三种宇宙速度的计算方法
三个宇宙速度

三个宇宙速度1.三个宇宙速度的推算及其意义⑴ 三个宇宙速度的推算①第一宇宙速度(即环绕速度)计算第一宇宙速度是地球卫星的最小发射速度,也是地球卫星在近地轨道上运行时的速度.由mg R v m RMm G ==22得s m gR R GM v /109.73⨯===.例1. 已知地球与月球质量比为8:1,半径之比为3.8:1,在地球表面上发射卫星,至少需要7.9km/s 的速度,求在月球上发射一颗环绕月球表面运行的飞行物需要多大的速度?分析:地球上卫星需要的向心力来自地球的引力,月球上的飞行物需要的向心力是月球对它的引力.解答:发射环绕地球表面运行的飞行物时,有2R GmM 地地=m地地R v 2发射环绕月球表面运行的飞行物时,只有2R GmM 月月= m月月R v 2由此即可得:v 月=月地地月R R M M ⋅·v 地=8.31181⨯×7.9×103m/s =1.71×103m/s②第二宇宙速度(即脱离速度)的推算如果人造卫星进入地面附近的轨道速度等于或大于1l.2km /s ,就会脱离地球的引力,这个速度称为第二宇宙速度.为了用初等数学方法计算第二宇宙速度,设想从地球表面至无穷远处的距离分成无数小段ab 、bc 、… ,等分点对应的半径为r 1、r 2 ……,如图所示.由于每一小段ab 、bc 、cd … 极小,这一小段上的引力可以认为不变.因此把卫星从地表a 送到b 时,外力克服引力做功)11()()(111121r R GMm R r r R Mm G R r R Mm GW -=-⋅=-= 同理,卫星从地表移到无穷远过程中,各小段上外力做的功分别为)11(212r r GMm W -=)11(323r r GMm W -= …)11(1n n n r r GMm W -=-)11(∞∞-=r r GMm W n把卫星送至无穷远处所做的总功 RMm G W W W W W W n =+++++=∞ 321为了挣脱地球的引力卫星必须具有的动能为RMm G W mv ==2221所以s km gR RGMv /2.11222===例2.已知物体从地球上的逃逸速度(第二宇宙速度)v 2=RGm2,其中G 、m 、R 分别是引力常量、地球的质量和半径.已知G =6.67×10-11N·m 2/kg 2,c =2.9979×108 m/s.求下列问题:(1)逃逸速度大于真空中光速的天体叫作黑洞,设某黑洞的质量等于太阳的质量m =1.98×1030 kg ,求它的可能最大半径;(2)在目前天文观测范围内,物质的平均密度为10-27 kg/m 3,如果认为我们的宇宙是这样一个均匀大球体,其密度使得它的逃逸速度大于光在真空中的速度c ,因此任何物体都不能脱离宇宙,问宇宙的半径至少多大?解答:(1)由题目所提供的信息可知,任何天体均存在其所对应的逃逸速度v 2=RGm2,其中m 、R 为天体的质量和半径.对于黑洞模型来说,其逃逸速度大于真空中的光速 ,即 v 2>c所以R <22c Gm =283011)109979.2(1098.1107.62⨯⨯⨯⨯⨯-m=2.94×103 m即质量为1.98×1030kg 的黑洞的最大半径为2.94×103m.(2)把宇宙视为普通天体,则其质量m =ρ·V =ρ·34πR 3①其中R 为宇宙的半径,ρ为宇宙的密度,则宇宙的逃逸速度为v 2=RGm2 ②由于宇宙密度使得其逃逸速度大于光速c ,即v 2>c③则由以上三式可得R >Gc πρ832=4.01×1026 m ,即宇宙的半径至少为4.24×1010光年.③第三宇宙速度(即逃逸速度)的推算脱离太阳引力的速度称为第三宇宙速度.因为地球绕太阳运行的速度为s km v /30=地,根据推导第二宇宙速度得到的脱离引力束缚的速度等于在引力作用下环绕速度的2倍,即s km s km v /4.42/3022=⨯=地因为人造天体是在地球上,所以只要沿地球运动轨道的方向增加s km v /4.12=∆即可,即需增加动能2)(21v m ∆.所以人造天体需具有的总能量为2322221)(2121mv v m mv E =∆+= 得第三宇宙速度s km v /7.163=⑵ 宇宙速度的意义当发射速度v 与宇宙速度分别有如下关系时,被发射物体的运动情况将有所不同①当v <v 1时,被发射物体最终仍将落回地面;②当v 1≤v <v 2时,被发射物体将环绕地球运动,成为地球卫星;③当v 2≤v <v 3时,被发射物体将脱离地球束缚,成为环绕太阳运动的“人造行星”;④当v ≥v 3时,被发射物体将从太阳系中逃逸。
三大宇宙速度的推导公式

三大宇宙速度的推导公式
1.逃逸速度
逃逸速度是指物体在天体表面所具有的最小速度,使得物体能够完全
逃离天体的引力束缚,不再被天体所吸引。
逃逸速度的推导公式如下:逃逸速度v_e=√(2GM/r)
其中,G是引力常数,M是天体的质量,r是距离天体中心的距离。
2.第一宇宙速度
第一宇宙速度是指物体在距离天体表面一定距离的地方所具有的最小
速度,使得物体能够绕天体运动。
第一宇宙速度的推导公式如下:第一宇宙速度v_1=√(GM/r)
其中,G是引力常数,M是天体的质量,r是距离天体中心的距离。
3.第二宇宙速度
第二宇宙速度是指物体在距离天体表面一定距离的地方所具有的速度,使得物体能够克服天体引力的束缚,无限远离天体。
第二宇宙速度的推导
公式如下:
第二宇宙速度v_2=√(2GM/R)
其中,G是引力常数,M是天体的质量,R是天体的半径。
