大学物理实验讲义实验示波器原理和使用资料讲解
示波器的原理与使用实验报告

示波器的原理与使用实验报告示波器是一种常见的电子测量仪器,用于观察和分析电信号的波形。
它在电子工程、通信工程、物理实验等领域有着广泛的应用。
本文将介绍示波器的原理和使用方法,并结合实验报告,详细说明示波器的操作步骤和注意事项。
一、示波器的原理示波器的原理基于电压-时间的图形显示原理,通过将电压信号转换为电流信号,再通过电流信号驱动示波器的竖直偏转系统,使得电压信号的波形能够在示波器屏幕上显示出来。
同时,示波器的水平偏转系统可以控制波形的时间轴,从而实现对信号频率和时间关系的观测。
二、示波器的使用方法1. 准备工作在使用示波器之前,需要先将电压信号输入示波器。
可以通过信号发生器、电源等设备提供电压信号,或者直接将待测电路的信号接入示波器的输入端口。
2. 示波器的调节示波器的调节主要包括垂直和水平调节。
垂直调节用于调整信号的幅度,通过调节示波器的增益和偏移量来使波形在屏幕上适当显示。
水平调节用于调整信号的时间轴,通过调节示波器的时间基准和扫描速率来控制波形的水平位置和宽度。
3. 观察波形调节好示波器后,可以开始观察波形。
示波器屏幕上显示的波形可以是正弦波、方波、脉冲波等不同形式的信号。
通过观察波形的峰值、周期、频率等参数,可以对电路或信号进行分析和判断。
4. 测量信号示波器不仅可以观察波形,还可以进行一些基本的信号测量。
例如,可以通过示波器的游标功能测量信号的幅度、频率、周期等参数。
此外,示波器还可以进行波形的存储和回放,方便后续的数据分析和处理。
三、实验报告为了更好地理解示波器的原理和使用方法,我们进行了一次实验。
实验的目的是观察不同频率下的正弦波信号,并学习如何使用示波器进行测量和分析。
实验步骤:1. 连接电路首先,我们将信号发生器的输出端口与示波器的输入端口相连,确保信号能够正确地输入示波器。
2. 调节示波器根据实验要求,我们调节示波器的增益和偏移量,使得波形在屏幕上适当显示。
同时,调节示波器的时间基准和扫描速率,使得波形的时间轴能够清晰可见。
大学物理实验--示波器的原理与使用

四、实验内容与步骤 2. 测量校正信号的电压频率
四、实验内容与步骤 2. 测量校正信号的电压频率 计算:
T0.2m/sDI V 5DI V1m s1 03S f T 111 03H z1kHz
四、实验内容与步骤 2. 测量校正信号的电压频率 计算:
V P P 0 .5 V / D 4 ID V I 2 V V
数据记录与处理 1. 测量校正信号的电压频率 将实验数据记录下表
校正 信号
标准值
频率 1 KHz 电压VP-P 2 VP-P
偏转
扫描
因数 格数(div) 速率
(V/格)
(T/div)
格数 (div)
实测值
—— ——
——
——
四、实验内容与步骤
3. 测量正弦电压波信号电压、频率 (1)正弦信号输入 ,调节【TIME/DIV】、【VOLTS/DIV】,使 波形显示适中.(数值方向占2/3,水平方向1~2个完整波形) (2)测量电压、频率,即垂直衰减分度*格数,即扫描速率分度* 格数
待测 信号
偏转 因数 (V/div)
格数 (div)
信号 电压 (VP-P)
扫描 速率 (T/div)
ቤተ መጻሕፍቲ ባይዱ
格数 (div)
信号 频率 HZ
信号 波形
电信号1 电信号2
附图1 附图2
四、实验内容与步骤
4. 观察李萨如图形,测量信号频率 (1)重新预置,【TIME/DIV】X-Y. (2)调节【VOLTS/DIV】,使图像显示适中.(水平、竖直方向 各占2/3). (3)观察李萨如图形,计算
(V/格)
(T/div)
格数 (div)
实测值
—— ——
