A2电子凸轮应用技巧
电子凸轮参数说明

电子凸轮功能使用说明电子凸轮是指根据从轴的同步参数设定,从轴位置与主轴位置同步的功能。
根据设定的凸轮曲线、离合器、各种补偿等来运算从轴相对于主轴的位置。
时间ISD210电子凸轮型伺服支持最大8192点的凸轮表,凸轮表数量可以设定为1、2或者4个,不同凸轮表在运行过程中可以动态切换。
电子凸轮的主轴来源可以选择位置脉冲输入、全闭环输入、内部定位指令或者时间轴。
多台伺服通过主轴脉冲的级联,可以实现针对同一个主轴的多轴联动电子凸轮。
凸轮曲线的生成规则支持整体曲线生成,这种模式下曲线各个点二次连续;也支持指定顶点后的分段生成,用户可根据自己的需要选择等速度、等加速度、简谐等多生成规则。
电子凸轮运行过程中,支持对主轴和凸轮输出的动态调整,支持对主轴的速度补偿,支持可变齿轮,解决运行过程中各种误差调整和跟随问题。
0>电子凸轮结构图1>全局开关Pn[837] 电子凸轮开关电子凸轮开关Pn[837]电子凸轮使能开关0‐不使能1‐使能只有凸轮开关使能时,才能使用电子凸轮的各项功能。
凸轮开关关闭时,当前主轴位置、当前凸轮相位将被复位。
2>主轴Pn[838] 主轴来源选择Pn[839] 时间轴周期脉冲量Pn[840]、Pn[841] 当前主轴位置主轴来源选择Pn[838]选择电子凸轮的主轴0‐位置指令脉冲,可以来自低速脉冲口,也可以来自高速脉冲口,由参数Pn[407]‐Pn[416]配置1‐全闭环口脉冲,可以来自CN6上的全闭环脉冲,RS422电平标准,AB相2‐定位指令,可以来自PLC内部定位指令,主轴来源选择定位指令时,电子凸轮的输出位置调整功能无效3‐时间轴 ,可以来自时间轴,参考Pn[839]时间轴周期脉冲量Pn[839]主轴来源选择时间轴时,设定每0.5mS主轴的位置增量‐32768~32767当前主轴位置Pn[840]、Pn[841]反映凸轮使能后主轴的位置,‐2147483648~2147483647,超出范围后循环。
电子凸轮说明书

兴世机械电子凸轮简要说明一.安全和注意1.注意事项本电子凸轮并不是完全的绝对值编码器,它在第一转(没有找到原点时)不会输出信号.2.安全操作请在完全了解明白该手册后,再安装和操作本电子凸轮.二.安装1.控制器安装直接嵌入面板安装,用配带的金属扣固定.2.编码器安装编码器用配套的联轴器安装,请保证编码器轴和设备驱动轴的同心度.三.接线1.接线端子位置:2.电源24V:24V供电电源.0V:电源公共端.3.编码器接线BLK: Black 黑色线RED:Red 红色线WHI: White 白色线A相脉冲+GRY:Grey 灰色线A相脉冲-BLU: Blue 蓝色线B相脉冲+BRN: Brown 棕色线B相脉冲-YLW: Yellow 黄色线Z相脉冲+GRN: Green 绿色线Z相脉冲-其它端子不用接线.如果需要更换电子凸轮旋转方向,请交换WHI和GRY(白色线和灰色线).4.输出信号接线COM:输出信号的公共点,每8个通道共用一个.并且每8个通道内部共用一个保险.0-31: 输出通道.NPN集电极开路输出,最高电压300V/最大电流150mA/最大功率100mW.5.控制信号接线24V:控制信号输入电源.ST:启动,当信号为ON时,控制使能输出,并可以设定参数.B0- B2:程序组选择信号.可以选择0-7程序组,如下表: 端子接0V时激活(ON),悬空不接或接24V无效(--).B0 B1 B2 NO.-- -- -- 0ON -- -- 1-- ON -- 2ON ON -- 3-- -- ON 4ON -- ON 5-- ON ON 6ON ON ON 7程序组信号在ST信号跳变沿读取.四.控制1.启动ST:启动信号,引脚为0V时激活.激活后读取程序组并使能凸轮输出.2.程序组切换先设定好B0-B2的程序组选择信号,再激活ST信号.五.触控面板:进入进角补偿的菜单。
