专题三 大跨径桥梁计算理论——悬索桥
第八章悬索桥的计算

第八章悬索桥的计算悬索桥是一种通过悬挂在主塔上的主梁和悬挂索来支撑桥面的桥梁结构。
悬索桥因其高大雄伟的造型和良好的承载能力而备受推崇,被广泛应用于各种交通工程中。
在计算悬索桥的设计方案时,需要考虑到多个因素,如主梁的形状和尺寸、悬挂索的长度和数量、主塔的高度和稳定性等。
接下来,将详细介绍悬索桥的计算方法。
首先,需要确定悬索桥的主梁形状和尺寸。
主梁的形状有直线型和曲线型两种。
在一般情况下,直线型主梁更容易计算和设计。
主梁的尺寸需要根据交通载荷和桥梁长度来确定。
通常情况下,主梁的高度应为桥梁长的1/10到1/20,宽度为主梁高度的1/5到1/10。
其次,需要计算悬挂索的长度和数量。
悬挂索的长度取决于主梁的跨度和主塔的高度。
悬挂索的数量则取决于主梁的宽度和设计要求。
通常情况下,悬挂索的长度应为主梁跨度的1/3到1/5,而悬挂索的数量应为主梁宽度的1/3到1/5然后,需要计算主梁和悬挂索的受力情况。
主梁的受力主要包括弯矩和剪力,而悬挂索的受力主要包括拉力和压力。
在计算弯矩和剪力时,需要考虑到交通载荷、自重和风荷载等因素。
在计算拉力和压力时,需要根据悬挂索的位置和受力情况来确定。
最后,需要计算主塔的高度和稳定性。
主塔的高度需要根据主梁的跨度和设计要求来确定。
主塔的稳定性则需要考虑到地震和风荷载等因素。
在计算主塔的高度和稳定性时,需要使用结构力学和土木工程的知识。
总之,悬索桥的计算是一个复杂的过程,需要考虑到多个因素。
以上只是悬索桥计算中的一些基本内容,实际的计算应根据具体的设计要求和实际情况来进行。
悬索桥的设计和计算需要借助于专业的工程师和相关的计算软件,以确保桥梁的安全和稳定。
悬索桥的计算方法及其历程1

悬索桥的计算方法及其发展悬索桥是一种古老的桥梁结构形式,也是目前大跨度桥梁的主要结构型式之一。
悬索桥主要是由缆索、吊杆、加劲梁、主塔、锚碇等构成。
从结构形式上看,它是一种由索和梁所构成的组合体系,在受力本质上它是一种以柔性索为主要承重构件的悬挂结构。
悬索桥随着跨度的增大,柔性加大,在荷载作用下会呈现出较强的非线性,所以悬索桥宜采用非线性方法来进行结构分析。
考虑悬索桥非线性因素的结构分析方法主要有挠度理论和有限位移理论。
挠度理论考虑了悬索桥几何非线性的主要因素,可用比较简便的数值方法来分析,又有影响线可资利用,故很适用于初步设计阶段的结构设计计算。
有限位移理论则全面地考虑了悬索桥几何非线性因素,计算结果较挠度理论精确,但计算过程复杂,直接用于设计计算有诸多不便和困难。
悬索桥挠度理论是一种古典的悬索桥结构分析理论。
这种理论主要考虑悬索和加劲梁变形对结构内力的影响,在中小跨度范围内其计算结果比较接近结构的实际受力情况,具有较好的精度。
悬索桥挠度理论主要分为多塔悬索桥挠度理论和自锚式悬索桥挠度理论。
最初的悬索桥分析理论是弹性理论。
弹性理论认为缆索完全柔性,缆索曲线形状及坐标取决于满跨均布荷载而不随外荷载的加载而变化,吊杆受力后也不伸长,加劲梁在无活载时处于无应力状态。
弹性理论用普通结构力学方法即可求解,计算简便,至今仍在跨径小于200米的悬索桥设计中应用[1]。
但弹性理论假定缆索形状在加载前后不发生变化,显然与悬索桥的可挠性不符,因此发展出计入变形影响的悬索桥挠度理论。
古典的挠度理论称为“膜理论”。
它是将悬索桥的全部近视看成是一种连续的不变形的膜,当缆索产生挠度时,加劲梁也随之产生相同的挠度。
由于根据作用于缆索单元上吊杆力与缆索拉力的垂直分力平衡以及作用于加劲梁单元上的外荷载及吊杆力与加劲梁弹性抗力平衡的条件建立力的平衡微分方程而求解。