示波器的基础学习知识原理和使用

示波器的原理和使用示波器是一种用途广泛的基本电子测量仪器,用它能观察电信号的波形、幅度和频率等电参数。
用双踪示波器还可以测量两个信号之间的时间差,一些性能较好的示波器甚至可以将输入的电信号存储起来以备分析和比较。
在实际应用中凡是能转化为电压信号的电学量和非电学量都可以用示波器来观测。
【实验目的】1.了解示波器的基本结构和工作原理,掌握使用示波器和信号发生器的基本方法。
2.学会使用示波器观测电信号波形和电压幅值以及频率。
3.学会使用示波器观察李萨如图并测频率。
图1-1 示波器结构图【实验原理】不论何种型号和规格的示波器都包括了如图1-1所示的几个基本组成部分:示波管(又称阴极射线管,cathode ray tube,简称CRT)、垂直放大电路(Y放大)、水平放大电路(X放大)、扫描信号发生电路(锯齿波发生器)、自检标准信号发生电路(自检信号)、触发同步电路、电源等。
1.示波管的基本结构示波管的基本结构如图1-2所示。
主要由电子枪、偏转系统和荧光屏三部分组成,全都密封在玻璃壳体内,里面抽成高真空。
(1)电子枪:由灯丝、阴极、控制栅极、第一阳极和第二阳极五部分组成。
灯丝通电后加热阴极。
阴极是一个表面涂有氧化物的金属圆筒,被加热后发射电子。
控制栅极是一个顶端有小孔的圆筒,套在阴极外面。
它的电位比阴极低,对阴极发射出来的电子起控制作用,只有初速度较大的电子才能穿过栅极顶端的小孔然后在阳极加速下奔向荧光屏。
示波器面板上的“辉度”调整就是通过调节电位以控制射向荧光屏的电子流密度,从而改变了屏上的光斑亮度。
阳极电位比阴极电位高很多,电子被它们之间的电场加速形成射线。
当控制栅极、第一阳极与第二阳极电位之间电位调节合适时,电子枪内的电场对电子射线有聚集作用,所以,H-灯丝;K-阴极;G1,G2- 控制栅极;A1-第一阳极;A2-第二阳极;Y-竖直偏转板;X-水平偏转板图1-2 示波管结构图第一阳极也称聚集阳极。
第二阳极电位更高,又称加速阳极。
示波器的原理和使用实验报告

示波器的原理和使用实验报告示波器是一种用来显示电信号波形的仪器,是电子测量仪器中的重要设备之一。
它可以将电压随时间变化的波形显示在示波器的屏幕上,通过观察波形的形状和幅度来判断电路中的各种故障和参数。
本实验将介绍示波器的原理和使用方法,并进行相应的实验报告。
一、示波器的原理。
示波器的原理主要包括示波器的工作原理和示波器的基本组成部分。
1. 示波器的工作原理。
示波器的工作原理是利用电子束在示波管内移动的方式,将电压信号转换成屏幕上的波形。
当电压变化时,电子束的位置也随之变化,从而在示波管屏幕上形成相应的波形。
这种原理使得示波器能够直观地显示电压信号的波形,便于工程师进行观察和分析。
2. 示波器的基本组成部分。
示波器的基本组成部分包括示波管、水平和垂直放大器、触发电路和扫描电路等。
其中,示波管是示波器的核心部件,它能够将电压信号转换成可见的波形;水平和垂直放大器则负责调节波形的幅度和时间;触发电路用于控制波形的稳定显示;扫描电路则负责控制电子束在示波管屏幕上的移动。
二、示波器的使用方法。
示波器的使用方法主要包括示波器的基本操作和示波器的应用技巧。
1. 示波器的基本操作。
示波器的基本操作包括开机、调节水平和垂直放大器、设置触发电路和选择扫描方式等。
在使用示波器时,首先需要将电压信号输入示波器,然后通过调节水平和垂直放大器来调整波形的幅度和时间;接着设置触发电路和选择合适的扫描方式,最终就可以在示波器屏幕上观察到电压信号的波形。
2. 示波器的应用技巧。
示波器的应用技巧主要包括观察波形的稳定性、调节触发电路的灵敏度和选择合适的扫描方式等。
