fe2+ 阴离子: Cl-、Br有机分子 抗坏血酸、半胱氨酸、谷胱甘肽
v
Vm axS K m S
PE
(2)米氏常数Km的意义
① 当v=Vmax/2时,Km=[S]( Km的单位为浓度单位) ②是酶在一定条件下的特征物理常数,通过测定Km的数值,可
鉴别酶。 ③可近似表示酶和底物亲合力,Km愈小,E对S的亲合力愈大,
Km愈大,E对S的亲合力愈小。 ④在已知Km的情况下,应用米氏方程可计算任意[s]时的v,或
相对专一性:要求底物具有一定的化学键,且对键的某 一端所连的基团也有一定的要求,如胰蛋白酶。
键专一性:只作用于一定的键,而对键两端的基团并无 严格要求,如二肽酶。
2、 立体异构专一性 只能催化一种立体异构体,对另一种立体异构体无
作用,如乳酸脱氢酶能催化L-乳酸,而不能催化D-乳酸。

生物化学 第3章 酶

生物化学 第3章 酶

生物化学第3章酶生物化学第3章酶第3章酶自学建议1.掌握酶及所有相关的概念、酶的结构与功能的关系、酶的工作原理、酶促反应动力学特点、意义及应用。

2.熟识酶的分子共同组成与酶的调节。

3.了解酶的分类与命名及酶与医学的关系。

基本知识点酶是对其特异底物起高效催化作用的蛋白质。

单纯酶是仅由氨基酸残基组成的蛋白质,融合酶除所含蛋白质部分外,还所含非蛋白质辅助因子。

辅助因子就是金属离子或小分子有机化合物,后者称作辅酶,其中与酶蛋白共价紧密结合的辅酶又称辅基。

酶分子中一些在一级结构上可能相距很远的必需基团,在空间结构上彼此靠近,组成具有特定空间结构的区域,能与底物特异结合并将底物转化为产物,这一区域称为酶的活性中心。

同工酶就是指催化剂相同化学反应,酶蛋白的分子结构、化学性质乃至免疫学性质相同的一组酶,就是由相同基因编码的多肽链,或同一基因mRNA分解成的相同mrna所译者的相同多肽链共同组成的蛋白质。