挠度理论和弹性理论的最大区别是摒弃了弹性理论中关于缆索形状不因外荷载介入而改变的假设,相应建立缆索在恒载下取得平衡的几何形状将因外荷载介入而改变及同时计入缆索因外荷载所增索力引起的伸长量的假设,极大的接近悬索桥主索的实际工作状态,对悬索桥的发展起到了很大的推动作用。
悬索桥结构计算理论

悬索桥结构计算理论悬索桥结构计算理论主要内容☞概述☻悬索桥的近似分析☞悬索桥主塔的计算☞悬索桥成桥状态和施工状态的精确计算1.概述1.1悬索桥的受力特征悬索桥是由主缆、加劲梁、主塔、鞍座、锚碇、吊索等构件构成的柔性悬吊体系,其主要构成如下图所示。
成桥时,主要由主缆和主塔承受结构自重,加劲梁受力由施工方法决定。
成桥后,结构共同承受外荷作用,受力按刚度分配。
悬索桥各部分的作用主缆是结构体系中的主要承重构件,受拉为主;主塔是悬索桥抵抗竖向荷载的主要承重构件,受压为主;加劲梁是悬索桥保证车辆行驶、提供结构刚度的二次结构,主要承受弯曲内力;吊索是将加劲梁自重、外荷载传递到主缆的传力构件,是连系加劲梁和主缆的纽带,受拉。
锚碇是锚固主缆的结构,它将主缆中的拉力传递给地基。
1.概述(续)✶悬索桥计算理论的发展与悬索桥自身的发展有着密切联系早期,结构分析采用线弹性理论(由于桥跨小,索自重较轻,结构刚度主要由加劲梁提供。
中期(1877), 随着跨度的增加,梁的刚度相对降低,采用考虑位移影响的挠度理论。
现代悬索桥分析采用有限位移理论的矩阵位移法。
✹跨度不断增大的同时,加劲梁相对刚度不断减小,线性挠度理论引起的误差已不容忽略。
因此,基于矩阵位移理论的有限元方法应运而生。
应用有限位移理论的矩阵位移法,可综合考虑体系节点位移影响、轴力效应,把悬索桥结构非线性分析方法统一到一般非线性有限元法中,是目前普遍采用的方法。
▪弹性理论(1)悬索为完全柔性,吊索沿跨密布;(2)悬索线性及座标受载后不变;(3)加劲梁悬挂于主缆,截面特点不变;仅有二期恒载、活载、温度、风力等引起的内力。
计算结果:悬索内力及加劲梁弯距随跨经的增大而增大。
▪挠度理论与弹性理论不同之处仅在于:考虑悬索竖向变形对内力的影响(不考虑剪力变形、吊杆倾斜及伸缩变形,影响较小)。
线性挠度理论:忽略挠度理论中活载引起的主缆水平分力与竖向位移之间的非线性关系。
计算结果:加劲梁弯距铰弹性理论结果要小。
国内外大跨径桥梁建设之悬索桥

国内外大跨径桥梁建设之悬索桥悬索桥是一种古老的桥型,起源于中国,革新于英国,发展于美国,广泛应用于日本。
它因具有跨度大、美观、架设方便等特点而得到广泛的应用。
随着高强钢丝和优质材料的出现,架设工艺的改进以及计算理论和手段的不断完善,悬索桥正朝长、大方向发展,并因其在大跨度方面具有较大的优势而成为现代大跨径桥梁家族中的重要成员。
从1816 年,英国建成了第一座具有现代意义的悬索桥——跨径为124m、以钢丝做主索的人行吊桥起,工程界开始重视对悬索桥的理论研究。
1823年纳维尔发表了加劲梁悬索桥理论,认识到竖向挠度随着恒载的增加而减少。
到19 世纪末,悬索桥的跨度达到200~300m 。
1883 年列特和1886 年列维分别发表了弹性理论,这使悬索桥的跨径达到了500m 以上。
1888 年米兰提出了挠度理论,利用该理论分析的第一座桥是曼哈顿(Manhattan )大桥(主跨径为448m )。
到1931 年,挠度理论使悬索桥的跨度增大了一倍,且突破了l000m ,这就是跨越哈得孙河的乔治•华盛顿(George •Washington ) 大桥(主跨1067m )和旧金山金门(Golden Gate )大桥(主跨1280m )。