这三个宇宙速度的推导公式都基于引力定律和运动力学原理。
在推导
过程中,我们假设天体是质点,不考虑天体的自转和形状对速度的影响。
同时,我们也忽略了其他天体和物体之间的相互作用。
以上是三大宇宙速度的推导公式,它们在宇宙探索和天体运动研究中具有重要意义。
这些公式用于计算和预测宇宙飞行器的运动轨迹以及模拟天体间的相互作用。
三种宇宙速度的计算方法

宇宙速度的计算方法第一宇宙速度的计算方法第一宇宙速度(V 1): 航天器沿地球表面作圆周运动时必须具备的速度,也叫环绕速度。
按照力学理论可以计算出V 1=7.9km/s 。
航天器在距离地面表面数百公里以上的高空运行,地面对航天器引力比在地面时要小,故其速度也略小于V 1第二宇宙速度的计算方法1。
第二宇宙速度(V 2): 当航天器超过第一宇宙速度V 1达到一定值时,它就会脱离地球的引力场而成为围绕太阳运行的人造行星,这个速度就叫做第二宇宙速度,亦称逃逸速度。
按照力学理论可以计算出第二宇宙速度V 2=11.2 km/s 。
第三宇宙速度(V3) 从地球表面发射航天器,飞出太阳系,到浩瀚的银河系中漫游所需要的最小速度,就叫做第三宇宙速度。
按照力学理论可以计算出第三宇宙速度V 3=16.7公里/秒。
需要注意的是,这是选择航天器入轨速度与地球公转速度方向一致时计算出的V 3值;如果方向不一致,所需速度就要大于16.7公里/秒了.可以说,航天器的速度是挣脱地球乃至太阳引力的惟一要素,目前只有火箭才能突破宇宙速度设物体以第三宇宙速度抛出时具有的动能为1232E mV k =,这部分动能应该包括两部分:即脱离地球引力的动能E k1和脱离太阳引力的动能E k2.即:E k =E k1+E k2。
易知:12122E mV k =,V 2为地球第二宇宙速度。
下面再求E k2:有两点说明:①因为地球绕太阳公转的椭圆轨道的离心率很小,可以当作圆来处理。
②发射时个行星对物体的引力很小,可以忽略不计。
基于这两点简化,发射过程可以应用机械能守恒定律解题.物体随地球绕太阳的公转速率等于29。
8km/s 。
其倍应该为物体挣脱太阳引力所需的速度,即:'29.842.2/2V km s =(以太阳为参照物)。
如果准备飞出太阳系的物体在地球上的发射方向与地球绕太阳公转方向相同,便可以充分利用地球公转速度,这样物体在离开地球时只需要有相对地球的速度V ’=42.2-29。
三大宇宙速度的推导公式

三大宇宙速度的推导公式
夸克速度非常神奇,其定义是比光速更快的物体运动速度。
夸克速度在物理学中具有重要的意义,主要包括三大宇宙速度:光速、亚夸克速度和夸克速度。
光速作为最快的速度,它可以使物体穿越太阳系,使宇宙在短时间内发生巨大的变化。
光速的推导公式是c=λf,其中λ表示波长,f表示频率。
光速是宇宙中机
械运动的最快速度,是宇宙中最容易被测量的速度。
亚夸克速度比光速慢,但远快于人类常见速度。
它是由 Maxwell 推导而来,其推导公式是 v = (E/B)^1/3,其中 E 表示电场强度,B 表示磁场强度。
它是宇宙中穿越物质结构的最快速度。
夸克速度也被称作自由夸克速度,它的推导公式为v=Fc,其中 F 表示力学加
速度, c 表示光速。
夸克速度是宇宙中测量不准确的速度,也是宇宙中的最快速度。
宇宙中的三大宇宙速度分别代表它们不同的运动能力,以满足宇宙中生命和物质的不同需求。
光速是宇宙中最快的实际速度,可用于穿越太阳系;亚夸克速度则可以用于在宇宙结构中传播;而夸克速度则可以用于穿越天体间的时空。
这三个宇宙速度正在不断推动宇宙的发展与变化。
三大宇宙速度的推导公式

三大宇宙速度的推导公式首先来推导地球绕太阳公转的速度。
地球绕太阳公转的速度可以通过以下公式推导得到:F=G*(M*m)/r²其中,F表示太阳对地球的引力,G表示万有引力常量,M表示太阳的质量,m表示地球的质量,r表示地球距离太阳的距离。
太阳对地球的引力提供了地球沿着椭圆轨道绕太阳公转的向心力。
根据在圆周运动中的向心力和离心力平衡的条件,可以得到公式为:F=m*v²/r其中,v表示地球绕太阳公转的速度。
将上面两个公式联立,可以得到:G*(M*m)/r²=m*v²/r消去m,可以得到:v=√(G*M/r)这个公式表示地球绕太阳公转的速度与太阳的质量、地球与太阳的距离有关。
接下来推导地球自转的速度。
地球自转的速度可以通过以下公式推导得到:v=2πr/T其中,v表示地球自转的速度,r表示地球的半径,T表示地球自转一周所花费的时间。
地球的半径可以用平均半径r0来近似表示,T可以用地球的自转周期T0来近似表示。
因此,地球的自转速度可以近似表示为:v=2πr0/T0最后推导地球脱离太阳的逃逸速度。
地球脱离太阳的逃逸速度可以通过以下公式推导得到:E=K+U其中,E表示地球相对于太阳的总机械能,K表示地球的动能,U表示地球受到太阳引力的势能。
地球相对于太阳的总机械能为负值,因为地球处于太阳的引力场中,所以E小于0。
动能K可以用1/2mv²表示,其中m表示地球的质量,v表示地球脱离太阳的速度。
势能U可以用-GMm/r表示,其中G表示万有引力常量,M表示太阳的质量,r表示地球与太阳的距离。
将上面两个公式联立,可以得到:E = 1/2mv² - GMm/rE小于0,所以:1/2mv² < GMm/r消去m,可以得到:v²<2GM/r地球脱离太阳的逃逸速度v可以近似表示为:v=√(2GM/r)这个公式表示地球脱离太阳的逃逸速度与太阳的质量、地球与太阳的距离有关。
高中物理万有引力定律在天文学上的应用

