程大位与《算法统宗》教学设计 万忠敏
数学与应用数学-数学文化在初中数学勾股定理教学中的应用研究论文

数学文化在初中数学勾股定理教学中的应用研究摘要在现代近二十多年的时间里,在中国数学教育中发展最快的就是对数学文化的研究与教学。
数学文化是培养学生数学核心素养的依据。
数学文化不仅仅在数学教育中发挥着极为重要的作用,同时也是学好数学的一种方式方法,因此要让学生们在学习数学时还可以感受到数学美,从而使学生养成良好的数学文化素养,这才是教育的重心。
本文以勾股定理为例,通过研究多种证明方式证明勾股定理来培养学生的逻辑思维能力和形成多元化的数学思想;通过教学勾股定理的文化背景来拓宽学生的知识面,吸引学生的学习兴趣;在教学方式上,由以往的灌输式改为理解式,以此来提高教学实效。
关键词数学文化课堂教学文化价值勾股定理The Study on the Applications of Mathematics Culture in the Teaching ofPythagorean Theorem in Junior SchoolAbstract In more than 20 years of modern times, the fastest development in Chinese mathematics education is the research and teaching of mathematics culture. Mathematics culture is the basis of cultivating students mathematics core literacy. Mathematics culture not only plays an extremely important role in mathematics education, but also is a way and means to learn mathematics well. Therefore, students should feel the beauty of mathematics when they study mathematics, so that students develop a good mathematical culture literacy, which is the focus of education. Taking the Pythagorean Theorem as an example, this paper develops students' logical thinking ability and forms diversified mathematical thoughts by studying the Pythagorean theorem proved by various proof methods, and broadens students' knowledge by teaching the cultural background of Pythagorean Theorem, to attract students' interest in learning and to improve the teaching effect, we should change the indoctrination mode into the understanding mode.Key words Mathematical culture Classroom teaching Cultural value Pythagorean theorem目录引言 (1)1 中国数学文化研究的兴起与发展 (2)1.1 “数学方法论”研究对中国数学文化研究兴起的影响 (2)1.2 数学文化史研究对中国数学文化研究兴起的影响 (2)1.3 数学教育改革对数学文化研究兴起的影响 (3)1.4 数学文化类课程的发展过程 (3)1.4.1 早期发展阶段 (3)1.4.2 前期发展阶段 (3)1.4.3 中期发展阶段 (4)1.4.4 普遍认可阶段 (4)2 国外数学文化研究 (4)3 数学文化的界定 (5)4 数学文化融入勾股定理教学的研究现状 (5)5 数学文化在勾股定理教学中呈现的价值 (5)5.1 生活中的勾股定理 (6)5.2 勾股定理教材中体现的数学文化 (6)5.3 勾股定理教学中体现的数学文化 (6)5.3.1 数学文化提高学生的知识范围 (7)5.3.2 数学文化锻炼学生的逻辑思维能力 (7)6 数学文化融入勾股定理教学的措施 (9)6.1 教学设计 (9)6.1.1 教材分析 (9)6.1.2 学情分析 (9)6.1.3 明确教学目标及重难点 (10)6.1.4 运用恰当的教学方法 (10)6.1.5 教学环节 (10)6.1.6 师生小结 (12)6.1.7 布置作业 (12)6.2 实际教学过程 (12)6.2.1 引导猜想 (12)6.2.2 猜想证明 (13)7 优秀的教学实例 (14)7.1 数学文化在勾股定理教学中的应用 (14)7.2 数学文化融入勾股定理的方式 (15)8 数学文化在勾股定理教学中的应用现状 (16)8.1 调查方法 (16)8.2 调查结果 (16)8.3 调查结果分析 (19)9 思考与建议 (19)9.1 教学过程中数学文化知识教育缺失的原因探寻 (19)9.2 解决建议 (20)结论 (20)参考文献 (21)致谢 (22)附录A (23)附录B (23)引言数学文化的研究在中国实现从无到有仅仅花费了二十多年的时间,从只有个别专家学者探讨发展到如今成为中小学乃至各大高校的重点研究内容,他的发展速度在中国教育史上也是较为罕见的。
程大位与《算法统宗》教学设计万忠敏

程大位与《算法统宗》教学设计万忠敏《算法统宗》是一本经典的算法教材,其内容涵盖了算法的基本概念、常用算法的分析与设计等方面。
本教学设计旨在通过课堂讲授、小组讨论以及实际编程等多种教学方式,帮助学生深入理解算法思想和算法设计方法,提高学生的算法编程能力。
一、教学目标:1.理解算法的概念和作用;2.掌握常用算法的基本原理和实现方法;3.能够根据问题需求选择合适的算法;4.能够分析算法的时间和空间复杂度;5.能够独立设计和实现简单算法。
二、教学内容及进度安排:本教学设计共分为十二个教学单元,每个单元约为两课时。
1.单元一:算法概述(2课时)-介绍算法的概念和作用;-探讨算法的特性和分类。
2.单元二:算法流程控制与表达(2课时)-讲解算法中的顺序结构、选择结构和循环结构;-演示算法的控制语句的使用。
3.单元三:线性表(2课时)-介绍线性表的概念和基本操作;-详细讲解顺序表和链表的实现。
4.单元四:栈与队列(2课时)-讲解栈和队列的概念和基本操作;-演示栈和队列的实现和应用。
5.单元五:递归算法(2课时)-介绍递归的基本概念和特性;-分析递归算法的设计方法。
6.单元六:排序算法(2课时)-讲解常见排序算法的原理和实现;-比较不同排序算法的时间复杂度和稳定性。
7.单元七:查找算法(2课时)-介绍常见的查找算法的原理和实现;-比较不同查找算法的时间复杂度和适用场景。
8.单元八:图的表示与遍历(2课时)-讲解图的概念和基本操作;-演示图的邻接矩阵和邻接表表示方法。
9.单元九:图的最短路径算法(2课时)-介绍常见图的最短路径算法的原理和实现;- 演示Dijkstra算法和Floyd算法。
10.单元十:动态规划算法(2课时)-讲解动态规划的基本思想和设计方法;-演示动态规划算法的实现。
11.单元十一:贪心算法(2课时)-介绍贪心算法的基本思想和应用场景;-演示贪心算法的实现。
12.单元十二:算法设计与复杂度分析(2课时)-探讨算法设计的思想和方法;-分析算法的时间和空间复杂度。
程大位与《算法统宗》教学点评

程大位与《算法统宗》
教学点评
——忠州二小陶将来