悬索桥的发展至今已有近200 年的历史,它是大跨径(尤其是1000m 以上的特大跨径)桥梁的主要形式之一,其优美的造型和宏伟的规模,常被人们称为“桥梁皇后”。
1966 年英国塞文(Severn )桥的加劲梁首先采用流线型扁平钢箱梁,增大了桥梁抗风性能和抗扭刚度,且用钢量少、维护方便。
1970 年丹麦小贝尔特(Small Belt )桥的钢箱梁首先采用箱内空气干燥装置,增强了防腐性能。
跨径为世界第一的明石海峡大桥悬索桥的抗震设计成功地经受了1995 年日本神户大地震考验。
我国虽然很早就开始修建悬索桥,但是其跨径和规模远不能同国外现代悬索桥相比。
我国悬索桥发源甚早,已有3000 余年历史。
悬索桥

性能
性能
矮寨特大悬索桥(16张)按照桥面系的刚度大小,悬索桥可分为柔性悬索桥和刚性悬索桥。柔性悬索桥的桥面 系一般不设加劲梁,因而刚度较小,在车辆荷载作用下,桥面将随悬索形状的改变而产生S形的变形,对行车不利, 但它的构造简单,一般用作临时性桥梁。刚性悬索桥的桥面用加劲梁加强,刚度较大。加劲梁能同桥梁整体结构 承受竖向荷载。除以上形式外,为增强悬索桥刚度,还可采用双链式悬索桥和斜吊杆式悬索桥等形式,但构造较 复杂。
2、鞍部施工
检查钢板顶面标高,符合设计要求后清理表面和四周的销孔,吊装就位,对齐销孔使底座与钢板销接。在底 座表面进行涂油处理,安装索鞍主体。索鞍由索座、底板、索盖部分组成,索鞍整体吊装和就位困难;可用吊车 或卷扬设备分块吊运组装。索鞍安装误差控制在横向轴线误差最大值3mm标高误差最大值3mm。吊装入座后,穿入 销钉定位,要求鞍体底面与底座密贴,四周缝隙用黄油填实。
桥面支承在悬索(通常称大揽)上的桥称为悬索桥。英文为Suspension Bridge,是“悬挂的桥梁”之意, 故也有译作“吊桥”的。“吊桥”的悬挂系统大部分情况下用“索”做成,故译作“悬索桥”,但个别情况下, “索”也有用刚性杆或键杆做成的,故译作“悬索桥”不能涵盖这一类用桥。和拱肋相反,悬索的截面只承受拉 力。简陋的只供人、畜行走用的悬索桥常把桥面直接铺在悬索上。通行现代交通工具的悬索桥则不行,为了保持 桥面具有一定的平直度,是将桥面用吊索挂在悬索上。与拱桥用刚性的拱肋作为承重结构不同,其采用的是柔性 的悬索作为承重结构。为了避免在车辆驶过时,桥面随着悬索一起变形,现代悬索桥一般均设有刚性梁(又称加 劲梁)。桥面铺在刚性梁上,刚性梁吊在悬索上。现代悬索桥的悬索一般均支承在两个塔柱上。塔顶设有支承悬 索的鞍形支座。承受很大拉力的悬索的端部通过锚碇固定在地基中,也有个别固定在刚性梁的端部者,称为自锚 式悬索桥。
悬索桥的计算方法及其历程1

悬索桥的计算方法及其发展悬索桥是一种古老的桥梁结构形式,也是目前大跨度桥梁的主要结构型式之一。
悬索桥主要是由缆索、吊杆、加劲梁、主塔、锚碇等构成。
从结构形式上看,它是一种由索和梁所构成的组合体系在受力本质上它是一种以柔性索为主要承重构件的悬挂结构。
悬索桥随着跨度的增大,柔性加大,在荷载作用下会呈现出较强的非线性,所以悬索桥宜采用非线性方法来进行结构分析。
考虑悬索桥非线性因素的结构分析方法主要有挠度理论和有限位移理论。
挠度理论考虑了悬索桥几何非线性的主要因素,可用比较简便的数值方法来分析,又有影响线可资利用,故很适用于初步设计阶段的结构设计计算。
有限位移理论则全面地考虑了悬索桥几何非线性因素,计算结果较挠度理论精确,但计算过程复杂,直接用于设计计算有诸多不便和困难。
悬索桥挠度理论是一种古典的悬索桥结构分析理论。