在观察波形时,需要注意波形的稳定性,避免出现抖动或失真的情况;同时,调节触发电路的灵敏度能够使波形显示更加清晰;选择合适的扫描方式则可以更好地显示不同频率的波形。
三、实验报告。
在实验中,我们使用示波器对不同的电路进行了测试,并记录下相应的实验报告。
通过实验,我们发现示波器能够准确地显示电压信号的波形,并且能够帮助我们快速地分析电路中的问题和参数。
大学物理实验报告 示波器

大学物理实验报告示波器大学物理实验报告:示波器引言在大学物理实验中,示波器是一种重要的仪器,用于测量和显示电信号的波形。
它在电子学、通信、电力等领域中发挥着重要作用。
本实验旨在通过对示波器的使用和原理的了解,掌握示波器的基本操作技能,并进一步认识电信号的特性。
一、示波器的基本原理示波器是一种电子测量仪器,能够以波形的形式显示电信号的幅度、频率、相位等特性。
它的基本原理是利用电子束在荧光屏上扫描形成图像。
示波器的主要组成部分包括电子枪、偏转系统、时间基准、触发电路和显示屏。
二、示波器的基本操作1. 示波器的开机与调节首先,将示波器与电源连接,并打开电源开关。
然后,调节亮度、对比度和聚焦度,使显示屏上的波形清晰可见。
2. 示波器的通道设置示波器通常具有多个通道,可以同时测量多个信号。
在本实验中,我们将使用单通道示波器。
首先,将信号源与示波器的输入端连接。
然后,调节示波器的通道开关,选择要测量的通道。
3. 示波器的触发设置触发电路是示波器中一个重要的功能,它用于控制示波器何时开始扫描信号。
在本实验中,我们将使用自由运行触发模式。
首先,调节触发电路的阈值,使其与输入信号的幅度相匹配。
然后,选择触发源,通常为信号源的同步输出。
4. 示波器的时间基准设置时间基准是示波器中用于确定时间轴刻度的参考信号。
在本实验中,我们将使用内部时间基准。
首先,选择合适的时间基准模式,如连续或单次。
然后,调节时间基准的时间/频率刻度,使其适应所测量的信号。
5. 示波器的测量功能示波器通常具有多种测量功能,如幅度、频率、相位等。
在本实验中,我们将主要关注信号的幅度测量。
使用示波器的测量功能,可以直接读取信号的峰值、峰峰值、平均值等参数。
三、示波器的应用示波器在科学研究、工程实践和教学中具有广泛的应用。
以下是一些常见的应用领域:1. 电子学和通信在电子学和通信领域,示波器常用于测量和分析电路中的信号波形。
它可以帮助工程师诊断和解决电路故障,优化电路设计。
大学物理实验-数字示波器的使用

触发设置
根据信号类型选择适当的 触发方式,以确保波形稳 定显示。
观察并记录实验结果
观察波形
通过观察示波器上的信号波形,了解 信号的基本特征,如幅度、频率、相 位等。
记录数据
分析结果
根据实验数据和观察到的波形特征, 分析信号的基本性质和规律,得出实 验结论。
使用示波器的测量功能或记录纸,记 录实验数据,如信号幅度、频率等。
连接示波器与信号源
连接信号源
将信号源通过适当的电缆连接到 示波器的输入端口。
调整信号源
确保信号源处于工作状态,并调 整信号源的输出幅度和频率,以 便在示波器上观察到清晰的信号 波形。
调整示波器参数
调整垂直灵敏度
根据信号的幅度调整垂直 灵敏度,以便在屏幕上清 晰地显示信号波形。
调整水平时基
根据信号的频率调整水平 时基,以便在屏幕上正确 显示信号周期和波形形状。
为了让学生更好地了解示波器的应用,建议提供更多种类的信号 源,如正弦波、方波、脉冲波等。
加强实验指导和讲解
对于初次接触示波器的学生,建议加强实验前的指导和讲解,确保 学生能够正确掌握示波器的使用方法。
增加实验操作环节
为了提高学生的实践能力和操作技能,建议增加实验操作环节,让 学生有更多的机会亲手操作示波器。
实验结果的分析与讨论
对比分析
将实验结果与理论值进行对比,分析差异的原因, 探讨可能的影响因素。