酶促反应具有高效率、高度特异性和可调节性。

酶与底物诱导契合形成酶-底物复合物,通过邻近效应、定向排列、表面效应使底物容易转变成过渡态。

酶通过多元催化发挥高效催化作用。

酶促反应动力学研究影响酶促反应速率及其影响因素,后者包括底物浓度、酶浓度、温度、ph、抑制剂和激活剂等。

底物浓度对反应速率的影响可用米氏方程表示。

v?vmax[s]km?[s]其中,km为米氏常数,其值等同于反应速率为最小反应速率一半时的底物浓度,具备关键意义。

vmax和km需用米氏方程的双倒数作图去求得。

酶在拉沙泰格赖厄县ph和拉沙泰格赖厄县温度时催化活性最低,但拉沙泰格赖厄县ph和拉沙泰格赖厄县温度不是酶的特征性常数,受到许多因素的影响。

酶的抑制作用包含不可逆遏制与对称遏制两种。

对称遏制中,竞争抑制作用的表观km值减小,vmax维持不变;非竞争抑制作用的km值维持不变,vmax增大,反竞争抑制作用的km值与vmax均增大。

在机体内酶活性与含量的调节是代谢调节的重要途径。

医学生物化学 第03章 酶 习题

医学生物化学 第03章 酶 习题

1. 下列有关辅酶与辅基的论述,错误的是: ( D ) 下列有关辅酶与辅基的论述,错误的是: A. 辅酶与辅基都是酶的辅助因子 B. 辅酶以非共价键与酶蛋白疏松结合 C. 辅基以共价键与酶蛋白牢固结合 D. 不论辅酶或辅基都可以用透析或超滤的方法除去 E. 辅酶和辅基的差别在于它们与酶蛋白结合的紧密程度与反应方式不同。 辅酶和辅基的差别在于它们与酶蛋白结合的紧密程度与反应方式不同。 2.关于全酶,正确的说法是: ( E ) 关于全酶, 关于全酶 正确的说法是: A. 辅酶与酶蛋白结合牢固 B.。 辅基与酶蛋白结合疏松 C. 用超滤的方法将辅酶除去后,该酶仍具有活性 用超滤的方法将辅酶除去后, D. 决定专一性的部分是辅助因子 E. 决定专一性的部分是酶蛋白 3. 关于酶活性中心的叙述,下列哪项是正确的: ( B ) 关于酶活性中心的叙述,下列哪项是正确的: A . 酶的必需基团全部位于活性中心 B. 所有的酶都具有活性中心 C. 在活性中心内只有带电氨基酸残基才参与酶的催化作用 D. 活性中心中的必需基团只有两种 E . 构成活性中心的各种基团在一级结构上都互相靠近
填空题 核酶 1. 具有特异催化活性的核糖核酸称为_________ 。 具有特异催化活性的核糖核酸称为_________ 必需基团 2. 酶分子中与其发挥催化活性密切相关的基团称为_________ 。 酶分子中与其发挥催化活性密切相关的基团称为_________ 降低活化能 3. 酶加速化学反应的机理是酶能__________________。 酶加速化学反应的机理是酶能__________________。 4. 解释酶促反应的反应速度与底物浓度关系的最合理的学说是 中间产物学说 ________________。 ________________。 4:5 : 5. 当[S]=4Km时,酶促反应V与Vmax之比为___________。 [S]=4Km时 酶促反应V Vmax之比为 之比为___________。 6. 当底物浓度大大超过酶浓度时,酶促反应速度与酶浓度关系 当底物浓度大大超过酶浓度时, 正比 _________。 呈_________。