:将变更的参数生效,并保存。
设定参数项改变,在程序时切换至ON/OFF,在进角补偿切换速度/ON的角度/OFF 的角度。
实现电子凸轮的功能在包装机上的应用

实现电子凸轮的功能在包装机上的应用一、前言在如今自动化包装机械的领域,电子凸轮已成为一个非常重要的组成部分。
与其他传统的机械凸轮相比,电子凸轮不仅更加灵活,而且更加精准。
因此,在包装机制造企业中,通过实现电子凸轮的功能,可以提高机器自动化程度和生产效率,减少人工干预,从而降低生产成本,提高产品质量。
本文将着重探讨,实现电子凸轮的功能在包装机上的应用。
二、电子凸轮的相关知识电子凸轮是一种通过电子控制的运动装置,它的基本原理是利用电磁铁的原理,通过电脉冲控制来控制线性电机的运动,从而实现频率控制和速率控制。
例如:通过不同的控制信号和电路设计,可以使电子凸轮按照不同的曲线运动,实现各种不同的运动要求。
电子凸轮的工作原理和传统的机械凸轮不同,传统的机械凸轮是通过机械运动的方式,使机械臂等装置运动出相应的动作路径,限制在相同的路径特征。
而电子凸轮则是利用电子控制的方式实现装置的运动控制,因此可以快速、高效地调整运动轨迹,实现更复杂的操作流程。
三、实现电子凸轮的功能在包装机上的应用在包装机制造企业中,电子凸轮的应用已经越来越普遍,可以应用在各种包装流程中,如填充、粘贴、包装、封口等等,下面我们来讲述一些具体的应用案例。
1、电子凸轮在自动灌装流水线中的应用在自动灌装流水线中,灌装流量的大小是通过电子凸轮控制,与传统机械凸轮相比,电子凸轮控制流量更加灵活。
同时,电子凸轮可以实时地监测灌装流量,确保灌装流量的准确性和一致性。
而且,由于电子凸轮可以自动控制流量大小,可以使得机器运作效率更高,减少工人干预,降低成本,提高效率。
2、电子凸轮在自动包装机中的应用在自动包装机中,电子凸轮控制着装置的运动轨迹,这种方式可以使机器在规定的时间内完成较为复杂的操作流程。
例如:在封箱流水线中,当完成箱子灌装后,需要将箱子粘合并放入另一个装置中进行封箱,这个工作可以通过电子凸轮控制热熔胶的运动来实现,从而避免了手动粘胶的过程,节省时间和人力成本。
欧姆龙电子凸轮简明操作

欧姆龙电⼦凸轮简明操作欧姆龙电⼦凸轮简明操作指导1.运⾏状态电⼦凸轮在运⾏时应该把“模式选择开关”(图1-3)放在’RUN’位(最右边),此时“程序块/功能显⽰” (图1-1)中会显⽰当前应⽤的程序块“1”,“凸轮号/参数显⽰” (图1-2)中会显⽰正在运⾏的信息“ru”。
“速度/开⾓度显⽰” (图1-4)中会显⽰当前每分钟的转速“50”,“⾓度/关⾓度显⽰” (图1-5)为当前运⾏⾓度的变化。
2.修改⾓度⾓度修改要把“模式选择开关”(图1-3)切换到中间——编程位置,此时所有的输出点没有输出。
按键可以选择要调整的输出点,点击键可以从1⼀直调到到24(图1-2中显⽰),然后循环回来。
到了要更改的输出点,图1-5中显⽰的数字会闪烁,此时可以修改该输出点的开始输出⾓度(图1-5中显⽰),如果要修改结束输出⾓度(图1-4中显⽰),按可以在“开始输出”和“结束输出”之间切换。
点击修改⾓度到需要的⾓度。
如果要清除改点的输出,可以⼀直按住,⼀直到图1-4和图1-5中显⽰的值为“------”。
修改完毕后⼀定要点击确认保存,如果没有确认就没有改变⾓度。
确认以后4、5中显⽰的值为“------”,此时不要进⾏输⼊,可以点选择下⼀个要修改的点,或者拨动“模式选择开关” (图1-3)到右边,直接退回运⾏状态。