1、基本方法:①把天体的运动看成匀速圆周运动,其所需向心力由万有引力提供:②在忽略天体自转影响时,天体表面的重力加速度:,R为天体半径。
2、环绕天体的绕行速度,角速度、周期与半径的关系。
①由得∴r越大,②由得∴r越大,③由得∴r越大,3、三种宇宙速度①第一宇宙速度():v1= km/s,人造卫星在地面附近环绕地球做匀速圆周运动的速度。
②第二宇宙速度():v2= km/s,使物体挣脱地球束缚,在地面附近的最小发射速度。
③第三宇宙速度():v3= km/s,使物体挣脱太阳引力束缚,在地面附近的最小发射速度。
4、同步卫星的特点:①同步卫星的周期T=②同步卫星的高度H=③同步卫星的线速度V=④同步卫星一定都处在赤道上空(可证明)。
5、万有引力和重力:重力是由万有引力产生的,由于地球的自转,因而地球表面的物体随地球自转时需要向心力.重力实际上是万有引力的一个分力.另一个分力就是物体随地球自转时需要的向心力,如图所示,由于纬度的变化,物体做圆周运动的向心力F向不断变化,因而表面物体的重力随纬度的变化而变化,即重力加速度g随纬度变化而变化,从赤道到两极逐渐增大.通常的计算中因重力和万有引力相差不大,而认为两者相等,即m2g=G, g =GM/r2常用来计算星球表面重力加速度的大小,在地球的同一纬度处,g随物体离地面高度的增大而减小,即g h=GM/(r+h)2,比较得g h=()2·g在赤道处,物体的万有引力分解的两个分力F向和m2g 刚好在一条直线上,则有F=F向+m2g,所以m2g=F-F向=G-m2Rω自2因地球自转角速度很小G>>m2Rω自2,所以m2g= G假设地球自转加快,即ω自变大,由m2g=G-m2Rω自2知物体的重力将变小,当G=m2Rω自2时,m2g=0,此时地球上物体无重力,但是它要求地球自转的角速度ω自=,比现在地球自转角速度要大得多.典型例题1、万有引力定律及其适用条件:例1、如图所示,在一个半径为R、质量为M的均匀球体中,紧贴球的边缘挖去一个半径为R/2的球形空穴后,对位于球心和空穴中心连线上、与球心相距d的质点m的引力是多大?分析:把整个球体对质点的引力看成是挖去的小球体和剩余部分对质点的引力之和,即可得解.(1)有部分同学认为,如果先设法求出挖去球穴后的重心位置,然后把剩余部分的质量集中于这个重心上,应用万有引力公式求解.这是不正确的.万有引力存在于宇宙间任何两个物体之间,但计算万有引力的简单公式却只能适用于两个质点或均匀球体,挖去球穴后的剩余部分已不再是均匀球体了,不能直接使用这个公式计算引力.(2)如果题中的球穴挖在大球的正中央,根据同样道理可得剩余部分对球外质点m的引力上式表明,一个均质球壳对球外质点的引力跟把球壳的质量(7M/8)集中于球心时对质点的引力一样.解析:完整的均质球体对球外质点m的引力这个引力可以看成是:m挖去球穴后的剩余部分对质点的引力F1与半径为R/2的小球对质点的引力F2之和,即F=F1+F2.因半径为R/2的小球质量M/为,则,所以挖去球穴后的剩余部分对球外质点m的引力。
物理-人造卫星宇宙速度

人造卫星 宇宙速度物理考点 1.会比较卫星运动的各物理量之间的关系.2.理解三种宇宙速度,并会求解第一宇宙速度的大小.3.会分析天体的“追及”问题.考点一 卫星运行参量的分析基础回扣1.天体(卫星)运行问题分析将天体或卫星的运动看成匀速圆周运动,其所需向心力由万有引力提供.2.基本公式:(1)线速度:G =m ⇒v =Mmr 2v 2r GM r (2)角速度:G =mω2r ⇒ω=Mmr 2GMr 3(3)周期:G =m 2r ⇒T =2πMmr 2(2πT )r 3GM(4)向心加速度:G =ma ⇒a =Mmr 2GMr 2结论:r 越大,v 、ω、a 越小,T 越大.技巧点拨1.公式中r 指轨道半径,是卫星到中心天体球心的距离,R 通常指中心天体的半径,有r =R +h .2.近地卫星和同步卫星卫星运动的轨道平面一定通过地心,一般分为赤道轨道、极地轨道和其他轨道,同步卫星的轨道是赤道轨道.(1)近地卫星:轨道在地球表面附近的卫星,其轨道半径r =R (地球半径),运行速度等于第一宇宙速度v =7.9 km/s(人造地球卫星的最大运行速度),T =85 min(人造地球卫星的最小周期).(2)同步卫星①轨道平面与赤道平面共面.②周期与地球自转周期相等,T =24 h.③高度固定不变,h =3.6×107 m.④运行速率均为v =3.1×103 m/s. 卫星运行参量与轨道半径的关系例1 (2020·浙江7月选考·7)火星探测任务“天问一号”的标识如图1所示.若火星和地球绕太阳的运动均可视为匀速圆周运动,火星公转轨道半径与地球公转轨道半径之比为3∶2,则火星与地球绕太阳运动的( )图1A .轨道周长之比为2∶3B .线速度大小之比为∶32C .角速度大小之比为2∶323D .向心加速度大小之比为9∶4答案 C解析 轨道周长C =2πr ,与半径成正比,故轨道周长之比为3∶2,故A 错误;根据万有引力提供向心力有=m ,得v =,得==,故B 错误;由万有引力提供GMmr 2v 2r GMr v 火v 地r 地r 火23向心力有=mω2r ,得ω=,得==,故C 正确;由=ma ,得GMm r 2GMr 3ω火ω地r 地3r 火32233GMmr 2a =,得==,故D 错误.GMr 2a 火a 地r 地2r 火249 同步卫星、近地卫星及赤道上物体的比较例2 (2019·青海西宁市三校联考)如图2所示,a 为放在赤道上相对地球静止的物体,随地球自转做匀速圆周运动,b 为沿地球表面附近做匀速圆周运动的人造卫星(轨道半径约等于地球半径),c 为地球的同步卫星.