趋势分析
对实验结果进行趋势分析,观察数据的变化规律, 探究物理现象的本质。
误差分析
对实验结果进行误差分析,评估实验的精度和可 靠性,为后续实验提供改进建议。
误差分析
误差来源
01
分析实验过程中可能产生的误差来源,如测量工具、操作方法、
06 大学物理实验 示波器的使用方法

六、显示李萨如图形
使用“XY”示波器功能,即不使用内部的扫描 信号,在水平偏转板和垂直偏转板上都由外部 加上正弦电压,这时光斑在水平和垂直方向均 作简谐振动,当两信号频率成简单整数比时, 显示一稳定的闭合曲线,称为李萨如图形。 李莎如图中,水平方向割点数与竖直方向割点 数之比恰好与频率成反比:
n y : nx f x : f y
改变R1的大小, 调节辉度
水平偏转板X1X2和垂直偏转板Y1Y2上加上电压可 以控制电子束打在荧光屏上的位置。
显示波形时,Y1Y2上所 加的电压(被测信号) 由这里接入。
二、电压放大和衰减系统
当加在偏转板上的信号太小或太大时,需先进行放 大或衰减,才能在屏上观察到适合测量的波形。
垂直衰减 放大旋钮
电压微 调旋钮
频率/周期 微调旋钮
标准信号 输出处
为了得到非1误差系数,校准 示波器前先将微调旋钮打开。 (稍稍向左旋转)
测量三个未知信号
用信号发生器输出三个频率超过1000Hz的未知 信号到示波器,分别测量器峰峰电压和周期。 通过调节频率和电压调节旋钮可产生新信号。
波形选择 电压调节 频率调节
信号输出处
②观察李萨如图形
使用xy示波器功能,把由信号发生器输出的频 率为50Hz的固定信号加到水平偏转板,将可调 信号加到垂直偏转板,调节可调信号的频率, 在屏上显示如下李萨如图形,并计算fy。
水平衰减 放大旋钮
三、扫描和同步系统
扫描波发生器产生一个锯 齿波信号,加在水平偏转 板上,在扫面信号的作用 下,光斑在屏上以相同的 频率从左向右扫描。
Ux
t
同步装置的作用是自动调节扫面信号的频率, 使其与加在垂直偏转板上的被观测信号保持 确定的频率和相位关系,使屏上显示的波形 稳定。
大学物理实验报告示波器的使用

大学物理实验报告示波器的使用引言示波器是一种常用于实验室、工程领域的仪器,用于观察电信号波形的仪器。
在物理实验中,示波器常常被用来测量和显示电压、电流和频率等物理量,能够直观地观察到波形的变化。
本实验将重点介绍示波器的基本原理、操作方法和使用技巧。
一、基本原理示波器主要由示波管、水平和垂直系统以及触发系统组成。
1. 示波管示波管是示波器核心部件,通过控制电子束的运动和偏转,将电信号转化为可视化的波形。
示波管属于真空管,内部有阴极、阳极和偏转板等元件。
当加上适当的电压后,阴极会发射出电子,通过偏转板的控制,电子束会在荧光屏上形成一条亮线。
2. 水平和垂直系统水平和垂直系统分别用于控制示波器的水平和垂直方向上的偏转。
水平系统负责控制时间轴的水平位置和扫描速率,而垂直系统则负责控制信号的垂直放大倍数和偏移量。
3. 触发系统触发系统用于控制示波器何时开始显示电信号。
通过触发电路的设置,可以使示波器在信号达到一定条件时进行显示,以确保波形的稳定性和重复性。
二、操作方法使用示波器需要注意以下几个关键步骤:1. 连接测试电路首先需要将待测信号的电路正确连接到示波器的输入端口。
一般示波器会有不同的通道,根据需要选择合适的通道连接测试电路。
2. 调节垂直和水平控制根据待测信号的幅值范围,调节垂直控制旋钮,使信号的波形适当放大或缩小。
同时,根据信号的频率和时间跨度,调节水平控制旋钮,使波形在示波器的屏幕上完整显示。
3. 设置触发条件根据需要,设置触发条件以确保信号的稳定显示。
可以设置触发电平、触发边沿和触发源等参数,使示波器在信号满足设定条件时开始显示。