课上得很成功,给人耳目一新,无论是指导思想、课的设计都充分体现了新的理念,体现了数学学科的本质:
1、教师能面向全体学生,激发学生的深层思考和情感投入,鼓励学生大胆质疑、独立思考,引导学生用自己的语言阐明自己的观点和想法;
2、学生在学习过程中能科学合理地进行分工合作,会倾听别人的意见,能够自由表达自己的观点,遇到困难能与其他同学合作、交流,共同解决问题;
3、有效地组织和引导学生开展探究为特征的研究性学习,使接受与探究相辅相成,学生的学习境界更高,学习效果更好;
4、教师对学生的激励既不形式化,又具体、诚恳。
对于学生出现的错误,能及时以恰当的方式指出纠正;
5、能按照课程标准和教学内容的体系进行有序教学,完成知识、技能等基础性目标,同时还注意了学生发展性目标的实现;
6、学生能够自学的内容,教师让学生自学;学生能够自己表达的,教师鼓励学生去表达;学生自己能做的,教师放手让学生去做;
7、教师能有效改变课程实施过于强调接受学习、死记硬背和机械训练的现状,倡导学生主动参与、乐于探究、勤于动手的学习方式;
8、教师能合理组织学生自主学习、合作探究,对学生的即时评价具有发展性和激励性。
2020-2021学年福建省泉州市七年级(下)期末数学试卷(解析版)

2020-2021学年福建省泉州市七年级(下)期末数学试卷一、选择题(共10小题).1.下列方程中,解为x=1的是()A.x+1=1B.x﹣1=1C.2x﹣2=0D.2.不等式x≤2在数轴上表示正确的是()A.B.C.D.3.小王到瓷砖店购买一种正多边形瓷砖铺设无缝地板,瓷砖形状可以是()A.正五边形B.正六边形C.正八边形D.正十边形4.下列图形分别是等边三角形、正方形、正五边形、等腰直角三角形,其中既是轴对称又是中心对称图形的是()A.B.C.D.5.一个三角形的两边长分别是4和9,则它的第三边长可能是()A.4B.5C.8D.136.下列不等式组中,无解的是()A.B.C.D.7.若是关于x,y的二元一次方程3k=5+3x+2y的一个解,则k的值()A.2B.3C.4D.68.明代数学家程大位的《算法统宗》中有这样一个问题:“隔墙听得客分银,不知人数不知银,七两分之多四两,九两分之少半斤.”其大意为:有一群人分银子,如果每人分七两,则剩余四两,如果每人分九两,则还差半斤(注:明代时1斤=16两,故有“半斤八两”这个成语).设总共有x两银子,根据题意所列方程正确的是()A.7x﹣4=9x﹣8B.C.7x+4=9x+8D.9.如图,五边形ABCDE的一个内角∠A=110°,则∠1+∠2+∠3+∠4等于()A.360°B.290°C.270°D.250°10.若关于x,y的二元一次方程组的解为则方程组的解为()A.B.C.D.二、填空题:本大题共6个小题,每小题4分,共24分.11.已知a>b,则﹣2a﹣2b(填“>”、“<”或“=”号).12.由3x+y=5,得到用x表示y的式子为y=.13.为建设书香校园,某中学的图书馆藏书量增加20%后达到2.4万册,则该校图书馆原来图书有万册.14.如图,△ABC≌△EDC,∠C=90°,点D在线段AC上,点E在线段CB延长线上,则∠1+∠E=°.15.如图,将△ABC沿着射线BC的方向平移到△DEF的位置,若点E是BC的中点,BF =18cm,则平移的距离为cm.16.如图,在△ABC中,点D在BC边上,∠BAC=80°,∠ABC=50°,射线DC绕点D 逆时针旋转一定角度α,交AC于点E,∠ABC的平分线与∠ADE的平分线交于点P.下列结论:①∠C=50°;②∠P=∠BAD;③α=2∠P﹣∠BAD;④若∠ADE=∠AED,则∠BAD=2α.其中正确的是.(写出所有正确结论的序号)三、解答题:本大题共9个小题,共86分,解答应写出文字说明、证明过程或演算步骤.17.解方程组:.18.解不等式组:.19.若代数式4x﹣5与3x﹣6的值互为相反数,求x的值.20.作图:在如图所示的方格纸中,每个小方格都是边长为1个单位的正方形.按要求画出下列图形:(1)将△ABC向右平移5个单位得到△A′B′C′;(2)将△A′B′C′绕点A′顺时针旋转90°得到△A′DE;(3)连接EC′,则△A′EC′是三角形.21.如图,在△ABC中,∠A=62°,∠ABC=48°.(1)求∠C的度数;(2)若BD是AC边上的高,DE∥BC交AB于点E,求∠BDE的度数.22.如图,在四边形ABCD中,∠D=90°,E是BC边上一点,EF⊥AE,交CD于点F.(1)若∠EAD=60°,求∠DFE的度数;(2)若∠AEB=∠CEF,AE平分∠BAD,试说明:∠B=∠C.23.红星商场购进A,B两种型号空调,A型空调每台进价为m元,B型空调每台进价为n 元,5月份购进5台A型空调和7台B型空调共43000元;6月份购进7台A型空调和6台B型空调共45000元.(1)求m,n的值;(2)7月份该商场计划购进这两种型号空调共78000元,其中B型空调的数量不少于12台,试问有哪几种进货方案?24.已知x,y同时满足x+3y=4﹣a,x﹣5y=3a.(1)当a=4时,求x﹣y的值;(2)试说明对于任意给定的数a,x+y的值始终不变;(3)若y>1﹣m,3x﹣5≥m,且x只能取两个整数,求m的取值范围.25.阅读理解:如图1,在△ABC中,D是BC边上一点,且,试说明.解:过点A作BC边上的高AH,∵,,∴,又∵,∴.根据以上结论解决下列问题:如图2,在△ABC中,D是AB边上一点,且CD⊥AB,将△ACD沿直线AC翻折得到△ACE,点D的对应点为E,AE,BC的延长线交于点F,AB=12,AF=10.(1)若CD=4,求△ACF的面积;(2)设△ABF的面积为m,点P,M分别在线段AC,AF上.①求PF+PM的最小值(用含m的代数式表示);②已知,当PF+PM取得最小值时,求四边形PCFM的面积(用含m的代数式表示).参考答案一、选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列方程中,解为x=1的是()A.x+1=1B.x﹣1=1C.2x﹣2=0D.解:A、x+1=1的解为x=0,故A不符合题意;B、x﹣1=1的解为x=2,故B不符合题意;C、2x﹣2=0的解为x=1,故C符合题意;D、x﹣2=0的解为x=4,故D不符合题意;故选:C.2.不等式x≤2在数轴上表示正确的是()A.B.C.D.解:不等式x≤2在数轴上表示为:.故选:B.3.小王到瓷砖店购买一种正多边形瓷砖铺设无缝地板,瓷砖形状可以是()A.正五边形B.正六边形C.正八边形D.正十边形解:A、正五边形的每个内角是(5﹣2)×180°÷5=108°,不能整除360°,不能密铺;B、正六边形的每个内角是120°,能整除360°,能密铺.C、正八边形的每个内角为:(8﹣2)×180°÷8=135°,不能整除360°,不能密铺;D、正十边形的每个内角为:(10﹣2)×180°÷10=144°,不能整除360°,不能密铺;故选:B.4.下列图形分别是等边三角形、正方形、正五边形、等腰直角三角形,其中既是轴对称又是中心对称图形的是()A.B.C.D.解:A.是轴对称图形,不是中心对称图形,故本选项不合题意;B.既是轴对称又是中心对称图形,故本选项符合题意;C.是轴对称图形,不是中心对称图形,故本选项不合题意;D.是轴对称图形,不是中心对称图形,故本选项不合题意;故选:B.5.一个三角形的两边长分别是4和9,则它的第三边长可能是()A.4B.5C.8D.13解:设第三边长为a,由三角形的三边关系,得9﹣4<a<9+4,即5<a<13,∴它的第三边长可能是8,故选:C.6.下列不等式组中,无解的是()A.B.C.D.解:A.的解集为x<﹣3,故本选项不合题意;B.的解集为﹣3<x<2,故本选项不合题意;C.的解集为x>2,故本选项不合题意;D.无解,故选:D.7.若是关于x,y的二元一次方程3k=5+3x+2y的一个解,则k的值()A.2B.3C.4D.6解:∵是关于x,y的二元一次方程3k=5+3x+2y的一个解,∴3k=5+3×(﹣1)+2×2,解得k=2,故选:A.8.