高数定理定义总结复习进程

合集下载

高数上册知识点总结

高数上册知识点总结

高数上册知识点总结高等数学上册知识点总结引言高等数学是大学数学的重要组成部分,它为我们提供了解析几何、微积分、无穷级数等一系列数学工具,为我们理解和解决各种实际问题提供了强大的支持。

在高等数学上册中,我们将学习到很多重要的概念和定理,本文将对其中一些关键知识进行总结。

一、导数与微分导数是微积分的首要概念之一,用于描述函数的变化率。

公式上,导数表示函数在某一点上的切线斜率。

微分是导数的微小变化,表示函数在某一点上的微小增量。

我们需要掌握导数的基本定义和常见函数的求导法则,并理解导数的物理和几何意义。

二、极限与连续极限是高等数学中最关键的概念之一,用于描述随着自变量趋近某一特定值时函数值的变化情况。

极限可以分为常数极限、无穷大极限和无穷小极限。

连续是指函数在整个定义域上无间断,没有跳跃和缺口。

我们需要熟悉极限的计算方法和性质,并理解连续函数的判定条件和性质。

三、函数与映射函数是一种描述两个变量之间关系的数学工具。

函数包括常见的数学函数如多项式函数、指数函数、对数函数、三角函数等。

映射是函数的一种特殊形式,将每个自变量映射到唯一的因变量。

我们需要了解函数的性质和特点,并应用函数构建数学模型。

四、定积分与不定积分定积分和不定积分是微积分的重要内容。

定积分用于计算曲线下面积,而不定积分则表示函数的原函数。

在应用上,定积分可以计算曲线长度、质量、质心等问题。

不定积分是求函数的原函数,常用于求解微分方程。

我们需要熟练掌握积分的计算方法和性质,并能熟练运用积分解决实际问题。

五、级数级数是数列求和的推广概念,特定地,级数是无穷项的和。

我们需要掌握级数的收敛与发散判别方法,如比值判别法、积分判别法、积和判别法等。

同时,要了解级数的性质,如绝对收敛和条件收敛等,并能运用级数解决实际问题。

六、逼近与展开逼近和展开是一种将复杂函数转化为简单形式的数学方法。

逼近是将某个函数近似替代为一个简单的函数,如泰勒多项式逼近。

展开则是将一个函数表示为一系列更简单的函数的和,如傅里叶级数展开。

高数基础知识的简明总结与归纳

高数基础知识的简明总结与归纳

高数基础知识的简明总结与归纳
高数,作为数学的一个分支,是许多学科的基础。

本文将简要概述和总结高数中的一些基本概念和定理,以帮助读者更好地理解和掌握这一学科。

一、极限论
极限论是高等数学的基础,它涉及到函数的变化趋势和无穷小量的概念。

极限的定义是:对于任意给定的正数ε,总存在一个正数δ,使得当x满足|x-a|<δ时,|f(x)-A|<ε成立,其中a是x的某一取值,A是f(x)在a处的极限。

二、导数与微分
导数是函数在某一点的切线的斜率,表示函数在该点的变化率。

微分则是函数值变化的近似值。

导数在几何上可以表示曲线在某一点处的切线,也可以用于求解函数的极值。

微分法则提供了计算近似值的方法,例如计算函数的增减性、极值等。

三、积分学
积分学包括不定积分和定积分。

不定积分是求函数的原函数的过程,而定积分则是计算曲线与x轴所夹的面积。

定积分的应用非常广泛,例如计算物体的重心、求解变速直线运动的位移等。

四、多元函数微积分
多元函数微积分是高数的又一重要分支,它涉及到多个变量的函数及其极限、连续、可微、可积等概念。

其中,方向导数和梯度表示
函数在多维空间中的变化率,而多元函数的积分则涉及到重积分、曲线积分和曲面积分等。

五、无穷级数与幂级数
无穷级数是无穷多个数相加的结果,它可以用来表示数学中的一些公式和定理。

幂级数是无穷级数的一种特殊形式,它可以用来近似表示一些复杂的函数。

幂级数的收敛性和函数性质是研究幂级数的重要内容。

数学高数定理定义总结

数学高数定理定义总结

数学高数定理定义总结高中数学中的高数定理是指一套基本定理和公式,包括中值定理、洛必达法则、微分学基本定理、积分学基本定理、拉格朗日中值定理、罗尔中值定理、柯西中值定理等,这些定理和公式可以帮助我们简化和解决复杂的数学问题。