4. 观察和分析波形将示波器的时间基准和垂直基准调整到合适的位置后,即可观察到待测信号的波形。
可以通过改变时间和垂直基准的位置,观察不同的波形细节,并对信号进行分析和测量。
三、使用技巧在实际操作示波器时,还有一些常用的技巧可以提高使用效果:1. 选择合适的探头示波器通常配备了多种类型的探头,如10:1和1:1的差分探头、高阻抗探头等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
大学物理实验讲义实验示波器原理和使用实验5 示波器原理和使用示波器是利用示波管内电子射线的偏转,在荧光屏上显示出电信号波形的仪器。
用它能直接观察电信号的波形,也能测定电信号的幅度、周期、频率和相位,凡能转化为电压信号的其它电学量(电流、电功率、阻抗等)和非电学量(温度、位移、速度、压力、声强、光强、磁场等),其随时间的变化都能用示波器来观测。
由于电子射线的惯性小,示波器扫描发生器的频率较高(可达几百兆赫),Y轴和X轴放大器的增益很大,输入阻抗高,所以示波器特别适合于观测瞬时变化的过程,并可测量微伏级的电压,而对被测试系统的影响很小。
因此示波器是一种应用广泛的综合性电信号测试仪器。
示波器按用途和特点可以分为:通用示波器。
它是根据波形显示基本原理而构成的示波器。
取样示波器,它是先将高频信号取样,变为波形与原始信号相似的低频信号,再应用基本原理显示波形的示波器。
与通用示波器相比,取样示波器具有频带极宽的优点。
记忆与存储示波器。
这两种示波器均有存储信号的功能,前者是采用记忆示波管,后者是采用数字存储器来存储信息。
专用示波器。
为满足特殊需要而设计的示波器,如电视示波器、高压示波器等。
智能示波器。
这种示波器内采用了微处理器,具有自动操作、数字化处理、存储及显示等功能。
它是当前发展起来的新型示波器。
也是示波器发展的方向。
本实验以SS—7802型通用示波器为例,说明示波器的原理和使用方法,并介绍GFG—8016G型数字式函数信号发生器的使用方法。
【实验目的】1.了解示波器显示图象的原理。
2.较熟练地掌握示波器的调整和使用方法。
3.掌握函数信号发生器的使用方法。
4.学习用示波器观察电信号的波形,测量电信号的电压幅度和频率。
【仪器用具】SS—7802型示波器(或DS-5000型存储示波器)、GFG—8016G型数字式函数信号发生器(或SPF05A型数字合成函数信号发生器)。
【实验原理】1.示波器的基本结构和工作原理示波器内部结构复杂,型号很多,但从功能上看,大致可分为示波管、电压放大装置(包括Y轴放大和X轴放大两部分)、扫描与整步装置和电源四个部分。
如图5-1所示。
(1)示波管:它包括电子枪、偏转板和荧光屏三部分。
图5-1 示波器结构方框图示波管是示波器的核心,它的构造如图5-2所示,左端为一电子枪,电子枪又包括旁热式阴极、加热阴极的灯丝、控制栅极和第一、第二阳极等,阴极经灯丝加热后发出一束电子,电子被第一和第二阳极电场加速及聚焦后,形成一束很细的高速电子流打在右端的荧光屏上,屏上的荧光物图5-2 示波管的构造发光形成一亮点。
调节第一阳极电压(即调“聚焦”旋钮)和调节第二阳极电压 ( 即调“辅助聚焦”旋钮)可达到聚焦的目的,使荧光屏上出现清晰的图象。
在电子枪和荧光屏之间装有两对相互垂直的平行板,称为偏转板。
如果板上加有电压,则电子束经过偏转板时受正电极吸引,受负电极排斥,从而使电子束在荧光屏上的亮点位置也跟着改变,所以偏转板是用来控制亮点位置的。
两对偏转板中,横方向的一对称为X 轴偏转板(或叫水平偏转板),纵方向的一对称为Y 轴偏转板(或叫垂直偏转板)。
在一定范围内,亮点的位移与偏转板上所加电压成正比,调节“X 轴移位”和“Y 轴移位”旋钮可以改变亮点的位置。