03生物化学习题与解析酶

酶一、选择题〔一〕 A 型题•酶的活性中心是指A .结合抑制剂使酶活性降低或丧失的部位B .结合底物并催化其转变成产物的部位C .结合别构剂并调整酶活性的部位D .结合激活剂使酶活性增高的部位E .酶的活性中心由催化基团和辅酶组成•酶促反响中,打算反响特异性的是A .酶蛋白B .辅酶C .别构剂D .金属离子E .辅基•关于酶的表达正确的选项是A .酶是生物催化剂,它的化学本质是蛋白质和核酸B .体内的生物催化剂都是蛋白质C .酶是活细胞合成的具有催化作用的蛋白质D .酶转变反响的平衡点,所以能加速反响的进程E .酶的底物都是有机化合物•酶蛋白变性后活性丧失缘由是A .酶蛋白被完全降解为氨基酸B .酶蛋白的一级构造受到破坏C .酶蛋白的空间构造受到破坏D .酶蛋白不再溶于水E .失去了激活剂•含有维生素 B 1 的辅酶是A . NAD +B . FADC . TPPD . CoAE . FMN•解释酶的专一性较合理的学说是A .锁 - 钥学说B .化学渗透学说C .诱导契合学说D .化学偶联学说E .中间产物学说•酶的竞争性抑制剂的特点是A .当底物浓度增加时,抑制剂作用不减B .抑制剂和酶活性中心的结合部位相结合C .抑制剂的构造与底物不相像D .当抑制剂的浓度增加时,酶变性失活E .抑制剂与酶的结合是不行逆的8.磺胺类药物能抑菌,是由于细菌利用对氨基苯甲酸合成二氢叶酸时,磺胺是二氢叶酸合成酶的A .竞争性抑制剂B .不行逆抑制剂C .非竞争性抑制剂D .反竞争性抑制剂E .别构抑制剂9.关于酶的共价修饰,正确的选项是A .活性中心的催化基团经修饰后,转变酶的催化活性B .通过打断某些肽键,使酶的活性中心形成而转变酶的活性C .只涉及酶的一级构造的转变而不涉及高级构造的转变D .有级联放大效应E .只包括磷酸化修饰和甲基化修饰10.关于关键酶的表达,正确的选项是A .一个反响体系中的全部酶B .只受别构调整而不受共价修饰C .一个代谢途径只有一个关键酶D .并不催化处于代谢途径起始或终末的反响E .一般催化代谢途径中速度较慢、不行逆的反响11 .关于有机磷化合物对酶的抑制,表达正确的选项是A .因能用解磷定解毒,故属于可逆性抑制B .能猛烈抑制胆碱酯酶活性C .该抑制能被过量的 GSH 解除D .有机磷化合物与酶活性中心的巯基结合E .该抑制能被适量的二巯基丙醇解除12 .关于非竞争性抑制剂的表达,正确的选项是A .由于抑制剂结合酶活性中心以外的部位,酶与底物结合后,还能与抑制剂结合B .酶的 K m 与抑制剂浓度成反比C .与酶活性中心上的必需基团结合,影响酶与底物的结合D .在有非竞争性抑制剂存在的状况下,如参加足量的酶,能到达正常的 V maxE .也称为别构抑制剂13.反竞争性抑制作用的动力学特点是A . K m 降低, V max 降低B .抑制剂可与酶和酶 - 底物复合物同时结合C . K m 不变, V max 降低D .抑制剂只与酶或酶 - 底物复合物结合E . K m 降低, V max 增高14.酶和一般催化剂相比,其特点之一是A .温度能影响催化效率B .高温时会消灭变性C .降低反响的活化能D .提高速度常数E .不转变平衡常数15.关于 K m 的表达,正确的选项是A .指酶 - 底物复合物的解离常数B .酶的 K m 越大,底物与酶的亲和力越大C .是酶的特征性常数,与酶的浓度无关D .与底物的种类无关E .与环境的 pH 无关16.关于酶的最适 pH ,表达错误的选项是A .与底物的种类有关B .与底物的浓度有关C .与缓冲液的种类有关D .与缓冲液的浓度无关E .与酶的纯度有关17.关于酶和底物的结合,表达错误的选项是A .一般为非共价结合B .假设底物为蛋白质等大分子,结合范围涉及整个酶分子C .假设底物为小分子化合物,结合范围只是酶的活性中心D .酶构象的破坏,则严峻影响酶 - 底物复合物的形成E .结合基团可能也具有催化功能,催化基团也有结合作用18.关于酶的最适温度,表达错误的选项是A .与底物的种类和浓度有关B .与介质的种类和 pH 有关C .与环境的离子强度无关D .与酶的种类和浓度有关E .以酶活力对温度作图图形呈倒 U 形19.关于酶的磷酸化修饰,表达错误的选项是A .酶经磷酸化修饰后,酶的活性增加B .磷酸化和去磷酸化反响是由各种蛋白激酶催化的C .被磷酸化的部位是酶活性中心的丝氨酸、苏氨酸及酪氨酸残基的羟基D .磷酸化时需消耗 ATPE .别构酶不能进展磷酸化修饰20.酶原激活的主要途径是A .化学修饰B .亚基的聚合和解离C .别构激活D .翻译后加工E .水解一个或几个特定的肽段21.化学毒气〔路易士气〕与酶活性中心结合的基团是A .丝氨酸的羟基B .组氨酸的咪唑基C .赖氨酸的ε - 氨基D .半胱氨酸的巯基E .谷氨酸的氨基22.浓度为 10 -6 mol/L 的碳酸酐酶在一秒钟内催化生成 0.6mol/L 的 H 2 CO3 ,则碳酸酐酶的转换数为A . 6 × 10-4B . 6 × 10-3C . 0.6D . 6 × 10-5E . 1.7 × 10 -623.酶促反响动力学争辩的是A .酶分子的空间构象及其与关心因子的相互关系B .酶的电泳行为C .酶促反响速度及其影响因素D .酶与底物的空间构象及其相互关系E .酶活性中心各基团的相互关系24.反竞争性抑制剂对酶促反响速度的影响是A . K m ↑, V max 不变B .K m ↓,V max ↓C . K m 不变,V max ↓D .K m ↓,V max ↑E .K m ↓, V max 不变25.有关乳酸脱氢酶同工酶的表达,正确的选项是A .乳酸脱氢酶含有 M 亚基和 H 亚基两种,故有两种同工酶B . M 亚基和 H 亚基都来自同一染色体的某一基因位点C .它们在人体各组织器官的分布无显著差异D .它们的电泳行为一样E .它们对同一底物有不同的 K m 值26.关于同工酶表达正确的选项是A .催化一样的化学反响B .分子构造一样C .