下面将对这些定理进行定义和总结。

1.中值定理:中值定理是微分学中的一个重要定理,包括拉格朗日中值定理、柯西中值定理和罗尔中值定理。

这些定理都与函数在一些区间内取得特定值或通过其中一点的斜率有关。

-拉格朗日中值定理:设函数f(x)在闭区间[a,b]上连续,在开区间(a,b)上可导,则在(a,b)内至少存在一点c,使得f'(c)等于[f(b)-f(a)]/(b-a)。

-柯西中值定理:设函数f(x)和g(x)在闭区间[a,b]上连续,在开区间(a,b)上可导且g'(x)不为零,则在(a,b)内至少存在一点c,使得[f(b)-f(a)]/[g(b)-g(a)]=f'(c)/g'(c)。

-罗尔中值定理:设函数f(x)在闭区间[a,b]上连续,在开区间(a,b)上可导,且f(a)=f(b),则在(a,b)内至少存在一点c,使得f'(c)=0。

2.洛必达法则:洛必达法则是一种求极限的方法,用于计算形如[0/0]、[∞/∞]、[0*∞]、[∞-∞]等不定型的极限。

- 洛必达法则:设函数f(x)和g(x)在特定点x=a附近都可导,且g'(x)不为零,若lim[x→a]f(x) = lim[x→a]g(x) = 0或∞,则lim[x→a]f(x)/g(x) = lim[x→a]f'(x)/g'(x)。

- 微分学基本定理:设函数f(x)在[a, b]上连续,则函数F(x) = ∫[a,x]f(t)dt在(a, b)内可导且F'(x) = f(x),其中[a,x]表示对f(t)在区间[a,x]上的积分。

- 积分学基本定理:设函数f(x)在[a, b]上连续,则该区间上的定积分∫[a,b]f(x)dx可以通过求该函数的一个原函数F(x)在区间[a, b]上的差F(b) - F(a)来求得。

河北省考研数学复习资料高等数学重要定理总结

河北省考研数学复习资料高等数学重要定理总结

河北省考研数学复习资料高等数学重要定理总结河北省考研数学复习资料-高等数学重要定理总结高等数学作为河北省考研数学科目的一部分,是考验学生基础知识和解题能力的重要环节。

掌握高等数学的核心定理对于考研的顺利通过至关重要。

本文将就河北省考研数学复习资料,对高等数学的重要定理进行总结,并给出相应的例题,帮助同学们更好地理解和复习。

一、极限1. 极限的定义当自变量趋于某一值时,函数的函数值趋近于某一常数。

数列也满足这一定理。

2. 极限的性质极限具有唯一性、有界性、保序性等性质,这些性质是我们求解极限的基础。

3. 基本极限公式常用基本极限公式包括幂函数的极限、指数函数的极限、三角函数的极限等,熟练掌握这些公式对于解题至关重要。

例题:计算极限lim(n→∞)(√(n^2+n+1)-√(n^2-n+1))二、导数与微分1. 导数的定义导数表示函数在某一点附近的变化率,导数定义为函数在该点处的极限。