明代数学家程大位的《算法统宗》中有这样一个问题:“隔墙听得客分银,不知人数不知银,七两分之多四两,九两分之少半斤.”其大意为:有一群人分银子,如果每人分七两,则剩余四两,如果每人分九两,则还差半斤(注:明代时1斤=16两,故有“半斤八两”这个成语).设总共有x两银子,根据题意所列方程正确的是()A.7x﹣4=9x﹣8B.C.7x+4=9x+8D.解:设总共有x两银子,根据题意列方程得:=,故选:D.9.如图,五边形ABCDE的一个内角∠A=110°,则∠1+∠2+∠3+∠4等于()A.360°B.290°C.270°D.250°解:∵∠A=110°,∴∠A的外角为180°﹣110°=70°,∴∠1+∠2+∠3+∠4=360°﹣70°=290°,故选:B.10.若关于x,y的二元一次方程组的解为则方程组的解为()A.B.C.D.解:∵方程组可变形为,∴,∴,故选:D.二、填空题:本大题共6个小题,每小题4分,共24分.11.已知a>b,则﹣2a<﹣2b(填“>”、“<”或“=”号).解:∵a>b,∴﹣2a<﹣2b,故答案为:<.12.由3x+y=5,得到用x表示y的式子为y=﹣3x+5.解:方程3x+y=5,解得:y=﹣3x+5,故答案为:﹣3x+513.为建设书香校园,某中学的图书馆藏书量增加20%后达到2.4万册,则该校图书馆原来图书有20万册.【解答】设原先臧书量是x万册,增加20%后变为(1+20%)x=1.2x(万册),即1.2x=2.4,解得x=20(万册),故答案是:2014.如图,△ABC≌△EDC,∠C=90°,点D在线段AC上,点E在线段CB延长线上,则∠1+∠E=90°.解:∵△ABC≌△EDC,∴∠1=∠EDC,∵∠C=90°,∴∠EDC+∠E=90°,∴∠1+∠E=90°,故答案为:90.15.如图,将△ABC沿着射线BC的方向平移到△DEF的位置,若点E是BC的中点,BF =18cm,则平移的距离为6cm.解:由平移的性质可知:EF=BC,∵点E是BC的中点,∴EC=BC=BE,∴EC=EF=CF,∵BF=18cm,∴BE=EC=CF=×18=6(cm),即平移的距离为6cm,故答案为:6.16.如图,在△ABC中,点D在BC边上,∠BAC=80°,∠ABC=50°,射线DC绕点D 逆时针旋转一定角度α,交AC于点E,∠ABC的平分线与∠ADE的平分线交于点P.下列结论:①∠C=50°;②∠P=∠BAD;③α=2∠P﹣∠BAD;④若∠ADE=∠AED,则∠BAD=2α.其中正确的是①③④.(写出所有正确结论的序号)解:∵∠BAC=80°,∠ABC=50°,∴∠C=180°﹣∠BAC﹣∠ABC=50°,故①正确;∵∠ABC的平分线与∠ADE的平分线交于点P,∴∠PDE=∠ADE,∠PBD=∠ABC,又∵∠ADC=∠ADE+∠EDC=∠ADE+α=∠ABC+∠DAB①,∠PDC=∠PDE+∠EDC=∠PDE+α=∠PBD+∠P=∠ABC+∠P,∴2∠PDE+2α=∠ABC+2∠P,即∠ADE+2α=∠ABC+2∠P②,②﹣①得:α=2∠P﹣∠DAB,故②错误,③正确;∵∠ADC=∠ADE+α=∠ABC+∠DAB,∠AED=∠C+∠EDC=∠C+α,又∵∠ADE=∠AED,∴∠C+α+α=∠ABC+∠DAB,又∵∠C=50°,∠ABC=50°,∴∠C=∠ABC,∴∠BAD=2α,故④正确,故答案为:①③④.三、解答题:本大题共9个小题,共86分,解答应写出文字说明、证明过程或演算步骤.17.解方程组:.解:,①﹣②,得y=12,把y=12代入②,得x+12=7,解得x=﹣5,故方程组的解为:.18.解不等式组:.解:,解不等式①,得x>﹣2,解不等式②,得x≤1,故不等式组的解集为:﹣2<x≤1.19.若代数式4x﹣5与3x﹣6的值互为相反数,求x的值.解:根据题意得:4x﹣5+3x﹣6=0,移项合并得:7x=11,解得:.20.作图:在如图所示的方格纸中,每个小方格都是边长为1个单位的正方形.按要求画出下列图形:(1)将△ABC向右平移5个单位得到△A′B′C′;(2)将△A′B′C′绕点A′顺时针旋转90°得到△A′DE;(3)连接EC′,则△A′EC′是等腰直角三角形.解:(1)如图,△A′B′C′为所作;(2)如图,△A′DE为所作;(3)连接EC′,如图,∵△A′B′C′绕点A′顺时针旋转90°得到△A′DE,∴A′E=A′C′,∠EA′C′=90°,∴△A′EC′是等腰直角三角形.故答案为等腰直角.21.如图,在△ABC中,∠A=62°,∠ABC=48°.(1)求∠C的度数;(2)若BD是AC边上的高,DE∥BC交AB于点E,求∠BDE的度数.解:(1)∵∠A+∠ABC+∠C=180°,∴∠C=180°﹣62°﹣48°=70°.(2)∵BD⊥AC,∴∠BDC=90°,∴∠DBC=90°﹣70°=20°,∵DE∥BC,∴∠BDE=∠CBD=20°.22.如图,在四边形ABCD中,∠D=90°,E是BC边上一点,EF⊥AE,交CD于点F.(1)若∠EAD=60°,求∠DFE的度数;(2)若∠AEB=∠CEF,AE平分∠BAD,试说明:∠B=∠C.【解答】(1)解:∵EF⊥AE,∴∠AEF=90°,四边形AEFD的内角和是360°,∵∠D=90°,∠EAD=60°,∴∠DFE=360°﹣∠D﹣∠EAD﹣∠AEF=120°;(2)证明:四边形AEFD的内角和是360°,∠AEF=90°,∠D=90°,∴∠EAD+∠DFE=180°,∵∠DFE+∠CFE=180°,∴∠EAD=∠CFE,∵AE平分∠BAD,∴∠BAE=∠EAD,∴∠BAE=∠CFE,∵∠B+∠BAE+∠AEB=180°,∠C+∠CFE+∠CEF=180°,∠AEB=∠CEF,∴∠B=∠C.23.红星商场购进A,B两种型号空调,A型空调每台进价为m元,B型空调每台进价为n 元,5月份购进5台A型空调和7台B型空调共43000元;6月份购进7台A型空调和6台B型空调共45000元.(1)求m,n的值;(2)7月份该商场计划购进这两种型号空调共78000元,其中B型空调的数量不少于12台,试问有哪几种进货方案?解:(1)依题意得:,解得:.答:m的值为3000,n的值为4000.(2)设购进B型空调x台,则购进A型空调=(26﹣x)台,依题意得:,解得:12≤x<.又∵x,(26﹣x)均为整数,∴x为3的倍数,∴x可以取12,15,18,∴该商场共有3种进货方案,方案1:购进A型空调10台,B型空调12台;方案2:购进A型空调6台,B型空调15台;方案3:购进A型空调2台,B型空调18台.24.已知x,y同时满足x+3y=4﹣a,x﹣5y=3a.(1)当a=4时,求x﹣y的值;(2)试说明对于任意给定的数a,x+y的值始终不变;(3)若y>1﹣m,3x﹣5≥m,且x只能取两个整数,求m的取值范围.解:(1)∵x,y同时满足x+3y=4﹣a,x﹣5y=3a.∴两式相加得:2x﹣2y=4﹣2a,∴x﹣y=2﹣a,当a=4时,x﹣y的值为﹣2;(2)若x+3y=4﹣a①,x﹣5y=3a②.则①×3+②得到:4x+4y=12,∴x+y=3,∴不论a取什么实数,x+y的值始终不变.(3)∵x+y=3,∴y=3﹣x,∵y>1﹣m,3x﹣5≥m,∴,整理得,∵x只能取两个整数,故令整数的值为n,n+1,有:n﹣1<≤n,n+1<m+2≤n+2.故,∴n﹣1<3n﹣5且3n﹣8<n,∴2<n<4,∴n=3,∴,∴2<m≤3.25.阅读理解:如图1,在△ABC中,D是BC边上一点,且,试说明.解:过点A作BC边上的高AH,∵,,∴,又∵,∴.根据以上结论解决下列问题:如图2,在△ABC中,D是AB边上一点,且CD⊥AB,将△ACD沿直线AC翻折得到△ACE,点D的对应点为E,AE,BC的延长线交于点F,AB=12,AF=10.