z注意:务必先把机器停下来再更改⾓度!3.程序清除和零点复位程序清除和零点复位要把“模式选择开关”(图1-3)切换到左边——设置位置,此时所有的输出点没有输出。
取⼀⼯具点击“零点调整按钮”(图1-7)可以把当前⾓度设为电⼦凸轮的0度。
取⼀⼯具点击“程序清除按钮”(图1-6)可以清除原有编好的程序,清除后需重新输⼊所有输⼊输出⾓度。
z注意:务必先把机器停下来再进⾏操作!z注意:程序清除后⽆法重新找回,请务必谨慎使⽤该功能。
附:相关零件号旋转编码检测单本操作⼿册图⽰即为检测单元固态继电器编码线旋转编码器——检测单元检测单元——固态继电器铝⾦轴。
详述电子凸轮以及Parker伺服控制器的电子凸轮应用

详述电子凸轮以及Parker伺服控制器的电子凸轮应用V1.0Parker技术支持—赵亮电子凸轮属于多轴同步运动(Multi-, Synchronized Motion),这种运动是基于主轴(Master or Leading axis)和一个或者多个从轴(Slave or following axis)系统。
这时的主轴可以是虚拟轴。
电子凸轮是在机械凸轮的基础上发展起来的,传统机械凸轮是通过凸轮实现非线性的加工轨迹,而电子凸轮直接将轨迹点输入到驱动器内,通过设定的解算方式进行伺服控制,达到和机械凸轮相同的加工目的。
电子凸轮相对机械凸轮的优势在于:z方便根据需求更改加工轨迹,而不需要繁琐的更改机械凸轮。
z加工机械凸轮的成本较高、难度较大。
z机械凸轮会磨损、通常是机床噪音的最大来源。
一电子凸轮的实现方式电子凸轮的实现方式分为三部分,分别是:1、设定主轴和从轴;2、设定电子凸轮曲线;3、实现电子凸轮运动。
电子凸轮曲线可以采用多种描述方式,常见的采用两维表格分别描述主轴和从轴的值;也可以采用数学公式来描述。
很多厂家提供了具体的软件工具来方便生成电子凸轮曲线,在第二章会详细描述电子凸轮曲线的方式。
在PLCopen Motion Control规定的文件中,主要用了四个功能块来实现电子凸轮应用。
他们分别是MC_CamTableSelect、MC_CamIn、MC_CamOut以及MC_Phasing。
1、MC_CamTableSelectMC_CamTableSelect功能块设定了电子凸轮应用中的主轴和从轴;设定了电子凸轮曲线(保存在MC_CAM_REF数据表内)。
此外,可以选择周期性运行或是单次运行、主轴以及从轴的位置是相对型还是绝对型。
2、MC_CamInMC_CamIn功能块用于进行电子凸轮主轴和从轴的耦合。
当Execute为True时,主轴和从轴按照设定的电子凸轮曲线以及设定的运行参数进行耦合。
这些运行参数包含主轴和从轴的比例:主轴和从轴可以根据此设定来决定两者的位置比例。
台达电子凸轮设计解读

枕式药剂包装机结构实际图: 送料轴 送膜轴 色标检测 纵缝箱
5
膜位调节器
横封刀位置调 节器
横封切刀轴 横封加热体
• ASDA-A2 SOLUTION
枕式药剂包装机的工艺原理
枕式药剂包装机效果展示:
包裝膜
送膜轴
切刀轴
送料軸
枕料
6
•
ASDA-A2 SOLUTION
枕式药剂包装机控制结构
枕式药剂包装机控制结构:
•
ASDA-A2 SOLUTION
枕式药剂包装机控制参数设定
全闭环参数设定:
P1-74 光学尺全闭环功能控制开关
参数功能介绍:
全闭环功能开关 OA/OB/OZ输出来源选择 光学尺回授正反相选择 未使用 全闭环功能开关
设定1实现全 闭环功能及龙 门同动功能
OA/OB/OZ输出来源选择
实现BYpass控制
ASDA-A2 SOLUTION
2009/12
1
A2运动控制枕式包装机