这种理论主要考虑悬索和加劲梁变形对结构内力的影响,在中小跨度范围内其计算结果比较接近结构的实际受力情况,具有较好的精度。
悬索桥挠度理论主要分为多塔悬索桥挠度理论和自锚式悬索桥挠度理论最初的悬索桥分析理论是弹性理论。
弹性理论认为缆索完全柔性,缆索曲线形状及坐标取决于满跨均布荷载而不随外荷载的加载而变化,吊杆受力后也不伸长,加劲梁在无活载时处于无应力状态弹性理论用普通结构力学方法即可求解,计算简便,至今仍在跨径小于200米的悬索桥设计中应用[1]。
但弹性理论假定缆索形状在加载前后不发生变化,显然与悬索桥的可挠性不符,因此发展出计入变形影响的悬索桥挠度理论。
古典的挠度理论称为“膜理论”。
它是将悬索桥的全部近视看成是一种连续的不变形的膜,当缆索产生挠度时,加劲梁也随之产生相同的挠度。
由于根据作用于缆索单元上吊杆力与缆索拉力的垂直分力平衡以及作用于加劲梁单元上的外荷载及吊杆力与加劲梁弹性抗力平衡的条件建立力的平衡微分方程而求解。
挠度理论和弹性理论的最大区别是摒弃了弹性理论中关于缆索形状不因外荷载介入而改变的假设,相应建立缆索在恒载下取得平衡的几何形状将因外荷载介入而改变及同时计入缆索因外荷载所增索力引起的伸长量的假设,极大的接近悬索桥主索的实际工作状态,对悬索桥的发展起到了很大的推动作用。
缆索承重桥梁之悬索桥构造及设计计算

缆索承重桥梁之悬索桥构造及设计计算悬索桥是一种常见的缆索承重桥梁,由主悬索、次悬索、桥面和塔构成。
其特点是悬挑距离长、塔高、桥塔之间跨度大,能够满足交通需要,同时其结构也相对稳定。
悬索桥的设计计算主要包括塔的高度、主悬索和次悬索的设计、桥面荷载的计算等。
首先,塔的高度需要满足一定的要求,一般要高于悬索桥的主悬索距离。
塔的高度设计不仅需要考虑桥面的拱度,还需要考虑塔之间的跨度,以保证结构稳定性和桥梁的安全性。
主悬索和次悬索的设计是悬索桥中最重要的部分,它们负责承受桥面的荷载。
悬索桥的主悬索是从塔顶到桥面中央的一条曲线,而次悬索则是从塔顶到桥面两侧的曲线。
主悬索和次悬索一般采用钢缆或预应力混凝土。
设计时需要考虑主悬索和次悬索的自重、荷载以及悬索桥的自重等因素,进行应力和变形的计算,以确保结构的稳定和安全。
在设计过程中,还需要考虑悬索桥的动态响应,防止因为振动而对桥梁产生不良影响。
另外,桥面荷载的计算也是悬索桥设计的重要一环。
桥面荷载一般包括活载荷载和恒载荷载两部分。
活载荷载是指交通载荷,包括车辆和行人的荷载。
恒载荷载是指悬索桥本身的自重和设备荷载等。
在计算过程中,需要考虑桥梁的应力分布、变形和挠度,以确保桥梁的安全和稳定。
最后,设计时还需要考虑材料的选取、施工方案等因素。
悬索桥的设计需要结合实际情况,综合考虑各种因素,以确保悬索桥的安全性、稳定性和经济性。
总之,悬索桥的构造和设计计算是一项复杂且系统的工程,需要考虑各种因素和条件,以保证悬索桥的安全和稳定。
设计师需要结合实际情况,采用科学的方法进行设计和计算,以实现悬索桥的目标。
悬索桥计算理论和计算内容简介

• 动力计算模型建立
桩基础模拟
主梁模拟(刚度和质量模拟)
22
润扬长江公路大桥
23
• 动力计算模型
为了真实地模拟桥梁结构的力学特性,所建立的计算模型必须如实地反 映结构构件的几何、材料特性,以及各构件的边界连接条件。在悬索桥的 动力性能分析中,桥梁结构的离散和模拟分成四部分进行:a.桥面系的模拟; b.主塔的模拟;c.缆索系统的模拟;d.边界连接条件的模拟 。具体计算模型 见下图:
3
➢ 悬索桥计算理论简介