(1)若CD=4,求△ACF的面积;(2)设△ABF的面积为m,点P,M分别在线段AC,AF上.①求PF+PM的最小值(用含m的代数式表示);②已知,当PF+PM取得最小值时,求四边形PCFM的面积(用含m的代数式表示).解:(1)∵CD⊥AB,∴∠ADC=90°,由翻折得,CE=CD=4,∠AEC=∠ADC=90°,∴CE⊥AF,∵AF=10,∴S△ACF=AF•CE=×10×4=20.(2)①如图2,作MN⊥AC于点O,交AB于点N,连接FN、PN,由翻折得,∠OAM=∠OAN,∵AO=AO,∠AOM=∠AON=90°,∴△AOM≌△AON(ASA),∴OM=ON,AM=AN,∴AC垂直平分MN,∴PM=PN,∴PF+PM=PF+PN≥FN,∴当点P落在FN上且FN⊥AB时,PF+PM的值最小,为此时FN的长;如图3,FN⊥AB于点N,交AC于点P,PM⊥AF,由S△ABF=AB•FN=m,得×12FN=m,解得,FN=m,此时PF+PM=FN=m,∴PF+PM的最小值为m.②如图4,当PF+PM取最小值时,FN⊥AB于点N,交AC于点P,PM⊥AF,设CD=CE=a,PM=PN=x,∵AB=12,AF=10,∴==,∴S△AFC=S△ABF=m;∵,∴AM=AF=×10=4,∴AN=AM=4,∴BN=12=4=8,∴==,∴S△AFN=S△ABF=m,由S△APM=×4x,S△APN=×4x,得S△APM=S△APN,设S△APM=S△APN=2n,∵==,∴S△FPM=3n,由S△APN+S△APM+S△FPM=S△AFN=m,得2n+2n+3n=m,∴n=m,∴S△APM=2n=m,∴S四边形PCFM=m m=m.。
人教版 七年级数学上册 3.4 实际问题与一元一次方程 同步练习(含答案)

人教版七年级数学上册 3.4 实际问题与一元一次方程同步练习一、选择题1. 小明所在城市的“阶梯水价”收费办法如下:每户每月用水不超过5吨,每吨水费x元;超过5吨,超过部分每吨加收2元.小明家今年5月份用水9吨,共交水费44元,根据题意列出关于x的方程,正确的是()A.5x+4(x+2)=44B.5x+4(x-2)=44C.9(x+2)=44D.9(x+2)-4×2=442. 学校组织知识竞赛,共设20道选择题,各题分值相同.下表记录了3名参赛学生的得分情况,若参赛学生小亮只答对了16道选择题,则小亮的得分是()A.80分B.76分C.75分D.70分3. 某商场购进一批服装,每件进价为200元,由于换季滞销,商场决定将这批服装按标价的六折销售,若打折后每件服装仍能获利20%,则该服装的标价是()A.350元B.400元C.450元D.500元4. 某市出租车的收费标准是起步价5元(行驶路程不超过3 km,都需付5元车费),超过3 km,每增加1 km,加收1.2元(不足1 km的按1 km收费). 某人乘出租车到达目的地后共支付车费11元,那么此人坐车行驶的路程最多是()A.8 km B.9 kmC.6 km D.10 km5. 如图,在长为a 厘米的木条上钻4个圆孔,每个圆孔的直径为2厘米,则x等于( )A.a -85厘米 B.a +85厘米 C.a -45厘米D.a -165厘米6. 《九章算术》是我国古代数学名著,卷七“盈不足”中有题译文如下:今有人合伙买羊,每人出5钱,会差45钱;每人出7钱,会差3钱.问合伙人数、羊价各是多少.设合伙人数为x 人,所列方程正确的是( ) A .5x -45=7x -3 B .5x +45=7x +3 C.x +455=x +37D.x -455=x -377. 小明前年用一笔钱买了一个某银行的两年期的理财产品,该理财产品的年回报率为4.5%,银行告知小明今年他将得到利息288元,则小明前年买理财产品的钱数为( ) A .6400元 B .3200元 C .2560元D .1600元8. 程大位是我国明朝商人,珠算发明家.他60岁时完成的《算法统宗》是东方古代数学名著,详述了传统的珠算规则,确立了算盘用法.书中有如下问题:一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚各几丁.意思是:有100个和尚分100个馒头,如果大和尚1人分3个,小和尚3人分1个,正好分完,大、小和尚各有多少人?下列求解结果正确的是( ) A .大和尚25人,小和尚75人B .大和尚75人,小和尚25人C.大和尚50人,小和尚50人D.大、小和尚各100人9. 为配合荆州市“我读书,我快乐”读书节活动,某书店推出一种优惠卡,每张卡售价20元,凭卡购书可打8折.小慧同学到该书店购书,她先买优惠卡再凭卡付款,结果节省了10元.若此次小慧同学不买卡直接购书,则她需付款() A.140元B.150元C.160元D.200元10. 《算法统宗》记载:“有个学生资性好,一部孟子三日了,每日增添一倍多,问君每日读多少.”其大意是:有个学生天资聪慧,三天读完一部《孟子》,每天阅读的字数是前一天的两倍,问他每天各读多少个字.已知《孟子》一书共有34685个字,设他第一天读x个字,则下面所列方程正确的是()A.x+2x+4x=34685 B.x+2x+3x=34685C.x+2x+2x=34685 D.x+12x+14x=34685二、填空题11. 某商场一件商品按标价的九折销售仍获利20%,已知商品的标价为28元,则商品的进价是元.12. 甲、乙两列火车分别从相距660千米的A,B两地同时出发,相向而行,2小时后相遇,其中甲车的速度是乙车速度的1.2倍,则甲车的速度是________千米/时.13. 一只蜘蛛有8条腿,一只蜻蜓有6条腿,现有蜘蛛、蜻蜓若干只,它们共有120条腿,且蜻蜓的只数是蜘蛛的2倍,那么蜘蛛有________只.14. 2019·芜湖南陵期末某校组织学生和教师为边远山区学校捐赠图书,原计划共捐赠5000册,实际捐赠时学生比原计划多捐了15%,教师比原计划多捐了20%,实际共捐赠5825册,则原计划学生捐赠图书________册.15. 一项工作,甲单独做4天完成,乙单独做8天完成.现甲先做1天,然后和乙共同完成余下的工作,则甲一共做了________天.16. 某公司积极开展“爱心扶贫”的公益活动,现准备将6000件生活物资发往A,B两个贫困地区,其中发往A地区的物资比发往B地区的物资的1.5倍少1000件,则发往A地区的生活物资为________件.三、解答题17. 某企业为严重缺水的甲、乙两所学校捐赠矿泉水共2000件.已知捐给甲校的矿泉水件数比捐给乙校的矿泉水件数的2倍少400件.求该企业捐给甲、乙两所学校各多少件矿泉水.18. 一块金与银的合金重250克,放在水中减轻了16克,已知金在水中质量减轻119,银在水中质量减轻110.求这块合金中含金、银各多少克.19. 某班进行期中考试后,班长安排小明购买奖品准备奖励成绩优异的学生.如图是小明买回奖品时与班长的对话情境:请根据上面的信息,解决问题:(1)试计算两种笔记本各买了多少本;(2)请你解释:小明为什么不可能找回68元?20. 如图,数轴上两个动点A,B开始时所对应的数分别为-8,4,A,B两点各自以一定的速度在数轴上运动,且点A的运动速度为2个单位长度/秒.(1)A,B两点同时出发相向而行,在原点处相遇,求点B的运动速度;(2)A,B两点按上面的速度同时出发,向数轴正方向运动,几秒时两点相距6个单位长度?(3)A,B两点按上面的速度同时出发,向数轴负方向运动,与此同时,点C从原点出发向同方向运动,且在运动过程中,始终有CB∶CA=1∶2,若干秒后,点C表示的数为-10,求此时点B表示的数.21. 为庆祝六一儿童节,某市中小学统一组织文艺会演.甲、乙两所学校共92人(其中甲校人数多于乙校人数,且甲校人数不够90人)准备统一购买服装参加演出,下面是某服装厂给出的演出服装的价格表:购买服装的套数1套至45套46套至90套91套以上(含91套)每套服装的价格60元50元40元如果两所学校分别单独购买服装,那么一共应付5000元.