理化性质一样D .电泳行为一样E .翻译后化学修饰不同所造成的结果也不同27.L- 谷氨酸脱氢酶属于A .氧化复原酶类B .水解酶类C .裂合酶类D .转移酶类E .合成酶类28.能使酶发生不行逆破坏的因素是A .强碱B .低温C .透析D .盐析E .竞争性抑制29.关于酶与临床医学关系的表达,错误的选项是:A.体液酶活性转变可用于疾病诊断B .乙醇可诱导碱性磷酸酶生成增加C .酶可用于治疗疾病D .酪氨酸酶缺乏可引起白化病E .细胞损伤时,细胞酶释入血中的量增加30.心肌堵塞时,乳酸脱氢酶的同工酶谱增加最显著的是:A . LDH 5B . LDH 4C . LDH 3D . LDH 2E . LDH 131.测定血清酶活性常用的方法是A .在最适条件下完成酶促反响所需要的时间B .以 280nm 的紫外吸取测酶蛋白的含量C .分别提纯酶蛋白,称取重量计算酶含量D .在规定条件下,测其单位时间内酶促底物削减量或产物生产量E .以上方法都常用〔二〕 B 型题A .抛物线B .矩形双曲线C .直线D .平行线E . S 形曲线1.竞争性抑制作用与反响速度的关系曲线是2.反竞争性抑制作用与反响速度的关系曲线一般是•底物浓度与反响速度的关系曲线是•变构酶的动力学曲线是A .竞争性抑制B .非竞争性抑制C .反竞争性抑制D .不行逆性抑制E .反响抑制5.砷化物对巯基酶的抑制是6.甲氨蝶呤对四氢叶酸合成的抑制是7.丙二酸对琥珀酸脱氢酶的抑制是A .寡聚酶B .限制性内切酶C .多酶体系D .酶原E .单体酶8.由一条多肽链组成•无催化活性•基因工程中的工具酶11.可催化一系列连续的酶促反响A .转移酶B .水解酶C .异构酶D .裂解酶E .氧化复原酶12.醛缩酶属于•消化酶属于•磷酸化酶属于•过氧化氢酶属于A .有机磷农药B .磺胺类药物C .二巯基丙醇D .解磷定E .琥珀酸16. 二氢叶酸合成酶的抑制剂•胆碱酯酶的抑制剂•有机磷农药中毒的解毒•重金属盐中毒的解毒A .米氏常数B .酶的活性单位C .酶的转换数D .酶的最大反响速度E .酶的速度•单位时间内生成肯定量的产物所需的酶量•可以反映酶对底物的亲和力•每秒钟 1mol 酶催化底物转变为产物的摩尔数A .多数酶发生不行逆变性B .酶促反响速度最大C .多数酶开头变性D .温度增高,酶促反响速度不变E .活性降低,但未变性•环境温度>60 ℃•环境温度>80 ℃•酶在0 ℃ 时•环境温度与最适温度相当A .酶浓度B .抑制剂C .激活剂D . pH 值E .底物浓度•能使酶活性增加•影响酶与底物的解离•可与酶的必需基团结合,影响酶的活性•酶被底物饱和时,反响速度与之成正比A .氨基转移B .羧化反响C .丙酮酸脱羧D .琥珀酸脱氢E .丙酮酸激酶•磷酸吡哆醛与磷酸吡哆胺作辅酶•FAD 作辅酶•生物素作辅酶A .斜率↑,纵轴截距↓,横轴截距不变B .斜率↑,纵轴截距不变,横轴截距↑C .斜率↑,纵轴截距↑,横轴截距不变D .斜率不变,横轴截距↑,纵轴截距↓E .斜率不变,横轴截距↓,纵轴截距↑34. 竞争性抑制的林 - 贝作图特点是•非竞争性抑制的林 - 贝作图特点是•反竞争性抑制的林 - 贝作图特点是〔三〕 X 型题1.对酶的表达正确的选项是A .辅酶的本质是蛋白质B .能降低反响活化能C .活细胞产生的生物催化剂D .催化热力学上不能进展的反响E .酶的催化效率没有一般催化剂高2.大多数酶具有的特征是A .单体酶B .为球状蛋白质,分子量都较大C .以酶原的形式分泌D .表现出酶活性对 pH 值特有的依靠关系E .最适温度可随反响时间的缩短而上升3.LDH 1 和 LDH 5 的表达正确的选项是A .二者在心肌和肝脏分布量不同B .催化一样的反响,但生理意义不同C .分子构造、理化性质不同D .用电泳的方法可将其分别E .骨骼肌和红细胞中含量最高4.金属离子在酶促反响中的作用是A .参与酶与底物结合B .可作催化基团C .在氧化复原反响中传递电子D .转移某些化学基团E .稳定酶分子构象5.酶的关心因子包括A .金属离子B .小分子有机化合物C . H 2 OD . CO 2E . NH 36.酶的化学修饰包括A .甲基与去甲基化B .磷酸化与去磷酸化C .乙酰化与去乙酰化D .腺苷化与脱腺苷化E .–SH 与–S–S–的互变7.关于 pH 值对酶促反响的影响,正确的选项是A .影响酶分子中很多基团的解离状态B .影响底物分子的解离状态C .影响辅酶的解离状态D .最适 pH 值是酶的特征性常数E .影响酶 - 底物复合物的解离状态8 .影响酶促反响速度的因素有A .抑制剂B .激活剂C .酶浓度D .底物浓度E . pH9 .竞争性抑制作用的特点是A .抑制剂与酶的活性中心结合B .抑制剂与底物构造相像C .增加底物浓度可解除抑制D .抑制程度与 [S] 和 [I] 有关E .增加酶浓度可解除抑制10.磺胺类药抑制细菌生长是由于A .属于非竞争性抑制作用B .抑制细菌二氢叶酸合成酶C .造成四氢叶酸缺乏而影响核酸的合成D .抑制细菌二氢叶酸复原酶E .属于反竞争性抑制作用11.关于酶催化作用的机制正确的选项是A .邻近效应与定向作用B .酸碱双重催化作用C .外表效应D .共价催化作用E .酶与底物如锁子和钥匙的关系,进展锁 - 匙的结合12 .关于同工酶的表达,正确的选项是A .由一样的基因把握而产生B .催化一样的化学反响C .具有一样的理化性质和免疫学性质D .对底物的 K m 值不同E .由多亚基组成13 .关于温度对酶促反响的影响,正确的选项是A .温度越高反响速度越快B .最适温度是酶的特征性常数C .低温一般不使酶破坏,温度上升后,酶又可以恢复活性D .温度上升至60 ℃ 以上时,大多数酶开头变性E .酶的最适温度与反响进展的时间有关14 .关于酶含量调整表达正确的选项是A .底物常阻遏酶的合成B .终产物常诱导酶的合成C .属于缓慢调整D .细胞内酶的含量一般与酶活性呈正相关E .属于快速调整二、是非题•竞争性抑制剂抑制程度与作用时间无关。