下列关于a 、b 、c 的说法中正确的是( )图2A .b 卫星转动线速度大于7.9 km/sB .a 、b 、c 做匀速圆周运动的向心加速度大小关系为a a >a b >a cC .a 、b 、c 做匀速圆周运动的周期关系为T a =T c <T bD .在b 、c 中,b 的线速度大答案 D解析 b 为沿地球表面附近做匀速圆周运动的人造卫星,根据万有引力定律有G =m ,MmR 2v 2R 解得v =,又=mg ,可得v =,与第一宇宙速度大小相同,即v =7.9 km/s ,故GMR GMmR 2gR A 错误;地球赤道上的物体与同步卫星具有相同的角速度,所以ωa =ωc ,根据a =rω2知,c 的向心加速度大于a 的向心加速度,根据a =得b 的向心加速度大于c 的向心加速度,GMr 2即a b >a c >a a ,故B 错误;卫星c 为地球同步卫星,所以T a =T c ,根据T =2π得c 的周r 3GM 期大于b 的周期,即T a =T c >T b ,故C 错误;在b 、c中,根据v =,可知b 的线速度GMr 比c 的线速度大,故D 正确.1.(卫星运行参量的比较)(2020·浙江1月选考·9)如图3所示,卫星a 、b 、c 沿圆形轨道绕地球运行.a 是极地轨道卫星,在地球两极上空约1 000 km 处运行;b 是低轨道卫星,距地球表面高度与a 相等;c 是地球同步卫星,则( )图3A .a 、b 的周期比c 大B .a 、b 的向心力一定相等C .a 、b 的速度大小相等D .a 、b 的向心加速度比c 小答案 C解析 根据万有引力提供向心力有=m =mω2r =m r =ma ,可知v =,ω=GMmr 2v 2r 4π2T 2GM r,T =,a =,由此可知,半径越大,线速度、角速度、向心加速度越小,周GM r 32πr 3GM GMr 2期越长,因为a 、b 卫星的半径相等,且比c 小,因此a 、b 卫星的线速度大小相等,向心加速度比c 大,周期小于卫星c 的周期,选项C 正确,A 、D 错误;由于不知道三颗卫星的质量关系,因此不清楚向心力的关系,选项B 错误.2.(同步卫星)关于我国发射的“亚洲一号”地球同步通信卫星的说法,正确的是( )A .若其质量加倍,则轨道半径也要加倍B .它在北京上空运行,故可用于我国的电视广播C .它以第一宇宙速度运行D .它运行的角速度与地球自转角速度相同答案 D解析 由G =m 得r =,可知轨道半径与卫星质量无关,A 错误;同步卫星的轨道Mmr 2v 2r GMv 2平面必须与赤道平面重合,即在赤道上空运行,不能在北京上空运行,B 错误;第一宇宙速度是卫星在最低圆轨道上运行的速度,而同步卫星在高轨道上运行,其运行速度小于第一宇宙速度,C 错误;所谓“同步”就是卫星保持与赤道上某一点相对静止,所以同步卫星的角速度与地球自转角速度相同,D 正确.3.(卫星运动分析)(2016·全国卷Ⅰ·17)利用三颗位置适当的地球同步卫星,可使地球赤道上任意两点之间保持无线电通讯.目前,地球同步卫星的轨道半径约为地球半径的6.6倍.假设地球的自转周期变小,若仍仅用三颗同步卫星来实现上述目的,则地球自转周期的最小值约为( )A .1 hB .4 h C .8 h D .16 h 答案 B解析 地球自转周期变小,卫星要与地球保持同步,则卫星的公转周期也应随之变小,由开普勒第三定律=k 可知卫星离地球的高度应变小,要实现三颗卫星覆盖全球的目的,则卫r 3T 2星周期最小时,由数学几何关系可作出卫星间的位置关系如图所示.卫星的轨道半径为r ==2R Rsin 30°由=得r 13T 12r 23T 22=(6.6R )3242(2R )3T 22解得T 2≈4 h .考点二 宇宙速度的理解和计算基础回扣第一宇宙速度(环绕速度)v 1=7.9 km/s ,是物体在地面附近绕地球做匀速圆周运动的最大环绕速度,也是人造地球卫星的最小发射速度第二宇宙速度(脱离速度)v 2=11.2 km/s ,是物体挣脱地球引力束缚的最小发射速度第三宇宙速度(逃逸速度)v 3=16.7 km/s ,是物体挣脱太阳引力束缚的最小发射速度技巧点拨1.第一宇宙速度的推导方法一:由G =m ,得v 1== m/s ≈7.9×103MmR 2v 12R GMR 6.67×10-11×5.98×10246.4×106m/s.方法二:由mg =m 得v 1== m/s ≈7.9×103 m/s.v 12R gR 9.8×6.4×106第一宇宙速度是发射人造卫星的最小速度,也是人造卫星的最大环绕速度,此时它的运行周期最短,T min =2π=5 078 s ≈85 min.Rg 2.宇宙速度与运动轨迹的关系(1)v 发=7.9 km/s 时,卫星绕地球表面做匀速圆周运动.(2)7.9 km/s<v 发<11.2 km/s ,卫星绕地球运动的轨迹为椭圆.(3)11.2 km/s ≤v 发<16.7 km/s ,卫星绕太阳运动的轨迹为椭圆.(4)v 发≥16.7 km/s ,卫星将挣脱太阳引力的束缚,飞到太阳系以外的空间.例3 (2020·北京卷·5)我国首次火星探测任务被命名为“天问一号”.已知火星质量约为地球质量的10%,半径约为地球半径的50%,下列说法正确的是( )A .火星探测器的发射速度应大于地球的第二宇宙速度B .火星探测器的发射速度应介于地球的第一和第二宇宙速度之间C .