(1)如果甲、乙两校联合起来购买服装,那么比各自购买服装可以节省多少钱?(2)甲、乙两所学校各有多少名学生准备参加演出?(3)如果甲校有10名同学抽调去参加书法、绘画比赛不能参加演出,请你为两所学校设计一种最省钱的购买服装的方案.人教版七年级数学上册 3.4 实际问题与一元一次方程同步练习-答案一、选择题1. 【答案】A[解析] 由题意可得5x+(9-5)(x+2)=44,即5x+4(x+2)=44.故选A.2. 【答案】B[解析] 根据表格数据,A学生答对20道题得100分,可知答对一题得100÷20=5(分).设答错或不答一道题得x分,由B学生答对18道题,答错2道题得88分,可得18×5+2x=88,解得x=-1,故答错或不答一题扣1分.小亮答对16道题,则有16×5+(-1)×(20-16)=76(分).故选B.3. 【答案】B[解析] 本题相等关系是:利润率=20%,根据相等关系建立方程可得解.设这批服装每件的标价为x 元,得0.6x -200200=20%,解得x =400,故选B.4. 【答案】A[解析] 设此人坐车行驶的路程最多为x km ,则有5+(x -3)×1.2=11,解得x =8.5. 【答案】A[解析] 根据题意和图形可以列出相应的方程,从而可以解答本题.由题意可得5x +2×4=a ,解得x =a -85.故选A.6. 【答案】B7. 【答案】B[解析] 设小明前年买理财产品的钱数是x 元.由题意得4.5%x×2=288,解得x =3200.即小明前年买理财产品的钱数为3200元.8. 【答案】A[解析] 设大和尚有x 人,则小和尚有(100-x)人,根据相等关系:大和尚吃的馒头个数+小和尚吃的馒头个数=100,可列方程为:3x +100-x3=100.解方程可得x =25.所以大和尚25人,小和尚75人.故选A.9. 【答案】B[解析] 此题的关键描述:“先买优惠卡再凭卡付款,结果节省了10元”,设出未知数,根据题中的关键描述语列出方程求解. 设小慧同学不买卡直接购书需付款x 元, 则有20+0.8x =x -10, 解得x =150,即小慧同学不买卡直接购书需付款150元.故选B.10. 【答案】A二、填空题11. 【答案】21 [解析]设该商品的进价为x 元,根据题意得:28×0.9-x=20%x ,解得x=21.12. 【答案】180 [解析] 根据相等关系:甲车的路程+乙车的路程=总路程列方程.设乙车的速度为x 千米/时,则甲车的速度为1.2x 千米/时.根据题意,得2·1.2x +2x =660,解方程,得x =150.150×1.2=180(千米/时).13. 【答案】6[解析] 设蜘蛛有x 只,则蜻蜓有2x 只,由题意,得8x +2x·6=120,解得x =6.14. 【答案】3500[解析] 设原计划学生捐赠图书x 册,则教师捐赠图书(5000-x)册.依题意得15%x +(5000-x)×20%=5825-5000,解得x =3500.15. 【答案】3[解析] 设乙做了x 天,则甲做了(x +1)天,根据题意,得x +14+x8=1, 解得x =2,x +1=3. 故甲一共做了3天.16. 【答案】3200[解析] 设发往A 地区的生活物资为x 件,则发往B 地区的物资为(6000-x)件.依题意可列方程x =1.5×(6000-x)-1000,解得x =3200.三、解答题17. 【答案】解:设该企业捐给乙校x 件矿泉水,则捐给甲校(2x -400)件矿泉水. 根据题意,得x +(2x -400)=2000. 解得x =800, 所以2000-x =1200.答:该企业捐给甲校1200件矿泉水,捐给乙校800件矿泉水.18. 【答案】解:设这块合金中含金x 克,则含银(250-x)克.根据题意,得119x +110(250-x)=16. 解得x =190.250-x =250-190=60.答:这块合金中含金190克,含银60克.19. 【答案】解:(1)设买了x 本单价为5元/本的笔记本,则买了(40-x)本单价为8元/本的笔记本,依题意,得5x +8(40-x)=300-68+13. 解得x =25.40-x =15.答:单价为5元/本和8元/本的笔记本分别买了25本和15本.(2)解法一:由(1)知应找回的钱款为300-5×25-8×15=55(元)≠68元,故不可能找回68元.解法二:设买了m 本单价为5元/本的笔记本,则买了(40-m)本单价为8元/本的笔记本.依题意,得5m +8(40-m)=300-68.解得m =883.因为m 是正整数,所以m =883不合题意,应舍去,故不可能找回68元.20. 【答案】解:(1)设点B 的运动速度为x 个单位长度/秒,列方程为82x =4,解得x =1. 答:点B 的运动速度为1个单位长度/秒. (2)设两点运动t 秒时相距6个单位长度.①若点A 在点B 的左侧,则2t -t =(4+8)-6,解得t =6; ②若点A 在点B 的右侧,则2t -t =(4+8)+6,解得t =18. 答:当A ,B 两点运动6秒或18秒时相距6个单位长度. (3)设点C 的运动速度为y 个单位长度/秒.由始终有CB ∶CA =1∶2,列方程,得2-y =2(y -1),解得y =43.当点C 表示的数为-10时,所用的时间为1043=152(秒),此时点B 所表示的数为4-152×1=-72.答:此时点B 表示的数为-72.21. 【答案】[解析] 首先要认真阅读题目弄清题意,运用方程求出甲、乙两校参加演出的学生数,然后根据数据进行单独购买、联合购买的计算,尤其是两校联合购买比实际人数多购买9套,但实际花费较小这一情形容易被忽视掉.解:(1)由题意,得5000-92×40=1320(元),所以两校联合起来购买服装比各自购买服装可以节省1320元.(2)设甲校有x名学生准备参加演出,则乙校有(92-x)名学生准备参加演出.由题意知甲校的学生多于45人且少于90人,乙校的学生少于45人.依题意列方程,得50x+60(92-x)=5000,解得x=52,92-x=92-52=40.所以甲、乙两所学校分别有52名,40名学生准备参加演出.(3)由于甲校有10人不能参加演出,则甲校有42人参加演出.若两校各自购买服装,则需要(42+40)×60=4920(元).若两校联合购买服装,则需要50×(42+40)=4100(元).这样两校联合购买服装比各自购买可以节省4920-4100=820(元).但如果两校联合购买91套服装,只需40×91=3640(元),此时又比联合购买可节省4100-3640=460(元).因此,最省钱的购买服装的方案是两校联合购买91套服装.。
程大位及其所著《算法统宗》

程大位,宇汝思,号宾渠,安徽休宁人。
从二十多岁起他便在长江下游一带经商,平时对数学发生了浓厚的兴趣。
他搜罗了谁多书籍,遍访明师,经过十年的努力,在公元1592年他六十岁的时候写成了《直指算法统宗》一书。
《算法统宗》是一部应用数学书,它以珠算为主要的计算工具,全书共595个问题,绝大多数的问题都是由其他数学著作如刘仕隆所著《九章通明算法》(公元1424年)和吴敬的《九章算法比类大全》(公元1450年)等书中摘取出来的。
《算法统宗》一书总的编排,仍旧是按照《九章算术》的形式,全书共17卷。
在中国古代数学的整个发展过程中,《算法统宗》是一部十分重要的著作。
从流传的长久、广泛和深入来讲,那是任何其他数学著作不能与它相比的。
公元1716年(清康熙55年),程家的后代子孙在《算法统宗》新刻本的序言中写道:自《算法统宗》一书于明万历壬辰(公元1592年)问世以后,“风行宇内,近今盖己百有数十余年。
海内握算持筹之士,莫不家藏一编,若业制举者(考科举的人)之于四子书、五经义,翁然奉以为宗。
”这并不是故作吹嘘之辞。
《算法统宗》的编成及其广泛流传,标志着由筹算到珠算这一转变的完成。
从这时起,珠算就成了主要的计算工具,古代的筹算就逐渐被人遗忘以至失传了。