2. 基本导数公式常用的基本导数公式包括常数函数、幂函数、指数函数、三角函数等。

这些公式是求解导数的基础。

3. 微分的定义微分表示函数在某一点的变化量,可以看作是导数的近似值。

例题:已知函数f(x)=ln|x|,求f'(x)和f''(x)。

三、不定积分1. 不定积分的定义不定积分表示函数的原函数,求导的逆运算。

2. 基本积分表掌握常用函数的基本积分表是求解不定积分的基础,如常数函数、多项式函数、指数函数、三角函数等。

3. 牛顿-莱布尼茨公式牛顿-莱布尼茨公式将定积分与不定积分联系起来,为我们求解定积分提供了便利。

例题:计算∫(2x+3)dx。

四、定积分1. 定积分的定义定积分表示函数在给定区间上的面积或曲线长度。

2. 定积分的性质定积分具有线性性、区间可加性、定积分的上下界性质等。

3. 基本定积分公式常用的基本定积分公式包括多项式函数、指数函数、三角函数等的定积分公式。

例题:计算∫(0,π/2)(sinx+cosx)dx。

高数(上)重要内容总结复习笔记

高数(上)重要内容总结复习笔记
有上式中取 x0 = 0 ,则有 f ( x) ≈ f (0) + f (0)′ x且x → 0 误差估计: 如果某个量的精确值为A,它的近似值为 a ,那么 A − a 叫做 a 的绝对误差,
A−a 叫做 a 的相对误差 a
如果 A − a ≤ δ A ,那么 δ A 叫做测量A的绝对误差限,而
δA 叫做测量A的相对误差限. a
(3) lim
f ′( x) f ( x) f ′( x) 存在(或为无穷大) ,那么 lim . = lim x → ∞ F ′( x ) x →∞ F ( x ) x →∞ F ′( x )
如果函数 f ( x) 在含有 x0 的某个开区间 (a, b) 内具有直到(n+1)阶的倒数,则对任一
泰勒(Taylor)中值定理
高阶导数:
(cot x)′ = − csc 2 x (a x )′ = a x ln a (arccos x)′ = − 1 1 − x2
(arcsin x)′ =
1
(sec x)′ = sec x tan x 1 (log a x)′ = x ln a 1 (arctan x)′ = 1+ x2
1 (ch x)′ = sh x (th x)′ = 2 ch x 1 (arch x)′ = 1 x 2 − 1 (arth x)′ = 1 − x2
f ′′(0) f ( n ) (0) f ( n+1) (θx) n +1 x +…+ x+ x 2! n! (n + 1)!
(0 < θ < 1)
另带有佩亚诺余项的麦克劳林公式从略. 定义
x1 + x2 f ( x1 ) + f ( x2 ) )< ,那么称 f ( x) 在 2 2 x +x f ( x1 ) + f ( x2 ) I 上的图形是(向上)凹的(或凹弧);如果恒有 f ( 1 2 ) > ,那么称 f ( x) 在 I 上的图形是(向上) 2 2