火星的第一宇宙速度大于地球的第一宇宙速度D .火星表面的重力加速度大于地球表面的重力加速度答案 A解析 火星探测器需要脱离地球的束缚,故其发射速度应大于地球的第二宇宙速度,故A正确,B 错误;由G =m 得,v 火===v 地,故火星的第一宇宙速MmR 2v 2R GM 火R 火0.1M 地G0.5R 地55度小于地球的第一宇宙速度,故C 错误;由=mg 得,g 火=G =G =0.4gGMmR 2M 火R 火20.1M 地(0.5R 地)2地,故火星表面的重力加速度小于地球表面的重力加速度,故D 错误.4.(第一宇宙速度的计算)地球的近地卫星线速度大小约为8 km/s ,已知月球质量约为地球质量的,地球半径约为月球半径的4倍,下列说法正确的是( )181A .在月球上发射卫星的最小速度约为8 km/s B .月球卫星的环绕速度可能达到4 km/s C .月球的第一宇宙速度约为1.8 km/sD .“近月卫星”的速度比“近地卫星”的速度大答案 C解析 根据第一宇宙速度v =,月球与地球的第一宇宙速度之比为GMR ===,月球的第一宇宙速度约为v 2=v 1=×8 km/s ≈1.8 km/s ,在月球上v 2v 1M 2R 1M 1R 2481292929发射卫星的最小速度约为1.8 km/s ,月球卫星的环绕速度小于或等于1.8 km/s ,“近月卫星”的速度为1.8 km/s ,小于“近地卫星”的速度,故C 正确.5.(宇宙速度的理解和计算)宇航员在一行星上以速度v 0竖直上抛一质量为m 的物体,不计空气阻力,经2t 后落回手中,已知该星球半径为R .求:(1)该星球的第一宇宙速度的大小;(2)该星球的第二宇宙速度的大小.已知取无穷远处引力势能为零,物体距星球球心距离为r 时的引力势能E p =-G .(G 为万有引力常量)mMr 答案 (1) (2)v 0Rt 2v 0R t解析 (1)由题意可知星球表面重力加速度为g =v 0t由万有引力定律知mg =m v 12R解得v 1==.gR v 0Rt (2)由星球表面万有引力等于物体重力知=mgGMmR 2又E p =-G mMR解得E p =-m v 0Rt 由机械能守恒有m v 22-=012m v 0R t 解得v 2=.2v 0Rt 考点三 天体的“追及”问题1.相距最近两卫星的运转方向相同,且位于和中心连线的半径上同侧时,两卫星相距最近,从运动关系上,两卫星运动关系应满足(ωA -ωB )t =2n π(n =1,2,3…).2.相距最远当两卫星位于和中心连线的半径上两侧时,两卫星相距最远,从运动关系上,两卫星运动关系应满足(ωA -ωB )t ′=(2n -1)π(n =1,2,3…).例4 当地球位于太阳和木星之间且三者几乎排成一条直线时,称之为“木星冲日”,2016年3月8日出现了一次“木星冲日”.已知木星与地球几乎在同一平面内沿同一方向绕太阳近似做匀速圆周运动,木星到太阳的距离大约是地球到太阳距离的5倍.则下列说法正确的是( )A .下一次的“木星冲日”时间肯定在2018年B .下一次的“木星冲日”时间肯定在2017年C .木星运行的加速度比地球的大D .木星运行的周期比地球的小答案 B解析 地球公转周期T 1=1年,由T =2π可知,土星公转周期T 2=T 1≈11.18r 3GM 125年.设经时间t ,再次出现“木星冲日”,则有ω1t -ω2t =2π,其中ω1=,ω2=,解得2πT 12πT 2t ≈1.1年,因此下一次“木星冲日”发生在2017年,故A 错误,B 正确;设太阳质量为M ,行星质量为m ,轨道半径为r ,周期为T ,加速度为a .对行星由牛顿第二定律可得G =ma =m r ,解得a =,T =2π,由于木星到太阳的距离大约是地球到太阳Mmr 24π2T 2GMr 2r 3GM 距离的5倍,因此,木星运行的加速度比地球的小,木星运行的周期比地球的大,故C 、D 错误.6.(天体的“追及”问题)(多选)(2020·山西太原市质检)如图4,在万有引力作用下,a 、b 两卫星在同一平面内绕某一行星c 沿逆时针方向做匀速圆周运动,已知轨道半径之比为r a ∶r b =1∶4,则下列说法中正确的有( )图4A .a 、b 运动的周期之比为T a ∶T b =1∶8B .a 、b 运动的周期之比为T a ∶T b =1∶4C .从图示位置开始,在b 转动一周的过程中,a 、b 、c 共线12次D .从图示位置开始,在b 转动一周的过程中,a 、b 、c 共线14次答案 AD解析 根据开普勒第三定律:半径的三次方与周期的二次方成正比,则a 、b 运动的周期之比为1∶8,A 对,B 错;设图示位置ac 连线与bc 连线的夹角为θ<,b 转动一周(圆心角为π22π)的时间为T b ,则a 、b 相距最远时:T b -T b =(π-θ)+n ·2π(n =0,1,2,3…),可知2πTa 2πTb n <6.75,n 可取7个值;a 、b 相距最近时:T b -T b =(2π-θ)+m ·2π(m =0,1,2,3…),可2πTa 2πTb 知m <6.25,m 可取7个值,故在b 转动一周的过程中,a 、b 、c 共线14次,C 错,D 对.课时精练1.(2020·天津卷·2)北斗问天,国之夙愿.如图1所示,我国北斗三号系统的收官之星是地球静止轨道卫星,其轨道半径约为地球半径的7倍.与近地轨道卫星相比,地球静止轨道卫星( )图1A.周期大B.线速度大C.角速度大D.