到后来,一般人只知有珠算,而不知有筹算,也不知道是由筹算演变而来的,这种情况一直继续到公元十八世纪中叶,在清朝学者们对古代数学深入研究之后,才开始了解到古代筹算演变为珠算的经过。
北师大版七年级数学上册第四五章达标测试卷附答案

北师大版七年级数学上册第四章达标测试卷一、选择题(每题3分,共30分)1.小辉同学画出了下面四个图形,其中是四边形的是( )2.如图,用量角器度量∠AOB,可以读出∠AOB的度数为( )A.45° B.55° C.125° D.135°3.如图,表示∠1的其他方法中,不正确...的是( )A.∠ACB B.∠C C.∠BCA D.∠ACD4.一个多边形从一个顶点最多能引出4条对角线,这个多边形的边数是( ) A.6 B.7 C.8 D.95.下列有关画图的表述中,不正确...的是( )A.画直线MN,在直线MN上任取一点PB.以点M为端点画射线MNC.过P,Q,R三点画直线D.延长线段MN到点P,使NP=MN6.已知∠α=40.4°,∠β=40°4′,则∠α与∠β的大小关系是( )A.∠α=∠β B.∠α>∠β C.∠α<∠β D.以上都不对7.如图,观察图形,下列说法或结论中不正确...的是( )A.直线BA和直线AB是同一条直线B.射线AC和射线AD是同一条射线C.AC+CD=ADD.图中有4条线段8.下列说法:①一条直线就是一个平角;②周角就是一条射线;③所画角的两边可以一样长,也可以一长一短;④平角的两条边在一条直线上;⑤角的大小只与角的两边张开的大小有关.其中正确的有( )A.1个 B.2个 C.3个 D.4个9.如图,C,D是线段AB上的两点,E是AC的中点,F是BD的中点.若EF=m,CD=n,则AB=( )A.m-n B.m+n C.2m-n D.2m+n10.如图,将三角板绕点O逆时针旋转一定角度,过点O在∠MON的内部作射线OC,使得OC恰好是∠MOB的平分线,此时∠AOM与∠NOC满足的数量关系是( )A.∠AOM=∠NOC B.∠AOM=2∠NOCC.∠AOM=3∠NOC D.∠AOM=4∠NOC二、填空题(每题3分,共30分)11.开学整理教室时,老师总是先把每一列最前面和最后面的课桌摆好,然后依次摆中间的课桌,一会儿一列课桌便摆在一条线上,整整齐齐,这是因为__________________________.12.如图,从甲地到乙地有四条路线,其中路线________最短(填序号),理由是____________________________________________________________.13.一副三角尺如图所示放置,则∠AOB=________.14.如果一个正七边形的边长为6 cm,那么它的周长为__________.15.如图,小于平角的角有________个.16.如图,阴影部分扇形的圆心角的度数是________.17.如图,把一个长方形纸片沿EF折叠后,点D,C分别落在D′,C′的位置.若∠AED′=50°,则∠DEF的度数为________.18.单位换算:34.37°=______度______分______秒;36°17′42″=__________度.19.如图所示的同心圆中,两圆半径分别为2和1,∠AOB=120°,则阴影部分的面积为________.20.已知∠AOB=70°,∠AOC=40°,且OD平分∠BOC,则∠AOD的度数为____________.三、解答题(21,22题每题8分,23,24题每题10分,其余每题12分,共60分)21.如图,已知线段a,b,作出线段c,使c=a-b.(要求:尺规作图,不写作法,保留作图痕迹)22.如图,在O点的观测站测得渔船A,B的方向分别为北偏东45°,南偏西30°,为了减少相互干扰并取得较好的捕鱼效益,渔船C恰好位于∠AOB的平分线上,求渔船C相对观测站的方向.23.如图,直线AB,CD相交于点O,OE平分∠AOD,∠FOC=90°,∠1=40°,求∠2和∠3的度数.24.如图,C,D,E三点在线段AB上,AD=13DC,点E是线段CB的中点,CE=16AB=2,求线段DE的长.25.直线AB上有一点P,点M,N分别为PA,PB的中点,线段AB=14.(1)如图,当点P在线段AB上运动时,MN的长为________;(2)当点P在直线AB上运动时,试说明线段MN的长度与点P在直线AB上的位置无关.26.如图①,点O为直线AB上一点,过点O作射线OC,使∠BOC=120°.将一直角三角板的直角顶点放在点O处,一边OM在射线OB上,另一边ON在直线AB的下方.(1)将图①中的三角板绕点O逆时针旋转至图②,使一边OM在∠BOC的内部,且恰好平分∠BOC,问:直线ON是否平分∠AOC?请说明理由.(2)将图①中的三角板绕点O按每秒4°的速度沿逆时针方向旋转一周,在旋转的过程中,第t秒时,直线ON恰好平分锐角∠AOC,则t的值为多少?(3)将图①中的三角板绕点O顺时针旋转至图③,使ON在∠AOC的内部,请探究∠AOM与∠NOC之间的数量关系,并说明理由.答案一、1.B 2.B 3.B 4.B 5.C 6.B7.D 8.C 9.C 10.B二、11.两点确定一条直线12.③;两点之间,线段最短13.105°14.42 cm 15.7 16.36°17.65°18.34;22;12;36.295 19.π20.55°或15°三、21.解:如图所示.则线段BC=c=AB-AC=a-b.22.解:由题意可知∠AOB=180°-45°+30°=165°,165°÷2-30°=52.5°.所以渔船C在观测站南偏东52.5°方向.23.解:因为∠FOC=90°,∠1=40°,∠3+∠FOC+∠1=180°,所以∠3=180°-90°-40°=50°.因为∠3+∠AOD=180°,所以∠AOD=180°-∠3=130°.因为OE平分∠AOD,所以∠2=12∠AOD=65°.24.解:因为CE=16AB=2,所以AB=12.因为E为线段CB的中点,所以BC=2CE=4.所以AC=8.因为AD=13 DC,所以DC=6.所以DE=DC+CE=8. 25.解:(1)7(2)分三种情况:①当点P在线段AB上运动时,由题图知MP=12AP,PN=12PB,所以MN=MP+PN=12(AP+PB)=12AB=12×14=7;②当点P在线段AB的延长线上时,同样有MP=12AP,NP=12PB,所以MN=MP-NP=12(AP-PB)=12AB=12×14=7;③当点P在线段BA的延长线上时,同样可得MN=7.综上,当点P在直线AB上运动时,线段MN的长度总为7,与点P在直线AB 上的位置无关.26.解:(1)平分.理由如下:如图①,延长NO到D.因为∠MON=90°,所以∠MOD=90°.因为OM平分∠BOC,∠BOC=120°,所以∠COM=∠BOM=60°.所以∠COD=90°-60°=30°.所以∠AOD=180°-120°-30°=30°.所以∠COD=∠AOD,即直线ON平分∠AOC.(2)分两种情况:如图①,因为∠BOC=120°,所以∠AOC=60°.当直线ON恰好平分锐角∠AOC时,∠AOD=∠COD=30°,所以∠BON=∠AOD=30°.所以∠BOM=60°,即逆时针旋转的角度为60°.由题意得4t=60,解得t=15.如图②,当ON平分∠AOC时,∠NOA=30°,所以∠AOM=60°,即逆时针旋转的角度为180°+60°=240°.由题意得4t=240,解得t=60.综上所述,t=15或60时,直线ON恰好平分锐角∠AOC.(3)∠AOM-∠NOC=30°.理由如下:因为∠AOM=90°-∠AON,∠NOC=60°-∠AON,所以∠AOM-∠NOC=(90°-∠AON)-(60°-∠AON)=30°.北师大版七年级数学上册第五章达标测试卷一、选择题(每题3分,共30分)1.下列方程是一元一次方程的是( )A.x2+x=3 B.5x+2x=5y+3 C.12x-9=3 D.2x+1=22.