高数考试中的知识点整理与复习

高数考试中的知识点整理与复习

高数考试中的知识点整理与复习在高数考试的前夜,知识点的整理与复习就像一场精心策划的演出,每一个细节都需要精细打磨。

高等数学这位严肃的老师,拥有丰富的知识宝藏,但也因为内容的复杂与深奥,让许多学生感到困惑。

如何有效地整理和复习这些知识点,才能在考试中发挥出最佳水平呢?首先,认识到高数的核心知识点就像识别出演出中的主要角色一样重要。

高等数学通常包括微积分、线性代数、常微分方程等几个主要部分。

每一个部分都有其独特的“性格特点”,例如,微积分的核心在于理解函数的变化和极限,线性代数则关注向量空间的结构和变换,而常微分方程则处理函数与其导数之间的关系。

在复习的过程中,了解每个知识点的基本概念、定理和公式就像是熟悉每个角色的背景故事。

要将这些知识点进行系统化整理。

建立一个知识框架图,将各个知识点之间的联系清晰地呈现出来。

这种方式有助于将零散的知识串联起来,使其形成一个完整的知识体系。

比如,在微积分中,可以把极限、导数和积分这三个基本概念用不同的颜色标记,并标出它们的相互关系和应用场景,这样可以更好地理解它们之间的联系和区别。

接下来,将重点放在关键定理和公式的记忆上。

高数的公式往往像是演出中的台词,记住它们不仅要理解其含义,还要知道如何灵活应用。

例如,积分的部分公式如牛顿-莱布尼茨公式,或者线性代数中的矩阵运算公式,都需要通过大量的练习来巩固记忆。

制作公式卡片,将每个公式的应用场景和推导过程简洁地记录在卡片上,可以在复习时反复翻阅,以加深记忆。

实践是检验知识掌握程度的最佳方法。

在高数的学习中,做大量的习题就像是演员反复排练演出一样,能够帮助学生真正掌握和应用所学的知识。

针对每一类题型,分门别类地进行练习,比如对微分方程问题,可以先从简单的线性微分方程入手,逐步过渡到更复杂的非线性微分方程,通过逐步攻克不同难度的问题,建立起解决类似问题的思路和方法。

此外,复习过程中,不要忽视对错题的分析。

错题就像是演出中的失误,找到失误的原因并加以改正,才能提升整体的演出水平。

高数学习笔记总结,帮你快速复习数学知识

高数学习笔记总结,帮你快速复习数学知识

高数学习笔记总结,帮你快速复习数学知识高数学习笔记总结:
一、函数与极限
1. 函数的定义:函数是数学表达关系的符号,它表示两个变量之间的依赖关系。

函数的定义域和值域是函数的两个重要属性。

2. 极限的概念:极限是函数在某个点附近的变化趋势,它可以用来研究函数的特性。

极限的运算法则包括加减乘除和复合函数的极限运算法则。

3. 无穷小和无穷大的概念:无穷小是指一个函数在某个点的值趋于0,而无穷大是指一个函数在某个点的值趋于无穷大。

无穷小和无穷大是研究函数的重要工具。

二、导数与微分
1. 导数的概念:导数是函数在某一点的切线的斜率,它可以用来研究函数的单调性、极值、拐点等特性。

导数的运算法则包括求导法则和复合函数的导数法则。

2. 微分的概念:微分是函数在某一点附近的小增量,它可以用来近似计算函数的值。

微分的运算法则包括微分的基本公式和微分的链式法则。

3. 导数与微分的应用:导数和微分的应用非常广泛,例如求极值、求拐点、近似计算、优化问题等等。

三、积分与级数
1. 积分的概念:积分是定积分和不定积分的总称,它可以用来计算面积和体积等几何量。

定积分和不定积分的计算方法包括基本公式法和凑微分法等等。

2. 级数的概念:级数是无穷多个数的和,它可以用来研究函数的性质和行为。

级数的分类包括几何级数、调和级数、幂级数等等。

3. 积分与级数的应用:积分和级数的应用非常广泛,例如计算面积和体积、近似计算、信号处理等等。

大一高数知识点笔记总结

大一高数知识点笔记总结

大一高数知识点笔记总结高等数学是大一学生必修的一门课程,它是理工科学生的基础课,对于学生的数学素养和思维能力的培养有着重要的作用。

下面将对大一高数课程中的知识点进行总结和笔记整理,帮助同学们更好地掌握和理解这门学科。

一、函数与极限1. 函数的定义和性质- 函数的定义域和值域- 函数的单调性和奇偶性- 函数的周期性2. 极限与连续- 极限的定义和性质- 函数的连续性及其判定方法- 中值定理和拉格朗日中值定理二、导数与微分1. 导数的定义和求导法则- 导数的几何意义和物理意义- 基本导数公式- 导数的四则运算法则- 高阶导数和隐函数求导法2. 微分与近似计算- 微分的定义和性质- 泰勒展开式及其应用- 凸函数与凹函数三、不定积分与定积分1. 不定积分的定义和基本性质- 不定积分的性质和运算法则- 分部积分法和换元积分法- 简单函数的不定积分2. 定积分的定义和基本定理- 定积分的性质和运算法则- 牛顿-莱布尼兹公式和积分中值定理- 反常积分和曲边梯形法四、级数与幂级数1. 数项级数的定义和性质- 数项级数的收敛和发散判定方法- 收敛级数的性质- 幂级数的收敛半径和收敛域2. 幂级数的常见函数展开- 指数函数、三角函数和对数函数的幂级数展开- 常用函数的泰勒展开式五、微分方程初步1. 微分方程的基本概念- 微分方程的定义和分类- 常微分方程的解与通解2. 一阶常微分方程- 可分离变量方程和一阶线性齐次方程- 齐次线性非齐次方程和常数变易法- 变量分离法和恰当方程六、空间解析几何1. 点、直线和平面的基本性质- 点、向量和坐标系- 直线和平面的参数方程和一般方程- 平面与平面的位置关系2. 空间曲线和曲面- 曲线的参数方程和一般方程- 曲面的一般方程和旋转曲面- 曲线、曲面与球的相交问题以上是大一高数课程中的主要知识点的笔记总结。