由于控制栅极的电位低于阴极,调节栅极电位可控制穿过栅极的电子数,即控制了电子流的强度。
荧光屏上亮点的亮度决定于射到屏上电子的数目和能量(由加速阳极的电压决定),从而调节栅极电位(即调“辉度”旋钮)可以改变亮点的亮度。
(2)电压放大装置(包括Y 轴放大和X 轴放大两部分)示波器的输入分为Y 轴、X 轴两个通道,输入信号电压经输入端的衰减器衰减后,送到电压放大器放大。
放大后的信号电压最终加到示波器的Y 轴偏转板或X 轴偏转板上,亮点随信号电压的变化沿左右或上下作直线运动,形成一条水平或垂直亮线。
调节“Y 轴增益”或“X 轴增益”旋钮,可以控制输入信号的放大幅度(注意只是将显示比例放大或缩小,而不能改变信号电压本身的幅值大小)。
在示波器的Y 轴和X 轴输入端还设置有衰减器,如果信号电压过大,可利用Y 轴(或X 轴)衰减器使信号电压变小,以适应电压放大器的要求。
这些都是通过“V/cm ”偏转灵敏度选择开关实现。
(3)扫描与整步装置这是示波器的关键部分。
它主要由锯齿波电压发生器(即扫描电压发生器)构成。
图5-3 锯齿波波形图如果在X 轴偏转板上加上锯齿形电压,如图5-3(a )所示,锯齿形电压的特点是:电压从负开始(0t t =)随时间成正比地增加到正(10t t t <<),然后又突然返回负(1t t =)。
再从此开始与时间成正比地增加(21t t t <<)……,如此重复,这时,荧光屏上的亮点从左(0t t =)匀速地向右运动(10t t t <<),到右端后马上回到左端(1t t =),然后再从左端匀速地向右运动(21t t t <<)……, 不断重复前述过程。
亮点只在水平方向运动,我们在荧光屏上看到的便是一条水平线,如图5-3(b )所示。
如果在Y 轴偏转板上加上正弦电压,如图5-4(a )所示,而X 轴偏转板上不加任何电压,则亮点的运动是在纵方向作正弦式振荡,在横方向不动,我们看到的是一条垂直的亮线,如图5-4(b )所示。
图5-4 正弦波波形图如果在Y 轴偏转板上加上正弦电压,在X 轴偏转板上加上锯齿形电压,则荧光屏上的亮点将同时进行方向互相垂直的两种位移,我们看到的将是亮点的合成位移,即正弦图形。
用示波器观察波形的原理可用图5-5来说明。
简谐振动可用一个作匀速圆周运动的质点在某方向上的投影来代表,这个圆称为简谐振动的参考圆。
在Y 轴偏转板上加上正弦电压时,可以用参考点在垂直方向投影的运动来代表。
我们假定信号电压与扫描电压的周期相同,起始点也相同,都是从零开始的,我们把这两个电压的周期分成八等份,分别用1,2,3……,8表示。
从图5-5看到,当时间从0到1时,X 轴偏转板上的锯齿形电压使亮点从原点0向右移,而Y 轴偏转板上的交流电压正好是正半周,它要亮点向上移,合成的结果电子束就打在荧光屏的“1”位置上。
当时间到达2时,亮点就打在“2”位置上……,因为两对偏转板上所加的电压是连续不断的,所以亮点的移动也是连续不断的,结果绘出如图5-5中从“0”到“8”的一条正弦曲线。
当锯齿形电压从最大突然跳回零时,亮点立即从“8” 突然跳回到“0”,这时Y 轴偏转板上的交流电压也正好回到第二个周期的零点上,因此在第二个周期中画出的曲线正好和第一个周期的完全重合。
这样不断重复,所以我们可以在荧光屏上看见一条稳定的正弦曲线。
图5-5 示波器显示波形原理图上面讨论的是在扫描电压的周期X T 与信号电压的周期Y T 相等时,荧光屏上可以稳定的显示出一个波长的信号波形。
如果扫描电压的周期X T 是信号电压的周期Y T 的两倍(即Y X T T 2=),则在荧光屏上可以看到两个波长的信号波形,同理,若Y X nT T =,则荧光屏上将显示出n 个波长的信号波形。