枕式包装机是一种卧式三面封口,自动完成制袋、填 充、封口、切断,要实现高速包装,横封刀必须采用伺服 的电子凸轮功能,运用台达A2高性能伺服控制器所内建 的电子凸轮完全可以达到客户的要求。 目前市面的国产全自动枕式包装机采用PLC控制、变 频调速,机械联动 ,运动曲线是由机械的凸轮来实现的, 机械加工、安装复杂,运行噪音大,效率低。 如今市面上所讲的伺服控制全自动枕式包装机也是采 用PLC控制伺服电机运动,其精度也不是非常的稳定,代 价相当的高,由于运算处理时通过PLC来实现务必造成实 时性落差。 台达目前在枕式包装机上解决方案是用内建的运动 控制功能、同步抓取修正功能、BY-PASS功能完全脱离 上位机控制的只需要简单的参数设置就能实现枕包装机的 工艺要求,而且速度快、精度高、一致性好等特点。
电子凸轮追剪方案
电子凸轮
现在应用如下:
上面的圆为从轴伺服控制的切刀,下面的圆为主轴编码器的输入,假设,主轴编码器是1000PLS/R ,1000个脉冲对应主传送带1m ,那么也就是说,如果我们要切1M长度的布,当主轴编码器反馈1000个脉冲时,从轴必须正好转一圈,才能保证刀正好切在1M的位置上。
在A2伺服建立电子凸轮表如下:
将电子凸轮的一周设置成对应从轴的位置为10000(代表当凸轮旋转到一周时,从轴的位置应当到达10000个脉冲的位置)。
当然如果想在过程中从轴走的平滑一点,可以把表格前的数字也设置一下。
实现电子凸轮的功能在包装机上的应用
实现电子凸轮的功能在包装机上的应用随着科技的不断发展和进步,越来越多的机器设备开始被广泛应用在各种生产领域中,尤其是在包装机领域中,这些机械设备对于包装产品的效率和质量起到了关键性的作用。
而电子凸轮技术的出现,更是推动了包装机的升级换代,使得包装机在功能和性能方面得到了极大的提升。
什么是电子凸轮?电子凸轮是一种可编程凸轮,它与传统的机械凸轮相比,具有巨大的优势。
很多人可能不太清楚电子凸轮的具体原理,这里我们简单介绍一下:电子凸轮是一种通过电脑程序控制的机械装置,它能够根据程序的指令,调节活塞的行程、角度和速度,从而控制机器的运动。
传统的机械凸轮是通过机械结构来控制运动轨迹,而电子凸轮通过程序来控制机器的运动,所以更加灵活、精确。
电子凸轮的应用在包装机中,电子凸轮通常用于控制递送系统、分选装置、封口装置、旋盖机械臂等。
具体来说,电子凸轮可以帮助包装机实现以下功能:1. 平滑稳定的起停和变速控制传统的包装机在工作时常常会出现起停不稳、速度波动等问题,而电子凸轮则可以通过控制机器的运动轨迹和行走速度来实现平滑稳定的起停和变速控制,从而保证包装速度的稳定性和生产效率的提高。
2. 灵活调整装置的参数包装机要适应不同的包装需求,可能需要对装置的参数进行调整。
传统的机械装置可能在调整参数时需要拆卸和更换某些部件,而电子凸轮可以通过修改程序来实现参数调整,从而实现更加灵活的功能。
3. 自动分选和分类包装机在工作时可以根据电子凸轮的编程控制来完成自动分选和分类的功能。
例如,可以按照产品类型、大小、重量等特征自动分配到不同的递送线上,从而实现人工分选的无人化操作,提高包装质量和生产效率。
4. 精准定位和封口在包装机中,电子凸轮可以通过控制机器的运动轨迹和行走速度,精准地实现定位和封口功能。
例如,在装瓶机中,可以通过调整电子凸轮的参数,实现对瓶子的定位、传送和填充等功能。
总结电子凸轮技术的出现,使得包装机在功能和性能方面有了大幅度的提升。
台达-A2 伺服电子凸轮使用
凸輪脫離後關掉電子凸輪 功能 (P5-88. X = 0)
Low Word UZ YX 0~8 0~2 0~5 0~1
脫離
P5-88.U=2 凸輪行走到達P5-89的
Bit
設定量後脫離且立即停止 (P5- 89)