下列一元一次方程中,解是x=2的是( )A.3x+6=0 B.23x=2C.5-3x=1 D.3(x-1)=x+1 3.下列等式变形错误..的是( )A .若x -1=3,则x =4B .若12x -1=x ,则x -1=2xC .若x -3=y -3,则x -y =0D .若3x +4=2x ,则3x -2x =-4 4.若关于y 的方程ay -1=0与y -2=-3y 的解相同,则a 的值为( ) A .12 B .2 C .13D .35.将方程3x -23+1=x 2去分母,正确的是( )A .3x -2+1=xB .2(3x -2)+1=3xC .2(3x -2)+6=3xD .2(3x -2)+1=x 6.若12m +1与m -2互为相反数,则m 的值为( )A .-23B .23C .-32D .327.一件服装标价200元,以六折销售,仍可获利20%,则这件服装的进价是( )A .100元B .105元C .108元D .118元 8.“△”表示一种运算符号,其意义是a △b =2a -b .若x △(1△3)=2,则x 的值为( ) A .1 B .12 C .32D .29.如图是由四种大小不同的八个正方形拼成的一个长方形,其中最小的正方形的边长为5,则这个长方形的周长为( ) A .82 B .86 C .90 D .9410.程大位是我国明朝商人,珠算发明家.他60岁时完成的《直指算法统宗》是东方古代数学名著,书中详述了传统的珠算规则,确立了算盘用法,书中有如下问题:一百馒头一百僧,大僧三个更无争, 小僧三人分一个,大小和尚得几丁.意思是:有100个和尚分100个馒头,如果大和尚1人分3个,小和尚3人分1个,正好分完,大、小和尚各有多少人,下列求解结果正确的是( ) A .大和尚有25人,小和尚有75人 B .大和尚有75人,小和尚有25人 C .大和尚有50人,小和尚有50人 D .大、小和尚各有100人 二、填空题(每题3分,共30分)11.若(a -1)x -13=2是关于x 的一元一次方程,则a 应满足的条件是____________.12.若代数式3x -3的值是3,则x =________.13.写出一个解为x =3的一元一次方程:______________.14.已知关于x 的方程2x +a -5=0的解是x =2,则a =________.15.某市在端午节准备举行划龙舟大赛,预计15个队共330人参加.已知每个队一条船,每条船上人数相等,且每条船上有1人击鼓、1人掌舵,其余的人同时划桨.设每条船上划桨的有x 人,那么可列出的一元一次方程为__________________.16.在400 m 的环形跑道上,一男生每分钟跑320 m ,一女生每分钟跑280 m ,他们同时同地同向出发,t min 后首次相遇,则t =________.17.一个两位数,十位上的数字比个位上的数字小1,十位上的数字与个位上的数字的和是这个两位数的15,则这个两位数是________.18.一个底面半径为10 cm 、高为30 cm 的圆柱形大杯中存满了水,把水倒入底面直径为10 cm 的圆柱形小杯中,刚好倒满12杯,则小杯的高为__________. 19.王经理到襄阳出差给朋友们带回若干袋襄阳特产——孔明菜,如果每人分5袋,还余3袋;如果每人分6袋,还差3袋,则王经理带回孔明菜______袋.20.我们知道,无限循环小数都可以转化为分数.例如:将0.3·转化为分数时,可设0.3·=x ,则x =0.3+110x ,解得x =13,即0.3·=13.仿照此方法,将0.4·5·化成分数是________.三、解答题(21,25,26题每题12分,其余每题8分,共60分) 21.解下列方程: (1)3x -3=x +2;(2)4x -3(20-x )=4; (3)x +14-1=2x -16.22.当m 为何值时,代数式2m -5m -13与7-m2的和等于5?23.某地为了打造风光带,将一段长为360 m 的河道整治任务交给甲、乙两个工程队接力完成,共用时20天.已知甲工程队每天整治24 m ,乙工程队每天整治16 m ,求甲、乙两个工程队分别整治了多长的河道.24.甲、乙两人分别从A ,B 两地同时出发,沿同一条路线相向匀速行驶,已知出发后3 h 两人相遇,相遇时乙比甲多行驶了60 km ,相遇后再经1 h 乙到达A 地.(1)甲、乙两人的速度分别是多少?(2)两人从A ,B 两地同时出发后,经过多长时间两人相距20 km?25.某校计划购买20个书柜和一批书架,现从A ,B 两家超市了解到:同型号的产品价格相同,书柜每个210元,书架每个70元;A 超市的优惠政策为每买一个书柜赠送一个书架,B 超市的优惠政策为所有商品打8折出售.设该校购买x (x >20)个书架.(1)若该校到同一家超市选购所有商品,则到A 超市要准备________元货款,到B 超市要准备________元货款;(用含x 的代数式表示)(2)若规定只能到其中一家超市购买所有商品,当购买多少个书架时,无论到哪家超市所付货款都一样?(3)若该校想购买20个书柜和100个书架,且可到两家超市自由选购,你认为至少准备多少元货款?并说明理由.26.小东同学在解一元一次方程时,发现这样一种特殊现象:x +12=0的解为x=-12,而-12=12-1;2x +43=0的解为x =-23,而-23=43-2.于是,小东将这种类型的方程作如下定义:若关于x 的方程ax +b =0(a ≠0)的解为x =b -a ,则称之为“奇异方程”.请和小东一起进行以下探究:(1)当a =-1时,有符合要求的“奇异方程”吗?若有,求出该方程的解;若没有,请说明理由.(2)若关于x 的方程ax +b =0(a ≠0)为“奇异方程”,解关于y 的方程:a (a -b )y+2=⎝⎛⎭⎪⎫b +12y .答案一、1.C 2.D 3.B 4.B 5.C 6.B7.A 8.B 9.B 10.A二、11.a ≠1 12.213.x -3=0(答案不唯一) 14.115.15(x +2)=330 16.10 17.4518.10 cm 19.33 20.511三、21.解:(1)移项,得3x -x =2+3.合并同类项,得2x =5.系数化为1,得x =52. (2)去括号,得4x -60+3x =4.移项、合并同类项,得7x =64.系数化为1,得x =647. (3)去分母,得3(x +1)-12=2(2x -1).去括号,得3x +3-12=4x -2.移项,得3x -4x =-2-3+12.合并同类项,得-x =7.系数化为1,得x =-7.22.解:由题意得2m -5m -13+7-m 2=5. 去分母,得12m -2(5m -1)+3(7-m )=30.去括号,得12m -10m +2+21-3m =30.移项,得12m -10m -3m =30-2-21.合并同类项,得-m =7.系数化为1,得m =-7.故当m =-7时,代数式2m -5m -13与7-m 2的和等于5. 23.解:设甲工程队整治了x 天,则乙工程队整治了(20-x )天.由题意,得24x +16(20-x )=360,解得x =5.所以乙工程队整治了20-5=15(天).甲工程队整治的河道长为24×5=120 (m),乙工程队整治的河道长为16×15=240 (m).答:甲、乙两个工程队分别整治了120 m ,240 m 的河道.24.解:(1)设甲的速度为x km/h ,易得乙的速度为(x +20)km/h.根据题意,得3x +3(x +20)=4(x +20),解得x =10.则x +20=30.答:甲的速度是10 km/h ,乙的速度是30 km/h.(2)设经过t h 两人相距20 km.①相遇前相距20 km 时,可得方程10 t +30 t +20=4×30, 解得t =2.5;②相遇后相距20 km 时,可得方程10 t +30 t =4×30+20, 解得t =3.5.答:经过2.5 h 或3.5 h 两人相距20 km.25.解:(1)(70x +2 800);(56x +3 360)(2)解方程70x +2 800=56x +3 360,得x =40.答:当购买40个书架时,无论到哪家超市所付货款都一样.(3)至少准备8 680元货款.理由:先到A 超市购买20个书柜,需货款210×20=4 200(元); 再到B 超市购买80个书架,需货款70×80×80%=4 480(元); 共需货款4 200+4 480=8 680(元).26.解:(1)没有符合要求的“奇异方程”.理由如下:把a =-1代入原方程,解得x =b .若为“奇异方程”,则x =b +1.因为b ≠b +1,所以不符合“奇异方程”的定义.故不存在.(2)因为关于x 的方程ax +b =0(a ≠0)为“奇异方程”,所以x =b -a .所以a (b -a )+b =0,即a (a -b )=b .所以方程a (a -b )y +2=⎝ ⎛⎭⎪⎫b +12y 可化为by +2=⎝⎛⎭⎪⎫b +12y . 所以by +2=by +12y , 解得y =4.。