加速度大答案 A解析 根据万有引力提供向心力有G=m()2r、G=m、G=mω2r、G=maMmr22πTMmr2v2rMmr2Mmr2可知T=2π、v=、ω=、a=,因为地球静止轨道卫星的轨道半径大于近r3GMGMrGMr3GMr2地轨道卫星的轨道半径,所以地球静止轨道卫星的周期大、线速度小、角速度小、向心加速度小,故选项A正确.2.(2020·四川泸州市质量检测)我国实施空间科学战略性先导科技专项计划,已经发射了“悟空”“墨子”“慧眼”等系列的科技研究卫星,2019年8月31日又成功发射一颗微重力技术实验卫星.若微重力技术实验卫星和地球同步卫星均绕地球做匀速圆周运动时,微重力技术实验卫星的轨道高度比地球同步卫星低,下列说法中正确的是( )A.该实验卫星的周期大于地球同步卫星的周期B.该实验卫星的向心加速度大于地球同步卫星的向心加速度C.该实验卫星的线速度小于地球同步卫星的线速度D.该实验卫星的角速度小于地球同步卫星的角速度答案 B解析 万有引力提供向心力,由G=m2r=m=mω2r=ma,解得:v=,T=2πMmr2(2πT)v2rGMr ,ω=,a=.实验卫星的轨道半径小于地球同步卫星的轨道半径,可知该实验r3GMGMr3GMr2卫星周期比地球同步卫星的小,向心加速度、线速度、角速度均比地球同步卫星的大,故选项B 正确,A 、C 、D 错误.3.(2019·天津卷·1)2018年12月8日,肩负着亿万中华儿女探月飞天梦想的嫦娥四号探测器成功发射,“实现人类航天器首次在月球背面巡视探测,率先在月背刻上了中国足迹”,如图2.已知月球的质量为M 、半径为R .探测器的质量为m ,引力常量为G ,嫦娥四号探测器围绕月球做半径为r 的匀速圆周运动时,探测器的( )图2A .周期为B .动能为4π2r 3GM GMm2RC .角速度为D .向心加速度为Gmr 3GMR 2答案 A解析 嫦娥四号探测器环绕月球做匀速圆周运动时,万有引力提供其做匀速圆周运动的向心力,由=mω2r =m =m r =ma ,解得ω=、v =、T =、a =,GMmr 2v 2r 4π2T 2GMr 3GMr 4π2r 3GM GMr 2则嫦娥四号探测器的动能为E k =m v 2=,由以上可知A 正确,B 、C 、D 错误.12GMm2r 4.(2019·北京卷·18)2019年5月17日,我国成功发射第45颗北斗导航卫星,该卫星属于地球静止轨道卫星(同步卫星).该卫星( )A .入轨后可以位于北京正上方B .入轨后的速度大于第一宇宙速度C .发射速度大于第二宇宙速度D .若发射到近地圆轨道所需能量较少答案 D解析 同步卫星只能位于赤道正上方,A 项错误;由=知,卫星的轨道半径越大,GMmr 2m v 2r 卫星做匀速圆周运动的线速度越小,因此入轨后的速度小于第一宇宙速度(近地卫星的速度),B 项错误;同步卫星的发射速度大于第一宇宙速度,小于第二宇宙速度,C 项错误;若发射到近地圆轨道,所需发射速度较小,所需能量较少,D 正确.5.(多选)(2020·江苏卷·7改编)甲、乙两颗人造卫星质量相等,均绕地球做圆周运动,甲的轨道半径是乙的2倍.下列应用公式进行的推论正确的有( )A .由v =可知,甲的速度是乙的倍gr 2B .由a =ω2r 可知,甲的向心加速度是乙的2倍C .由F =G 可知,甲的向心力是乙的Mm r 214D .由=k 可知,甲的周期是乙的2倍r 3T 22答案 CD解析 人造卫星绕地球做圆周运动时有G =m ,即v =,因此甲的速度是乙的Mmr 2v 2r GMr 倍,故A 错误;由G =ma 得a =,故甲的向心加速度是乙的,故B 错误;由22Mmr 2GMr 214F =G 知甲的向心力是乙的,故C 正确;由开普勒第三定律=k ,绕同一天体运动,k Mmr 214r 3T 2值不变,可知甲的周期是乙的2倍,故D 正确.26.(2020·全国卷Ⅲ·16)“嫦娥四号”探测器于2019年1月在月球背面成功着陆,着陆前曾绕月球飞行,某段时间可认为绕月做匀速圆周运动,圆周半径为月球半径的K 倍.已知地球半径R 是月球半径的P 倍,地球质量是月球质量的Q 倍,地球表面重力加速度大小为g .则“嫦娥四号”绕月球做圆周运动的速率为( )A. B. C. D.RKg QP RPKgQ RQgKP RPgQK答案 D解析 在地球表面有G =mg ,“嫦娥四号”绕月球做匀速圆周运动时有M 地mR 2G =m ′,根据已知条件有R =PR 月,M 地=QM 月,联立以上各式解得v =M 月m ′(KR 月)2v 2KR 月,故选D.RPgQK 7.如图3,甲、乙两颗卫星以相同的轨道半径分别绕质量为M 和2M 的行星做匀速圆周运动.下列说法正确的是( )图3A .甲的向心加速度比乙的小B .甲的运行周期比乙的小C .甲的角速度比乙的大D .甲的线速度比乙的大答案 A8.星球上的物体脱离星球引力所需要的最小速度称为第二宇宙速度.星球的第二宇宙速度v 2与第一宇宙速度v 1的关系是v 2=v 1.已知某星球的半径为r ,它表面的重力加速度为地2球表面重力加速度g 的.不计其他星球的影响.则该星球的第二宇宙速度为( )16A. B.gr 3gr 6C. D.gr 3gr 答案 A解析 该星球的第一宇宙速度满足:G =m ,在该星球表面处万有引力等于重力:G Mmr 2v 12r =m ,由以上两式得v 1=,则第二宇宙速度v 2=×=,故A 正确.Mmr 2g6gr62gr6gr39.