随着学习的深入,我们需要更多细致全面的学习资料。

希望这份简要的总结对同学们的学习有所帮助,同时也希望大家能够加强课后的练习和复习,夯实基础,掌握好高数这门重要的数学学科。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高数定理定义总结高数定理定义总结第一章函数与极限1、函数的有界性在定义域内有f(x)≥K1则函数f(x)在定义域上有下界,K1为下界;如果有f(x)≤K2,则有上界,K2称为上界。

函数f(x)在定义域内有界的充分必要条件是在定义域内既有上界又有下界。

2、数列的极限定理(极限的唯一性)数列{xn}不能同时收敛于两个不同的极限。

定理(收敛数列的有界性)如果数列{xn}收敛,那么数列{xn}一定有界。

如果数列{xn}无界,那么数列{xn}一定发散;但如果数列{xn}有界,却不能断定数列{xn}一定收敛,例如数列1,-1,1,-1,(-1)n+1…该数列有界但是发散,所以数列有界是数列收敛的必要条件而不是充分条件。

定理(收敛数列与其子数列的关系)如果数列{xn}收敛于a,那么它的任一子数列也收敛于a.如果数列{xn}有两个子数列收敛于不同的极限,那么数列{xn}是发散的,如数列1,-1,1,-1,(-1)n+1…中子数列{x2k-1}收敛于1,{xnk}收敛于-1,{xn}却是发散的;同时一个发散的数列的子数列也有可能是收敛的。

3、函数的极限函数极限的定义中0<|x-x0|表示x≠x0,所以x→x0时f(x)有没有极限与f(x)在点x0有没有定义无关。

定理(极限的局部保号性)如果lim(x→x0)时f(x)=A,而且A>0(或A<0),就存在着点那么x0的某一去心邻域,当x在该邻域内时就有f(x)>0(或f(x)>0),反之也成立。

函数f(x)当x→x0时极限存在的充分必要条件是左极限右极限各自存在并且相等,即f(x0-0)=f(x0+0),若不相等则limf(x)不存在。

一般的说,如果lim(x→∞)f(x)=c,则直线y=c是函数y=f(x)的图形水平渐近线。

如果lim(x→x0)f(x)=∞,则直线x=x0是函数y=f(x)图形的铅直渐近线。

4、极限运算法则定理有限个无穷小之和也是无穷小;有界函数与无穷小的乘积是无穷小;常数与无穷小的乘积是无穷小;有限个无穷小的乘积也是无穷小;定理如果F1(x)≥F2(x),而limF1(x)=a,limF2(x)=b,那么a≥b.5、极限存在准则两个重要极限lim(x→0)(sinx/x)=1;lim(x→∞)(1+1/x)x=1.夹逼准则如果数列{xn}、{yn}、{zn}满足下列条件:yn≤xn≤zn且limyn=a,limzn=a,那么limxn=a,对于函数该准则也成立。

单调有界数列必有极限。

6、函数的连续性设函数y=f(x)在点x0的某一邻域内有定义,如果函数f(x)当x→x0时的极限存在,且等于它在点x0处的函数值f(x0),即lim(x→x0)f(x)=f(x0),那么就称函数f(x)在点x0处连续。