苏科版七上数学应用题专题

【题型一】只问一问的简单题型1. 某部小说分为上、中、下3册,印刷上册用了全部印刷时间的40%,印刷中册用了全部印刷时间的35%,印刷下册用了7天,印刷这部小说共用了多少天?2.某果园里,12的面积种植了苹果树,14的面积种植了葡萄树,其余4公顷地种植了桃树.求这个果园的面积?3.某班在绿化校园的活动中共植树130棵,有5名学生每人种了2棵,其余学生每人种了3棵.这个班共有多少名学生?4.甲、乙两人检修一条长1000m 的煤气管道,甲每小时检修100m,乙每小时检修150m.现在两人合做,需要多少时间完成?【题型二】问两问且题目中有两个等量关系的题1.某校班级篮球联赛中,每场比赛都要分胜负,每队胜1场得3分,负1场得1分.如果某班在第一轮的28场比赛中得48分,那么这个班胜了多少场?2.有48支球队共520名运动员参加篮球、排球比赛,其中每支篮球队10人,每支排球队12人,每名运动员只能参加一项比赛,则篮球队、排球队各有多少支?3.我国明代数学家程大位的名著《直指算法统宗》里有一道著名算题:“一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚各几丁?”意思是:有100个和尚分100个馒头,正好分完;如果大和尚一人分3个,小和尚3人分一个,试问大、小和尚各几人?4.小明比爸爸小26岁,今年爸爸的年龄正好是小明的3倍.求小明今年几岁?【题型三】“每每”题1.几个人共同种一批树苗,如果每人种10棵,则剩下6棵树苗未种;如果每人种12棵,则缺6棵树苗.求参与种树的人数.2.某课外活动小组计划做一批“中国结”,如果每人做6个,那么比计划多了7个,如果每人做5个,那么比计划少了13个,该小组计划做多少个“中国结”?3.把一些图书分给某班学生阅读,如果每人分3本则剩余20本;如果每人分4本,则还缺25本.这个班有多少学生?4.《九章算术》中有一道阐述“盈不足术”的问题,原文如下:今有人共买物,人出八,盈三;人出七,不足四.问人数,物价各几何⋅译文为:现有一些人共同买一个物品,每人出8元,还盈余3元;每人出7元,则还差4元.问共有多少人⋅这个物品的价格是多少?5.中国古代人民很早就在生产生活中发现了许多有趣的数学问题,其中《孙子算经》中有个问题:今有四人共车,一车空;二人共车,八人步,问人与车各几何?这道题的意思是:今有若干人乘车,每4人乘一车,最终剩余1辆车,若每2人共乘一车,最终剩余8个人无车可乘,问有多少人,多少辆车?6.某制衣厂计划若干天完成一批服装的订货任务.如果每天生产服装50套,则差30套而不能完成任务;如果每天生产服装60套,则可提前1天完成任务,且超额20套,问这批服装的订货任务有多少套?计划多少天完成?【题型四】行程问题1.小明和小丽同时从甲村出发去乙村,小丽的速度为4km/h,小明的速度为5km/h,小丽比小明晚到15min.求甲、乙两村之间的路程。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
程大位与《算法统宗》教学设计
贵阳市三桥小学:万忠敏
教学内容:
西南师范大学出版社《数学文化读本》三年级下册第2课P5~P8
教学目标:
1、让学生了解古代数学加程大位及其著作《算法统宗》。
2、让学生了解“铺地锦”的计算方法,并利用此方法计算两位数乘两位数。
3、让学生了解古代数学加程大位写出《算法统宗》这本数学巨著的经历,学习他努力学习,刻苦专研的精神。
教学重点:
会用“铺地锦”的方法计算两位数乘两位数。
教学难点:
“铺地锦”的计算方法。
教学准备:
PPT、“铺地锦”的计算方法的表格,让生收集资料。
教学过程:
一、激趣导入:
1、PPT出示“铺地锦”表格。
2、问:看见这幅图,你想到了什么?
引导生说出它像铺在地上的地砖。
3、教师说明:这是一种神奇的乘法的计算方法,叫“铺地锦”我们可以用它来计算两位数乘两位数。
4、介绍“铺地锦”的计算方法
5、谈话揭题:“铺地锦”这种乘法的计算方法,是在我国明朝古书上记载的,这本书就是《算法统宗》。
板书:程大位与《算法统宗》
二、新知
1、同学们,关于程大位与《算法统宗》你们想知道些什么呢?
(1)、《算法统宗》是本什么样的古算书呢?
(2)、这本古算书的内容是什么呢?
(3)、程大位是位什么样的人呢?他是怎样写出这本书的呢?
【设计意图】:让学生自己提出问题,并尝试自己解决问题。
2、谈话:看来大家都很好学嘛,有这么多问题想知道,之前,大家去查了有关资料,下面我们就来尝试这解决这些问题。
(1)、《算法统宗》是本什么样的古算书呢?(谁能回答?)
生:《算法统宗》成书于公园1592年是一部应用数学书,以珠算为主要计算工具,全书共17卷,595个问题。
师:关于这个问题,还有什么想知道的吗?(根据学生回答调整问题的先后) (2)、这本书一开始的内容是什么?
生:第1、2卷把全书所用到的一切基础和知识都进行了说明,比如算盘的定位方法,珠算的加、减法和乘、除法的口诀等。
(3)、第3卷以后的内容是什么呢?
生:从第3卷到第12卷各章都按《九章算术》章名来命名,《算法统宗》承接了《九章算术》的优点,内容丰富多彩,大多和实际生活密切联系,并采用当时先进的计算工具——算盘进行计算,它真实的反映了我国古代劳动人民的智慧。
师:大家还有什么问题吗?
(4)、第13卷到第17卷呢?
生:第13卷到第16卷中的问题都是从《九章通明算法》《九章算法类比大全》等书中抄录的比较难的题目。
而第17卷附录了26种“杂法”,其中就要从西方国家传来的“铺地锦”乘法和一些“幻方”等。
教师解释“幻方”。
师:对于这本书的内容大家还有什么不清楚的吗?下面我们来解决下一个问题。
(5)程大位是位什么样的人呢?
生:程大位是我国古代著名的数学家,字汝思,安徽休宁人,20多岁起便在长江下游一带经商,他是一个商人,并不是专门从事数学研究的,只是对数学感兴趣,经过了几十年的努力,通过搜罗各种算书,拜访数学名师,他在60岁时终于完成了这部著作。
【设计意图】:根据学生自己提出问题,和学生搜集的资料,介绍有关程大位与《数学统宗》这本书。
三、拓展与应用:
1、让学生用“铺地锦”的方法计算下面各题:
76X26 54X83 36X19
2、让生利用课余时间查查有关古代数学家的故事,学习他们刻苦学习,努力专研的精神。
【设计意图】:让学生对所学知识进行真理,归纳,运用,并学会对所需资料进行查找收集,分析和整理。
四、总结:
师:通过今天的学习,你知道了写什么?
生1:我知道了,在中国古算史中,《算法统宗》汇集了多位名家的著作内容,是一部流传久远,研究深入的重要数学著作。
生2:我知道了《算法统宗》的最后,列出了宋朝、元朝以来各种数学著作的书名共,共51种。
生3:我知道了,程大位是一位商人,他60多岁才写出这本书。
……
【设计意图】:让生对所学知识进行总结。