生物化学03第三章 酶


三、 酶的命名与分类
(一)酶的命名
1.习惯命名法——推荐名称
通常以酶催化的底物、反应的性质以及酶的来源命名。 (1) 依据酶所催化的底物命名,如淀粉酶等。 (2) 依据催化反应类型命名,如脱氢酶、转氨酶等。 (3) 综合上述两项原则命名,如乳酸脱氢酶等。 2. 系统命名法——系统名称 规定各种酶名称要明确标示酶的底物与反应类型,如 果一种酶催化两个底物,应在酶系统名称中同时写入 两种底物的名称,用“:”把它们分开,如果底物之 一是水,则水可省略不写。
底物
反应总能量改变
产物 应 过 程
酶促反应活化能的改变

一、酶的活性中心(active center)
(一)什么是活性中心(活性部位)
指在整个酶分子中,只有一小部分区域 的aa残基参与对底物的结合和催化作用,这
些特异的aa残基比较集中的区域称为酶的活
性中心或称活性部位。
(二)酶活性中心的组成
结合部位:酶分子中与结合底物有关的部位。
1. 结合酶的酶蛋白与辅助因子协同作用才能发挥 催化作用。
酶蛋白
(无催化活性)
+ 辅助因子
(无催化活性)
全酶
(有催化活性)
2.全酶各部分在催化反应中的作用
(1)酶蛋白决定反应的特异性。 (2)辅助因子决定反应的种类与性质。
3.辅酶:属于有机分子类型的辅因子;辅酶又可
分为一般的辅酶和辅基两类(按其与酶蛋白结合
酶的调节部位可以与某些化合物可逆地非共价结 合,使酶发生结构的改变,进而改变酶的催化活性, 这种酶活性的调节方式称~。

别构酶:多为寡聚酶
正效应物(别构激活剂) 负效应物(别构抑制剂)
效应物(别构效应剂) (多为小分子化合物)