不连续情形:1、在点x=x0没有定义;2、虽在x=x0有定义但lim(x→x0)f(x)不存在;3、虽在x=x0有定义且lim(x→x0)f(x)存在,但lim(x→x0)f(x)≠f(x0)时则称函数在x0处不连续或间断。

如果x0是函数f(x)的间断点,但左极限及右极限都存在,则称x0为函数f(x)的第一类间断点(左右极限相等者称可去间断点,不相等者称为跳跃间断点)。

非第一类间断点的任何间断点都称为第二类间断点(无穷间断点和震荡间断点)。

定理有限个在某点连续的函数的和、积、商(分母不为0)是个在该点连续的函数。

定理如果函数f(x)在区间Ix上单调增加或减少且连续,那么它的反函数x=f(y)在对应的区间Iy={y|y=f(x),x∈Ix}上单调增加或减少且连续。

反三角函数在他们的定义域内都是连续的。

定理(最大值最小值定理)在闭区间上连续的函数在该区间上一定有最大值和最小值。

如果函数在开区间内连续或函数在闭区间上有间断点,那么函数在该区间上就不一定有最大值和最小值。

定理(有界性定理)在闭区间上连续的函数一定在该区间上有界,即m≤f(x)≤M.定理(零点定理)设函数f(x)在闭区间[a,b]上连续,且f(a)与f(b)异号(即f(a)×f(b)<0),那么在开区间(a,b)内至少有函数f(x)的一个零点,即至少有一点ξ(a<ξ<b)。

<B)。

<B)。

<B)。

< P>推论在闭区间上连续的函数必取得介于最大值M与最小值m之间的任何值。

第二章导数与微分1、导数存在的充分必要条件函数f(x)在点x0处可导的充分必要条件是在点x0处的左极限lim(h→-0)[f(x0+h)-f(x0)]/h及右极限lim(h→+0)[f(x0+h)-f(x0)]/h都存在且相等,即左导数f-′(x0)右导数f+′(x0)存在相等。

2、函数f(x)在点x0处可导=>函数在该点处连续;函数f(x)在点x0处连续≠>在该点可导。

即函数在某点连续是函数在该点可导的必要条件而不是充分条件。

3、原函数可导则反函数也可导,且反函数的导数是原函数导数的倒数。

4、函数f(x)在点x0处可微=>函数在该点处可导;函数f(x)在点x0处可微的充分必要条件是函数在该点处可导。

第三章中值定理与导数的应用1、定理(罗尔定理)如果函数f(x)在闭区间[a,b]上连续,在开区间(a,b)内可导,且在区间端点的函数值相等,即f(a)=f(b),那么在开区间(a,b)内至少有一点ξ(a<ξ<b),使的函数f(x)在该点的导数等于零:f'(ξ)= 0.<>2、定理(拉格朗日中值定理)如果函数f(x)在闭区间[a,b]上连续,在开区间(a,b)内可导,那么在开区间(a,b)内至少有一点ξ(a<ξ<b),使的等式f(b)-f (a)= f'(ξ)(b-a)成立即f'(ξ)= [f(b)-f(a)]/(b-a)。

3、定理(柯西中值定理)如果函数f(x)及F(x)在闭区间[a,b]上连续,在开区间(a,b)内可导,且F'(x)在(a,b)内的每一点处均不为零,那么在开区间(a,b)内至少有一点ξ,使的等式[f(b)-f(a)]/[F(b)-F(a)]=f'(ξ)/F'(ξ)成立。

4、洛必达法则应用条件只能用与未定型诸如0/0、∞/∞、0×∞、∞-∞、00、1∞、∞ 0等形式。

5、函数单调性的判定法设函数f(x)在闭区间[a,b]上连续,在开区间(a,b)内可导,那么:(1)如果在(a,b)内f'(x)>0,那么函数f(x)在[a,b]上单调增加;(2)如果在(a,b)内f’(x)<0,那么函数f(x)在[a,b]上单调减少。

如果函数在定义区间上连续,除去有限个导数不存在的点外导数存在且连续,那么只要用方程f'(x)=0的根及f’(x)不存在的点来划分函数f(x)的定义区间,就能保证f'(x)在各个部分区间内保持固定符号,因而函数f(x)在每个部分区间上单调。