即Y X nT T = =n 1,2,3,…… (5-1) 由于周期和频率具有互为倒数的关系,因此上式也可以表示为X Y nf f = =n 1,2,3,…… (5-2) (5-2)式中,Y f 为加在Y 轴偏转板上的信号电压的频率,X f 为加在X 轴偏转板上的扫描电压的频率。
如上所述,为了在荧光屏上观察到稳定的波形,必须使扫描电压的周期X T 与信号电压的周期Y T 相等或成整数倍关系,否则稍有偏差,所显示的波形就会向左或向右移动。
例如,当Y T <X T <2YT 时,第一次扫描显示的波形如图5-6中0~4所示,而第二次扫描显示的波形如图5-6中4‘~8所示。
两次扫描显示的波形不相重合,其结果是好象波形在不断地向左移动。
同理,当X T <Y T <2X T 时,显示的波形会不断向右移动。
而实际上,由于产生Y f 和X f 的振荡源是互相独立的振荡源,它们之间的频率比不会自然满足简单整数比,所以示波器中的锯齿形扫描电压的频率必须可调。
除了人工调节之外,在示波器内部还加装了自动频率跟踪的装置,称为“整步”。
在人工调节到接近满足(5-2)式的条件时,再加入“整步”的作用,扫描电压的周期就能准确地等于待测电压周期的整数倍,从而获得稳定的波形。
图5-6 T 2y x y T T <<时波形向左移动 如果所加信号Y f 为三角波(或方波)电压的频率,X f 为扫描电压的频率,则可在荧光屏上观察到三角波(或方波)信号的波形。
(4)电源部分电源部分的作用是将市电220V 的交流电压转变为各个数值不等的直流电压,以满足示波器各部分电路工作的需要。
2. 示波器的基本测量方法(1)如何测量电信号的电压幅度对于待测电信号,可测出其在荧光屏的Y 轴上的波形幅度大小,从而测出它的电压幅度。
示波器设有Y 轴灵敏度选档旋钮,Y 轴灵敏度可用U K 来表示,其单位是 V/cm 。
U K 表示在荧光屏Y 轴上,使亮点偏移1cm 距离所需输入的信号电压幅值,显然,U K 值是Y 轴上的电压分度值。
因此,对于一个被显示的信号,只要从荧光屏的刻度板上量出其双振幅PP A (即波形在Y 轴方向上的最低点到最高点的距离),则可测出其电压峰峰值PP U ,即PP U PP A K U ⋅= (5-3)对于正弦信号,其电压有效值U 与PP U 的关系为PP U U 221=(5-4)为了提高示波器的输入阻抗、减小输入电容,常用分压比为10:1的低电容衰减探头将信号输入至示波器的Y 通道。
由于探头对信号电压具有10倍的衰减,因此使用衰减探头时,(5-3)式应改写为PP U PP A K U ⋅=10 (5-5) (2)如何测量电信号的周期和频率 ① 利用时基因数测量周期和频率对于待测电信号,可测出其在荧光屏的X 轴上的波长大小,从而测出它的周期和频率。
示波器设有扫描速度选档旋钮,扫描速度可用t v 来表示,t v 表征示波器展开被测信号波形的能力,它的定义是:单位时间内亮点在荧光屏上X 轴方向移动的距离,其单位为cm/s 。
扫描速度的倒数tt v K 1=称为时基因数,它的定义是:亮点在X 轴方向移动一个单位距离所需的时间,其单位为s/cm (或为ms/cm 、μs/cm )。
虽然扫描速度和时基因数是两个不同的概念,但是在实用上常习惯地将时基因数作为示波器扫描速度的标称而不加区别。
显然,t K 是X 轴上的时间分度值。
因此,对于一个被显示的信号,只要从荧光屏的刻度板上量出其波长λ,则其周期T 为λ⋅=t K T (5-6) 该信号的频率为λ⋅==t K T f 11 (5-7) ② 利用李萨如图形测量正弦信号的频率如果在示波器的Y 轴和X 轴偏转板上都加上正弦信号电压,那么荧光屏上亮点的运动将是两个互相垂直的振动的合成。