P5-88.BA < > 0
脫離時呼叫P5-88.BA 所設定的PR
P5-88 .U=4 Bit
/ Opt B /OB /Opt B /OB
P1-74.B = 1
P1-74.B = 1
主動軸信號來源(6)
脈波控制流程圖
光學尺 輔助編碼器
馬達 主編碼器
CN5 CN2
P1-74 .C 光學尺回授
正反相
P5-17 軸位置輔助編碼器
內部電路
P5-18 軸位置脈波命令
P5-16
CN1
軸位置-
馬達
編碼器 0 1 1 2
主動軸: 主動軸訊號來源
P5-88.Y
離合器: 控制凸輪軸開始跟隨 主動軸運動的時機
P5-88.UZ, P5-87, P5-89
主動軸電子齒輪: 命令脈波解析控制
P5-83, P5-84
凸輪軸電子齒輪: 凸輪曲線對輸出訊號 的解析控制
P1-44, P1-45, P5-19
Delta Confidential
訊號強度回復,無衰減。
主動軸信號來源(4)
脈波 By-pass CN1 傳遞
•P1-74.B=2 是設定CN1為脈波by-pass訊號的來源
主動軸 CN1 OA, /OA, OB, /OB
Delta Confidential
凸輪軸 1 凸輪軸 1 凸輪軸 2 凸輪軸 2 凸輪軸 3凸輪軸 3
凸轮机构在生产生活中的应用
• (四)按“凸轮”与推杆保持接触的方法分
• (1)力封闭的“凸轮”机构,即利用推杆的重力 、弹簧力或其他外力使推杆与“凸轮”保持接触的 。
• (2)几何封闭的“凸轮”机构,即利用“凸轮”或 推杆的特殊几何结构使“凸轮”与推杆保持接触。 例如凹槽滚子式“凸轮”机构、等宽“凸轮”机构、等 径“凸轮”机构和共轭“凸轮”(或主回“凸轮”)机构。
“凸轮”机构在胶印机中的应用
偏心摆动式递纸机构 在胶印机中应用非常广泛, 其中,递纸“凸轮”是递纸机 构中精度要求最高的零件 。它的轮廓线形状及廓形 制造误差会直接影响递纸 机构的工作性能。因此,对 其廓形和加工误差进行研 究十分必要。通过研究偏 心摆动式递纸“凸轮”的廓 形加工误差与从动件工作 端递纸牙运动误差之间的 关系,建立了递纸“凸轮”廓 形误差与递纸牙运动误差 传递的数学模型,确定了“ 凸轮”廓形加工误差的许用 范围。
“凸轮”机构的应用
内燃机的配气构
当“凸轮”回转时, 其轮廓将迫使推杆作 往复摆动,从而使气 阀开启或关闭(关闭是 借弹簧的作用),以控 制可燃物质在适当的 时间进入气缸或排出 废气。 至于气阀开启 和关闭时间的长短及 其速度和加速度的变 化规律,则取决于“凸 轮”轮廓曲线的形状。
自动机床的进刀机构
凸轮机构在生产生活中的 应用
“凸轮”的介绍
• 一、“凸轮”机构的组成
• “凸轮”机构:由“凸轮”、从动件和机架三部分组成,结 构简单。“凸轮”机构是高副机构,易于磨损,因此只适用 于传递动力不大的场合。
•
“凸轮”是一个具有曲线轮廓或凹槽的构件。“凸轮”通常
作等速转动,但也有作往复摆动或移动的。推杆是被“凸
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A2电子凸轮应用技巧
摘要:台达ASDA-A2伺服内建的电子凸轮功能,在各个行业内的应用日趋广泛。
本文主要结合实际应用中不同问题的解决方案,介绍A2电子凸轮在实际应用中的窍门和技巧,以方便工程设计人员更好进行系统搭建和应用调试。
关键词: 误差补偿By-pass 切长比主轴脉冲正向递增
1.A2伺服“一主多从”的连接
“一主多从”有两种,第一种主轴为交流电机+编码器;另外一种为伺服主轴。
两种反方式下,A2伺服均提供两种连接方式。
当主轴为信号来源为外接编码器时,若使用CN5传递,
不用去设定P1-73.