6、函数的极值如果函数f(x)在区间(a,b)内有定义,x0是(a,b)内的一个点,如果存在着点x0的一个去心邻域,对于这去心邻域内的任何点x,f(x)f(x0)均成立,就称f(x0)是函数f(x)的一个极小值。

在函数取得极值处,曲线上的切线是水平的,但曲线上有水平曲线的地方,函数不一定取得极值,即可导函数的极值点必定是它的驻点(导数为0的点),但函数的驻点却不一定是极值点。

定理(函数取得极值的必要条件)设函数f(x)在x0处可导,且在x0处取得极值,那么函数在x0的导数为零,即f'(x0)=0.定理(函数取得极值的第一种充分条件)设函数f(x)在x0一个邻域内可导,且f’(x0)=0,那么:(1)如果当x取x0左侧临近的值时,f'(x)恒为正;当x去x0右侧临近的值时,f’(x)恒为负,那么函数f(x)在x0处取得极大值;(2)如果当x取x0左侧临近的值时,f'(x)恒为负;当x去x0右侧临近的值时,f’(x)恒为正,那么函数f(x)在x0处取得极小值;(3)如果当x取x0左右两侧临近的值时,f'(x)恒为正或恒为负,那么函数f(x)在x0处没有极值。

定理(函数取得极值的第二种充分条件)设函数f(x)在x0处具有二阶导数且f'(x0)=0,f''(x0)≠0那么:(1)当f''(x0)<0时,函数f(x)在x0处取得极大值;(2)当f''(x0)>0时,函数f(x)在x0处取得极小值;驻点有可能是极值点,不是驻点也有可能是极值点。

7、函数的凹凸性及其判定设f(x)在区间Ix上连续,如果对任意两点x1,x2恒有f[(x1+x2)/2]<[f(x1)+f(x1)]/2,那么称f(x)在区间Ix上图形是凹的;如果恒有f[(x1+x2)/2]>[f(x1)+f(x1)]/2,那么称f(x)在区间Ix上图形是凸的。

定理设函数f(x)在闭区间[a,b]上连续,在开区间(a,b)内具有一阶和二阶导数,那么(1)若在(a,b)内f'’(x)>0,则f(x)在闭区间[a,b]上的图形是凹的;(2)若在(a,b)内f'’(x)<0,则f(x)在闭区间[a,b]上的图形是凸的。

判断曲线拐点(凹凸分界点)的步骤(1)求出f'’(x);(2)令f'’(x)=0,解出这方程在区间(a,b)内的实根;(3)对于(2)中解出的每一个实根x0,检查f'’(x)在x0左右两侧邻近的符号,如果f'’(x)在x0左右两侧邻近分别保持一定的符号,那么当两侧的符号相反时,点(x0,f(x0))是拐点,当两侧的符号相同时,点(x0,f(x0))不是拐点。

在做函数图形的时候,如果函数有间断点或导数不存在的点,这些点也要作为分点。

第四章不定积分1、原函数存在定理定理如果函数f(x)在区间I上连续,那么在区间I上存在可导函数F(x),使对任一x∈I都有F'(x)=f(x);简单的说连续函数一定有原函数。

分部积分发如果被积函数是幂函数和正余弦或幂函数和指数函数的乘积,就可以考虑用分部积分法,并设幂函数和指数函数为u,这样用一次分部积分法就可以使幂函数的幂降低一次。

如果被积函数是幂函数和对数函数或幂函数和反三角函数的乘积,就可设对数和反三角函数为u.2、对于初等函数来说,在其定义区间上,它的原函数一定存在,但原函数不一定都是初等函数。

第五章定积分1、定积分解决的典型问题(1)曲边梯形的面积(2)变速直线运动的路程2、函数可积的充分条件定理设f(x)在区间[a,b]上连续,则f(x)在区间[a,b]上可积,即连续=>可积。

相关文档
最新文档