(2019·安徽宣城市第二次模拟)有a 、b 、c 、d 四颗地球卫星,卫星a 还未发射,在地球赤道上随地球表面一起转动,卫星b 在地面附近近地轨道上正常运动,c 是地球同步卫星,d 是高空探测卫星,各卫星排列位置如图4,则有( )图4A .a 的向心加速度等于重力加速度gB .b 在相同时间内转过的弧长最长C .c 在4 h 内转过的圆心角是π6D .d 的运动周期有可能是20 h 答案 B解析 同步卫星的周期、角速度与地球自转周期、角速度相同,则知a 与c 的角速度相同,根据a =ω2r 知,c 的向心加速度大于a 的向心加速度.由G =mg ,解得:g =,卫星Mmr 2GMr 2的轨道半径越大,向心加速度越小,则c 的向心加速度小于b 的向心加速度,而b 的向心加速度约为g ,则a 的向心加速度小于重力加速度g ,故A 错误;由G =m ,解得:v =Mmr 2v 2r ,卫星的半径r 越大,速度v 越小,所以b 的速度最大,在相同时间内转过的弧长最长,GMr故B 正确;c 是地球同步卫星,周期是24 h ,则c 在4 h 内转过的圆心角是×4=,故C 2π24π3错误;由开普勒第三定律=k 可知:卫星的半径r 越大,周期T 越大,所以d 的运动周期r 3T 2大于c 的周期24 h ,即不可能是20 h ,故D 错误.10.(多选)(2019·贵州毕节市适应性监测(三))其实地月系统是双星模型,为了寻找航天器相对地球和月球不动的位置,科学家们作出了不懈努力.如图5所示,1767年欧拉推导出L 1、L 2、L 3三个位置,1772年拉格朗日又推导出L 4、L 5两个位置.现在科学家把L 1、L 2、L 3、L 4、L 5统称地月系中的拉格朗日点.中国“嫦娥四号”探测器成功登陆月球背面,并通过处于拉格朗日区的“嫦娥四号”中继卫星“鹊桥”把信息返回地球,引起众多师生对拉格朗日点的热议.下列说法正确的是( )图5A .在拉格朗日点航天器的受力不再遵循万有引力定律B .在不同的拉格朗日点航天器随地月系统运动的周期均相同C .“嫦娥四号”中继卫星“鹊桥”应选择L 1点开展工程任务实验D .“嫦娥四号”中继卫星“鹊桥”应选择L 2点开展工程任务实验答案 BD解析 在拉格朗日点的航天器仍然受万有引力,在地球和月球的万有引力作用下绕地月双星系统的中心做匀速圆周运动,A 错误;因在拉格朗日点的航天器相对地球和月球的位置不变,说明它们的角速度一样,因此周期也一样,B 正确;“嫦娥四号”探测器登陆的是月球的背面,“鹊桥”要把探测器在月球背面采集的信息传回地球,L 2在月球的背面,因此应选在L 2点开展工程任务实验,所以C 错误,D 正确.11.经长期观测发现,A 行星运行轨道的半径近似为R 0,周期为T 0,其实际运行的轨道与圆轨道存在一些偏离,且周期性地每隔t 0(t 0>T 0)发生一次最大的偏离,如图6所示,天文学家认为形成这种现象的原因可能是A 行星外侧还存在着一颗未知行星B ,已知行星B 与行星A 同向转动,则行星B 的运行轨道(可认为是圆轨道)半径近似为( )图6A .R =R 0B .R =R 03t 02(t 0-T 0)2t 0t 0-T 0C .R =R 0D .R =R 0t 03(t 0-T 0)3t 0t 0-T 0答案 A解析 A 行星运行的轨道发生最大偏离,一定是B 对A 的引力引起的,且B 行星在此时刻对A 有最大的引力,故此时A 、B 行星与恒星在同一直线上且位于恒星的同一侧,设B 行星的运行周期为T ,运行的轨道半径为R ,根据题意有t 0-t 0=2π,所以T =,由开2πT 02πT t 0T 0t 0-T 0普勒第三定律可得=,联立解得R =R 0,故A 正确,B 、C 、D 错误.R 03T 02R 3T 23t 02(t 0-T 0)212.(2019·河南郑州市第一次模拟)“玉兔号”月球车与月球表面的第一次接触实现了中国人“奔月”的伟大梦想.“玉兔号”月球车在月球表面做了一个自由下落实验,测得物体从静止自由下落h 高度的时间为t ,已知月球半径为R ,自转周期为T ,引力常量为G .求:(1)月球表面重力加速度的大小;(2)月球的质量和月球的第一宇宙速度的大小;(3)月球同步卫星离月球表面高度.答案 (1) (2) (3)-R2ht 22R 2hGt 22hRt 23T 2R 2h2π2t 2解析 (1)由自由落体运动规律有:h =gt 2,所以有:g =.122ht 2(2)月球的第一宇宙速度为近月卫星的运行速度,根据重力提供向心力mg =m ,v 12R 所以:v 1==gR 2hRt 2在月球表面的物体受到的重力等于万有引力,则有:mg =GMm R 2所以M =.2R 2hGt 2(3)月球同步卫星绕月球做匀速圆周运动,根据万有引力提供向心力有:=m (R +h ′)GMm(R +h ′)24π2T 2解得h ′=-R .3T 2R 2h2π2t 213.(多选)(2019·全国卷Ⅰ·21)在星球M 上将一轻弹簧竖直固定在水平桌面上,把物体P 轻放在弹簧上端,P 由静止向下运动,物体的加速度a 与弹簧的压缩量x 间的关系如图7中实线所示.在另一星球N上用完全相同的弹簧,改用物体Q 完成同样的过程,其a -x 关系如图中虚线所示.假设两星球均为质量均匀分布的球体.已知星球M 的半径是星球N 的3倍,则( )图7A .M 与N 的密度相等B .Q 的质量是P 的3倍C .Q 下落过程中的最大动能是P 的4倍D .Q 下落过程中弹簧的最大压缩量是P 的4倍答案 AC解析 设物体P 、Q 的质量分别为m P 、m Q ;星球M 、N 的质量分别为M 1、M 2,半径分别为R 1、R 2,密度分别为ρ1、ρ2;M 、N 表面的重力加速度分别为g 1、g 2.