方式1:主轴脉冲信号通过伺服CN1接口进行传递
方式2:主轴脉冲信号通过伺服CN1和CN5接口进行传递
2.电子凸轮主轴脉冲“正向递增”
当主从硬件连接完成后,定义好电子凸轮启动控制参数P5-88后,不要看到凸轮轴可以动了,就认为没有问题了。
其实还有一个很重要的问题需要审视。
那就是凸轮主轴脉冲是否为正向递增。
因为凸轮主轴命令脉冲的“正向递增”是完成电子凸轮其它辅助功能,如前置,脱离,同步修正等功能的必要前提条件。
如果主轴脉冲不符合“正向递增”特性,调试中便会出现很多莫名其妙的问题。
那如何才能知道主轴脉冲的特性呢?A2伺服提供有凸轮主轴脉冲监视寄存器,即参数P5-86,可以通过观察P5-86来确认主轴脉冲是否为“正向递增”。
当主轴脉冲方向不正确时,在脉波by-Pass模式下,A2提供换相功能(用P1-03.Y),以利多台串接调整方向用,信号源CN1/CN5均有效,只需修改参数便可实现脉冲方向的调换。
如下图说明:
3.飞剪模式下追随误差补偿
追随误差补偿,在飞剪轮切应用过程中,到当由低速到高速运转过程中,会出现追随误差导致裁切滞后,即裁切点后偏现象。
针对此问题,A2伺服具有独特的解决方案,即飞剪追随误差动态补偿功能,运用此功能可以有效降低追随误差。
而此功能的应用设定非常简单,只要设定P1-36=1,并调整P2-53和P2-02即可实现此功能。
其中增大P2-53可有效降低飞剪同步区的位置追随误差;而增大P2-02可以有效降低飞剪加减速区的位置追随误差;但有时候即使做了调整。
由于追随误差只在等速时才能够被补偿,也就是在凸轮的同步区时效果才会显著,所以可以把凸轮同步区的角度再加大,让停留在同步区的时间可以拉长,伺服就有多一点时间来修补落后量!可以通过监视下列波形来分析。
如下图:观察CH2(凸轮输出命令曲线),在同步区中央时,位置误差(CH1)是否已经明显下降至0附近?
4.主从位置关系及时调整
在电子凸轮设定时,必须对主轴和从轴的关系进行设定,即P5-84和P5-83。
一般情况下,对应凸轮趟数我们习惯设定为P5-83=1。
然后计算凸轮轴1趟所对应的主轴脉冲数,即P5-84。
此设定完成后。
如果要实现主从关系的改变,即凸轮轴放大或缩小,一般都只能通过P5-19,而是P5-19的作用时机并不是立即有效。
但在有些场合,我们希望在凸轮运转中能及时变更主从建的关系。
这里便可通过P5-83来调整,但以常规的设定,只能调整P5-83只能实现凸轮轴整数倍的放大。
这表面看能根本无法使用,但这里只需将P5-84和P5-83同时放大10n,此时便可轻松实现凸轮轴比主轴超前或滞后1/10n倍。
5.飞剪切长范围轻松扩大
在飞剪曲线规划时,如果采用ASDA-SOFT进行曲线建立,同时A2也支持巨集建表,即可通过HMI或PLC进行建表。
此曲线建立提供两种不同巨集,即巨集#6和巨集#7。
目前软件和巨集#6所提供的飞剪模型,切长比(R)有范围限制:0.3≤R ≤2.5
切长比:R=L*C/ℓ
所以当切长比大于2.5时,则需采用凸轮啮合前置量的方法来做,前置量原理如图8:
即即裁切L完成后,等待L1后再裁切下一刀,实际才切除的长度即为工艺所需裁切长度L2。
其中L=P5-84=P5-89,L1=P5-92
即L2=L+L1。
而巨集#7,可以轻松实现切长比(R)有范围限制:0.05≤R ≤5。
并且就飞剪同步区而言,软件和巨集#6所建立的飞剪同步区仅为51°。
而巨集#7可以实现飞溅同步区产度调整。
所以在使用中,如果切长规格数目较多时,利用巨集#7便可轻松建立同步区可调整且切长范围更大的飞剪曲线。
6.多轴同步时的相位调整
对于多轴同步时的凸轮轴相位调整,可以采用凸轮+PR重叠方式实现,可通过时间触发PR 进行滞后或超前修正。
此处需注意PR路径规划时,千万不能设插断,并选择增量定位,否则在告诉情况下会出现异常。
其修正波形如图所示。
7.单笔资料抓去比较轻松实现
在A2的PR模式下,很多时候会用到CAP+CMP功能,但由于在使用此功能时抓取笔数和比较笔数必须每次做重新写入。
但当抓取和比较的资料笔数均为1时,则可利用巨集#1来轻松实现,由于系统默认抓取和比较笔数均为1,所以只需在系统开始时定义抓取轴来源设定,并设定P5-96=比较较资料长度,然后开启巨集#1,系统便会进行抓取和比较的循环执行。
结论
以上技巧和注意事项,可以方便工程技术人员对A2电子凸轮功能的使用,增加工程人员对A2的深入了解和对系统优化的能力,使调试过程变得更加省时省力。