柔性主缆的几何形状是由其在外力作用之下的平衡条件决定的,外力 包括恒载和活载。如果恒载相当大,则其由恒载所决定的几何形状就不会 因相对较小的活载上桥而有多大改变。于是,对活载讲,桥就有了刚度, 这叫重力刚度(即:原本是柔性的大缆因承受(巨大恒载所生)重力而产 生的抵抗(活载所致)变形的刚度)。相对于梁桥刚度主要由截面尺寸决 定而言,悬索桥的刚度由初始悬索拉力及形状决定,因此称为重力刚度。
4)悬索桥空间结构分析方法的发展是以计算机技术的发展为基础的。 1964年岛田静雄首先将三维空间分析理论应用于悬索桥计算,他在加劲 梁断面周边不变形的假定下导出了考虑竖向位移、横向位移及扭转耦合的 基础微分方程,使用影响函数法进行求解,并给出了适合编制程序的计算 流程图。
15
悬索桥动力计算
动力计算包括振动特性分析、地震响应计算和风致振动效应分析等。 悬索桥的动力特性,与其它桥梁相比,悬索桥基本上可分为由主缆、加 劲梁,以及把它们联结起来的吊索构成一个振动体系;以及由桥塔、墩 及基础构成另一个振动体系。前者的振动问题是一个上部结构体系的振 动,后者的振动问题可以说是塔和基础工程体系的振动。
6
• 弹性理论(续)
恒载作用下的主缆线形
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
11
欧洲风格悬索桥主要特点
首次采用钢箱梁与斜吊索闻名于世的塞文桥的 建成,标志着又一建桥强国——英国的掘起,代表 了欧洲风格,其主要特点
(1)采用流线型扁平钢箱梁作为加劲梁。 (2)早期采用铰接斜吊索,经塞文桥、博斯普鲁
斯桥以及恒伯尔桥的实践之后,在博斯普鲁 斯二桥改回到垂直吊索。 (3)索夹分为上下两半,在其两侧采用垂直于主 缆的高强螺栓紧固。 (4)桥塔采用焊接钢结构或钢筋混凝土结构。 (5)钢桥面板采用沥青混合料铺装。
பைடு நூலகம்
吊
索:将加劲梁自重、外荷载传递到主缆的传力构件
,是连系加劲梁和主缆的纽带,承受轴向拉力
锚
碇:锚固主缆的结构,它将主缆中的拉力传递给地基
,通常采用重力式锚和隧道式锚
10
美国风格悬索桥主要特点
(1)主缆采用AS(Air Spinning)法架设。 (2)加劲梁采用非连续的钢桁梁,适应双层桥面,
并在桥塔处设有伸缩缝。 (3)桥塔采用铆接或栓接钢结构。 (4)吊索采用竖直的4股骑跨式。 (5)索夹分为左右两半,在其上下采用水平高强
专题三 大跨径桥梁计算理论
悬索桥
悬索桥
跨越能力最强的桥型之一
2
历史
悬索桥的起源——起源于中国,藤桥、索桥等。 跨度500m:1880年至1920年-纽约,布鲁克林(Brooklyn , 1883 , 486m ) 桥 , 威 廉 斯 堡 桥 ( Williamsboarg , 1930 , 488m )桥,曼哈顿(Manhattan,1909,448m )桥。 跨度1000m :1931年-乔治、华盛顿(George Washington, 1066m )桥;1937年金门(Golden Gate, 1280m )大桥。 1940年-美国华盛顿州的塔可马(Tacoma,主跨853m)大桥
的风毁引起人们对悬索桥抗风的反思。
1964年-建成韦拉扎诺(Verrazano Narrows Br.)桥(双层, 主跨1298m)的记录一直保持至上世纪80年代初。
1966年建成主跨988m的塞文(Severn)桥。
3
布鲁克林桥(Brooklyn ,1883,486m ),美国,纽约 4
5
金门大桥,1280m,美国,1937年
12
日本风格悬索桥主要特点
作为后起之秀—日本,其悬索桥技术具有随时代进步的特色, 主要特点:
(1)采用预制平行钢丝索股架设主缆(PWS法)。 (2)加劲梁主要沿袭美国流派的钢桁梁型式,但近
年来对非双层桥面的梁体已转向采用流线型扁 平钢箱梁。 (3)吊索沿袭美国流派的竖直4股骑跨式,未接受 英国早期的斜吊索。 (4)桥塔采用钢结构,主要采用焊接方式。 (5)鞍座采用铸焊混合方式。 (6)采用钢桥面板沥青混合料铺装桥面。 (7)主缆索股与锚碇内钢构架采用预应力工艺锚固
8
构成及特征
构成:主缆、加劲梁、主塔、鞍座、锚碇、吊索 特征:柔性悬吊组合体系。
成桥时,主要由主缆和主塔承受结构自重, 加劲梁受力由施工方法决定。
成桥后,结构共同承受外荷载作用,受力按 刚度分配。
9
构件作用
主
缆:结构体系中主要承重构件,是几何可变体,主要
承受拉力作用。主缆在恒载作用下具有很大的初始张拉力,对
13
广泛采用的悬索桥结构及工艺特点
目前,国际上广泛采用的悬索桥结构及工艺特点: (1)主缆架设方法采用AS法(英国、美国)和
PWS法(日本、中国)。 (2)加劲梁采用流线型扁平钢箱梁型式。 (3)吊索为竖直形式。 (4)锚固方法偏向采用铸焊混合结构与预应力锚
固工艺。
14
现代悬索桥的发展
(1)跨径越来越大,从几十米发展到近2000m; (2)加劲梁高跨比越来越小,从1/40下降到1/300; (3)主缆等主要承重构件的安全系数取值越来越低, 从4.0下降到2.0。
中国悬索桥的历史与发展
1995年,中国第一座现代大跨径悬索桥广东省汕头海 湾大桥建成,它以452米的跨径吹响了中国大跨径悬索 桥建设的号角。
1996年,西陵长江大桥就将这一纪录提高到900米。 1997年,又建成了跨径888米的虎门大桥。同年,香港
青马大桥又实现了新的跨越,以1377米的跨径雄居中 国桥梁跨径之首。 1999年江阴长江大桥又以1385米的跨径傲视桥林。中 国悬索桥4年实现3次飞跃,每次飞跃都是450米的惊人 数字,这在世界桥梁史上也绝无仅有。
在中国,1995年建成了西陵长江大桥(主跨900m)、1997 年建成了虎门大桥(主跨888m)。
1998年的香港青马大桥(主跨1377m)和1999年江阴长江 大桥(主跨1385m)分别列入世界大跨度桥梁序列中的第四位 与第五位。
主跨452m的汕头海湾大桥采用预应力混凝土加劲梁,在世 界同类桥中跨径排名第一。
15
中国悬索桥历史与发展
16
中国悬索桥的历史与发展
中国吊桥(索桥)历史悠久,但多为人行桥,跨径小, 适应性较差。
现代悬索桥虽然源于古代吊桥,但现代悬索桥的规模、 材料、技术含量已和古代吊桥不可同日而语,它集中了 当代建筑学最尖端的理论、工艺、材料,以无与伦比的 跨径雄霸桥林,即便是桥林新秀斜拉桥在跨径上也无力 与其争锋。
后续结构形状提供强大的“重力刚度”,这是悬索桥跨径得以
不断增大、加劲梁高跨比得以减小的根本原因
主
塔:抵抗竖向荷载的主要承重构件,在恒载作用下,
以轴向受压为主;在活载作用下,以压弯为主,呈梁柱构件特
征
加 劲 梁:促证车辆行驶、提供结构刚度的二次结构,主要 承受弯曲内力。弯曲内力主要来自结构二期恒载和活载
新塔可马(Tacoma,主跨853m)大桥 7
历史
1981年英国的恒伯尔(Humber)桥(主跨1410m)的建成, 将保持记录17年之久的韦拉扎诺桥打破。
在亚洲,1962年福冈的若户桥,主跨367m,至1988年建成 的南备赞大桥(主跨1100m)结束了亚州无千米跨大桥历史, 1998年,明石海峡大桥(主跨1990m)的建成,标志着大跨悬 索桥修建重心转移到了亚州。
中国悬索桥的历史与发展
2009年,舟山连岛工程中的西侯门大桥以1650米跨径 排中国第一,世界第二。