在星球M 上,弹簧压缩量为0时有m P g 1=3m P a 0,所以g 1=3a 0=G ,密度ρ1==;在星球N 上,M 1R 12M 143πR 139a 04πGR 1弹簧压缩量为0时有m Q g 2=m Q a 0,所以g 2=a 0=G ,密度ρ2==;因为M 2R 22M 243πR 233a 04πGR 2R 1=3R 2,所以ρ1=ρ2,选项A 正确;当物体的加速度为0时有m P g 1=3m P a 0=kx 0,m Q g 2=m Q a 0=2kx 0,解得m Q =6m P ,选项B 错误;根据a -x 图线与x轴围成图形的面积和质量的乘积表示合外力做的功可知,E km P =m P a 0x 0,E km Q =m Q a 0x 0,所32以E km Q =4E km P ,选项C 正确;根据运动的对称性可知,Q 下落时弹簧的最大压缩量为4x 0,P 下落时弹簧的最大压缩量为2x 0,选项D 错误.。
三个宇宙速度的推导

第二宇宙速度是航天器脱离地球引力的关键,只有达到或超过 这个速度,航天器才能摆脱地球的束缚,飞向太阳系外。
第三宇宙速度
定义
第三宇宙速度是指航天器摆 脱太阳系引力束缚所需的最 小速度,也被称为逃逸速度
。
计算公式
第三宇宙速度的计算公式为 v3=√(2GM/r),其中 G 是万 有引力常数,M 是太阳质量, r 是航天器与太阳中心的距离。
地球观测卫星
第一宇宙速度有助于地球观测卫 星获取高精度的地理信息和气象 数据,因为低轨道卫星具有更高 的分辨率和更快的图像更新频率。
04
三个宇宙速度的物理意 义
第二宇宙速度的物理意义
1 2
第二宇宙速度(逃逸速度)
指航天器能够完全摆脱地球引力束缚,飞离地球 所需的最小初始速度。
计算公式
第二宇宙速度 = sqrt(2 * 地球质量 * 地球半径 * 重力加速度常数)
3
物理意义
第二宇宙速度是航天器离开地球引力场,进入更 广阔宇宙空间的重要条件。
第三宇宙速度的物理意义
01
第三宇宙速度(逃 逸速度)
指航天器能够完全摆脱太阳系引 力束缚,飞出太阳系所需的最小 初始速度。
计算公式
02
03
物理意义
第三宇宙速度 = sqrt(2 * 太阳质 量 * 地球公转半径 * 重力加速度 常数)
第一宇宙速度推导
总结词
第一宇宙速度是物体绕地球做匀速圆周运动 所需的最小速度,其推导基于牛顿第二定律 、万有引力定律和向心力公式。
详细描述
第一宇宙速度,也称为环绕速度,是物体绕 地球做匀速圆周运动所需的最小速度。根据 牛顿第二定律、万有引力定律和向心力公式, 当物体以一定的初速度v0在平行于地心方向 上持续加速时,其受到的地球引力将提供物 体做匀速圆周运动的向心力,直到达到环绕 速度v环绕时,物体将保持匀速圆周运动。环 绕速度v环绕可以通过以下公式计算:v环绕 = sqrt(GM/r),其中G为万有引力常数,M为
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
宇宙速度的计算方法
第一宇宙速度的计算方法
第一宇宙速度(V1):航天器沿地球表面作圆周运动时必须具备的速度,也叫环绕速度。
按照力学理论可以计算出V1=7.9km/s。
航天器在距离地面表面数百公里以上的高空运行,地面对航天器引力比在地面时要小,故其速度也略小于V1
第二宇宙速度的计算方法
1.第二宇宙速度(V2):当航天器超过第一宇宙速度V1达到一定值时,它就会脱离地球的引力场而成为围绕太阳运行的人造行星,这个速度就叫做第二宇宙速度,亦称逃逸速度。
按照力学理论可以计算出第二宇宙速度V
=11.2 km/s。
第三宇宙速度的计算方法
第三宇宙速度(V3)从地球表面发射航天器,飞出太阳系,到浩瀚的银河系中漫游所需要的最小速度,就叫做第三宇宙速度。
按照力学理论可以计算出第三宇宙速度V3=16.7公里/秒。
需要注意的是,这是选择航天器入轨速度与地球公转速度方向一致时计算出的V3值;如果方向不一致,所需速度就要大于16.7公里/秒了。
可以说,航天器的速度是挣脱地球乃至太阳引力的惟一要素,目前只有火箭才能突破宇宙速度
设物体以第三宇宙速度抛出时具有的动能为
12
3
2
E mV
k=,这部分动能应该包括两部分:即脱离地球引
力的动能E k1和脱离太阳引力的动能E k2。
即:E k=E k1+E k2。
易知:
12 1
2
2
E mV
k=,
V2为地球第二宇宙速度。
下面再求E k2:
有两点说明:①因为地球绕太阳公转的椭圆轨道的离心率很小,可以当作圆来处理。
②发射时个行星对物体的引力很小,可以忽略不计。
基于这两点简化,发射过程可以应用机械能守恒定律解题。
物体随地球绕太阳的公转速率等于29.8km/s。
其倍应该为物体挣脱太阳引力所需的速度,即:'29.842.2/
2
V km s
=(以太阳为参照物)。
如果准备飞出太阳系的物体在地球上的发射方向与地球绕太阳公转方向相同,便可以充分利用地球公转速度,这样物体在离开地球时只需要有相对地球的速度V’=42.2-29.8=12.4km/s的速率便可以脱离太阳系。
与此相对应的动能为:
12
'
22
E mV
k=
既能摆脱地球引力也能摆脱太阳引力所需要的总动能为:
222
3122
222
32
111
'
222
'
k k k
E mV E E mV mV
V V V
==
=++
=+
可以得出第三宇宙速度:
V
3。