生物化学酶


活化能阈:低能分子转变 为高能分子所需要的 最低能量。

活化能阈
活化分子相对数量 反应速度
2.高度的特异性(专一性)
酶的特异性
酶对底物的选择性。
酶对底物具有严格的选择性。即一种酶只能作用于一
种或一类底物,或一定的化学键,催化一定的反应,得到
一定的产物。
(1)绝对特异性
指某些酶只能作用于一种
特定的底物,进行一种反应,生成特定的产物的
碳酸酐酶、羧肽酶
Mg2+
激酶类、磷氨酸酶
Mn2+
精氨酸酶、超氧化物歧化酶
Na+
质膜 ATP 酶 (也需K+和Mg2+)
K+
丙酮酸激酶 (也需Mg2+和Mn2+ )
维生素(vitamin) ---------机体维持正常生理功能所必需,但在人体 内不能合成或合成量很少,必须由食物供给的一 组低分子有机物质。
酶所具有的催化能力
。酶失活
酶失去了催化能力

二、酶作用的特点 (一)共同点
1.只能进行热力学上允许进行的反应; 2.缩短化学反应到达平衡的时间,而不 改变反应的平衡点; 3.反应前后没有质和量的改变。
(二)酶作用的特点
1.高度的催化效率
通常要高出非生物催化剂催化活性的 106~1020倍
酶与一般催化剂催化效率的比较
维生素的分类与命名:
脂溶性维生素 维生素A、D、E、K 按溶解性
分为
水溶性维生素
B族维生素:B1、B2、PP、 泛酸、B6、叶酸、生物素、B12 、
B族维生素的主要作用:维构生成素酶C、的硫辅辛酶酸 或辅基参与体内物质代谢。
特点:

生物化学:第三章 酶学


为Tyr 248 为Arg 145
Zn
为Glu 270 为底物
R
R R
A.非差 示标记
差 示 标 记 法 图 解
B. 差示 标记
(底物)
R
R
R
Hale Waihona Puke R*RR*
亲和标记法
根据酶与底物特异结合的性质,设计或合成一种含有反应基团的底物类似
物作为活性部位基团的标记试剂。这种试剂象底物一样进入活性部位,接
近结合位点,并以其活泼的化学基团与活性部位的某一基团共价结合,而 指示出酶活性部位的特征。
“锁钥学说”
(lock and key thoery):
Fischer, (1890):酶 的活性中心 结构与底物 的结构互相 吻合,紧密 结合成中间 络合物。
诱导嵌合学说 (induced-fit hypothesis): Koshland,(1958): 酶活性中心的结构有 一定的柔性,当底物 (激活剂或抑制剂) 与酶分子结合时,酶 蛋白的构象发生了有 利于与底物结合的变 化,使反应所需的催 化基团和结合基团正 确地排列和定向,转 入有效的作用位置, 这样才能使酶与底物 完全吻合,结合成中 间产物。
当ΔG<0,反应能自发进行。 活化能:分子由常态转变为活化状态所需的能量。 是指在一定温度下,1mol 反应物全部进入活化 状态所需的自由能。
化学反应要能够 发生,关键的是反应 体系中的分子必须分 子处于活化状态,活 化分子比一般分子多 含的能量就称为活化 能。反应体系中活化 分子越多,反应就越 快。增加反应体系的 活化分子数有两条途 径:一是向反应体系 中加入能量 ,另一 途径是降低反应活化 能。酶的作用就在于 降低化学反应活化能。
活酶的专一性研究 酶分子的化学修饰:差示标记法,亲和标记法 X-射线衍射法
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020/6/8
本章教学重点
酶的化学本质,单纯酶、结合酶、全酶、辅酶与辅基的概 念,金属离子的作用;酶的辅助因子与水溶性维生素的关 系,维生素的概念、分类; 酶的活性中心的概念。必需 基团的分类及其作用;酶促反应的特点:高效性、高特异 性和可调节性;底物浓度对酶促反应的影响:米一曼氏方 程,Km值的意义;抑制剂对酶促反应的影响:不可逆抑 制的作用,可逆性抑制包括竞争性抑制、 非竞争性抑制、 反竞争性抑制的动力学特征;酶原与酶原激活的过程与生 理意义;变构酶、变构调节、共价修饰和同工酶的概念。
醛基 酰基
烷基 二氧化碳 氨基 甲基、甲烯基、甲炔基 、甲酰基等一碳单位
2020/6/8
小分子有机化合物(辅酶或辅基)
名称
所含的维生素
NAD+(尼克酰胺腺嘌呤二核苷 尼克酰胺(维生素PP)之一 酸,辅酶I)
NADP+(尼克酰胺腺嘌呤二核 尼克酰胺(维生素PP)之一 苷酸磷酸,辅酶II)
FMN(黄素单核苷酸) FAD(黄素腺嘌呤二核苷酸) TPP(焦磷酸硫胺素) 辅酶A(CoA)
非共价键连接组成的酶。 ➢ 多酶体系(multienzyme system):由几种不同功能的酶彼
此聚合形成的多酶复合物(如丙酮酸脱氢酶复合体)。 ➢ 多 功 能 酶 (multifunctional enzyme) 或 串 联 酶 (tandem
enzyme):一些多酶体系在进化过程中由于基因的融合, 多种不同催化功能存在于一条多肽链中,这类酶称为多功 能酶(如逆转录酶)。
2020/6/8
一、酶的分子组成
单纯酶 (simple enzyme) 结合酶 (conjugated enzyme)
全酶 (holoenzyme)
蛋白质部分:酶蛋白 (apoenzyme)
辅助因子 (cofactor)
小分子有机化合物 金属离子
2020/6/8
全酶分子中各部分在催化反应中的作用: ➢ 酶蛋白决定反应的特异性 ➢ 辅助因子决定反应的种类与性质
2020/6/8
第三节 酶促反应动力学
Kinetics of Enzyme-Catalyzed Reaction
2020/6/8
➢ 酶 的 催 化 效 率 可 用 酶 的 转 换 数 (turnover number) 来表示。酶的转换数是指在酶被底 物饱和的条件下,每个酶分子每秒钟将底物 转化为产物的分子数。
2020/6/8
(二)酶促反应具有高度的特异性
酶的特异性 (specificity) 一种酶仅作用于一种或一类化合物,
代谢过程中的水解、水合、分子重排和许多取代 反应,都是因酶的酸碱催化而加速完成。
2020/6/8
广义酸基团(质子供体) 广义碱基团(质子受体)
2020/6/8
2.共价催化作用(covalent catalysis) 某些酶能与底物形成极不稳定的、共价结合的ES复 合物(过渡态),从而降低反应的活化能,这些复合 物极易变成产物,加速化学反应速度。
或一定的化学键,催化一定的化学反应并 生成一定的产物。酶的这种特性称为酶的 特异性或专一性。
2020/6/8
根据酶对其底物结构选择的严格程度不同, 酶的特异性可大致分为以下3种类型: ➢ 绝对特异性(absolute specificity):只能作用 于特定结构的底物,进行一种专一的反应,生 成一种特定结构的产物 。 ➢ 相对特异性(relative specificity):作用于一 类化合物或一种化学键。 ➢ 立体结构特异性(stereospecificity):作用于 立体异构体中的一种。
2020/6/8
小分子有机化合物是一些化学稳定的小分子 物质,称为辅酶 (coenzyme)。 ➢ 其主要作用是参与酶的催化过程,在反应中 传递电子、质子或一些基团。 ➢ 辅酶的种类不多,且分子结构中常含有维生 素或维生素类物质。
2020/6/8
某些辅酶(辅基)在催化中的作用
转移的基团 氢原子(质子)
维生素B2(核黄素) 维生素B2(核黄素) 维生素B1(硫胺素) 泛酸
硫辛酸
硫辛酸
钴胺素辅酶类 生物素
维生素B12 生物素
磷酸吡哆醛
吡哆醛(维生素B6之一)
四氢叶酸
叶酸
辅酶中与酶蛋白共价结合的辅酶又称为辅基 (prosthetic group)。
辅基和酶蛋白结合紧密,不能通过透析或超 滤等方法将其除去,在反应中不能离开酶蛋 白,如FAD、FMN、生物素等。
2020/6/8
二、酶的活性中心
必需基团(essential group) 酶分子中氨基酸残
基侧链的化学基团中, 一些与酶活性密切相关 的化学基团。
2020/6/8
酶的活性中心 (active center/site) 指必需基团在空间结构上彼此靠近,组
成具有特定空间结构的区域,能与底物特异 结合并将底物转化为产物。
➢ 同工酶存在于同一种属或同一个体的不同组织 或同一细胞的不同亚细胞结构中,它使不同的 组织、器官和不同的亚细胞结构具有不同的代 谢特征。这为同工酶用来诊断不同器官的疾病 提供了理论依据。
2020/6/8
举例 1
H 心肌型
M 骨骼肌型(碱性AA较多)
HH HH
血清% 器官分布
LDH1 (H4)
27
2020/6/8
(三)酶促反应的可调节性
酶促反应受多种因素的调控,以适应机体 对不断变化的内外环境和生命活动的需要。
➢ 区域化分布与基因分化/融合/编辑 ➢ 酶原激活 ➢ 对酶生成与降解量的调节 ➢ 酶催化效率的调节 ➢ 通过改变底物浓度对酶进行调节等
2020/6/8
二、酶促进反应速率的机制
(一)酶比一般催化剂更有效地降低反应活化能
取液,实现了发酵。 ➢ 1926年,Sumner首次从刀豆中提纯出脲酶结晶

2020/6/8
➢ 1982年,Cech首次发现RNA也具有酶的催化活 性,提出核酶(ribozyme)的概念。
➢ 2019年,Jack W.Szostak研究室首先报道了具有 DNA 连 接 酶 活 性 DNA 片 段 , 称 为 脱 氧 核 酶 (deoxyribozyme)。
邻近效应与定向排列:
2020/6/8
两个基团邻近和定向示意图
a.不靠近不定向;b.靠近不定向;c.靠近定向
2020/6/8
3.表面效应使底物分子去溶剂化
➢酶的活性中心多位于酶分子的疏水“口袋”,酶 反应在此疏水环境中进行,使底物分子脱溶剂化 (desolvation),排除周围大量水分子对酶和底物 分子中功能基团的干扰性吸引和排斥,防止水化 膜的形成,利于底物与酶分子的密切接触和结合。 这种现象称为表面效应(surface effect)。
(二)酶-底物复合物的形成
酶底物复合物
E+S
ES
(过渡态)
E+P
2020/6/8
1.诱导契合作用使酶与底物密切结合 ➢酶与底物相互接近时,其结构相互诱导、相 互变形和相互适应,进而相互结合。这一过 程称为酶-底物结合的诱导契合(induced-fit) 。
2020/6/8
2020/6/8
酶受底物诱导发生构象改变,特别是活性中心的 功能基团位移或改向,呈现一种高活性功能状态。
2020/6/8
金属离子是最多见的辅助因子 ➢ 金属酶(metalloenzyme) 金属离子与酶结合紧密,提取过程中不 易丢失。 ➢ 金属激活酶(metal-activated enzyme) 金属离子为酶的活性所必需,但与酶的 结合不甚紧密。
2020/6/8
➢ 金属离子的作用: 参与催化反应,传递电子; 在酶与底物间起桥梁作用; 稳定酶的构象; 中和阴离子,降低反应中的静电斥力等。
加之,由于酶的活性中心关键性电荷基团可使底 物分子电子云密度改变,产生张力作用使底物扭 曲,削弱有关的化学键,从而使底物从基态转变 成过渡态,有利于反应进行。
2020/6/8
X-射线晶体衍射证明,溶菌酶与底物结合后,底 物中的乙酰氨基葡糖中吡喃环可从椅式扭曲成沙 发式,导致糖苷键断裂,实现溶菌结合基团
(binding group) 与底物相结合
催化基团
(catalytic group) 催化底物转变成产物
➢ 活性中心外的必需基团
位于活性中心以外,维持酶活性中心应有 的空间构象和(或)作为调节剂的结合部位所 必需。
2020/6/8
活性中心以外 的必需基团
2020/6/8
第一节
酶的分子结构与功能
The Molecular Structure and Function of Enzyme
2020/6/8
酶的不同形式:
➢ 单体酶(monomeric enzyme):仅有三级结构的酶。 ➢ 寡聚酶(oligomeric enzyme):由多个相同或不同亚基以
2020/6/8
一、酶促反应的特点
(一)酶促反应具有极高的效率
➢ 酶的催化效率通常比非催化反应高108~1020倍, 比一般催化剂高107~1013倍。
➢ 酶的催化不需要较高的反应温度。 ➢ 酶和一般催化剂加速反应的机理都是降低反应
的活化能(activation energy)。酶比一般催化剂 更有效地降低反应的活化能。
2020/6/8
3.亲核催化作用(nucleophilic catalysis) 通常酶分子活性中心内都含有亲核基团,如Ser的 羟基Cys的巯基、His的咪唑基、Lys的e-氨基这些 基团都有剩余的电子对,可以对底物缺电子基团发 动亲核攻击。例如胰凝乳蛋白酶,就是利用Ser195 -OH的H+通过His57传向Asp102后,Ser195-O-一 成为强的亲核基团,来攻击底物的羰基碳(>C=O)
2020/6/8
相关文档
最新文档