比例的应用PPT

合集下载

新人教版六年级数学下册比例的应用(比例尺例2)ppt课件

新人教版六年级数学下册比例的应用(比例尺例2)ppt课件

(5 ÷2)600实100际00 距=3离00:00000(厘米)30010χχ00==03500×厘060米0000=003000000千米
=300千米
答:这幅图的比例尺是1 ︰6000000,A、B两城 的实际距离是300千米。
英华小学有一块长120米、宽80米 的长方形操场,画在比例尺为1 : 4000的平面图上,长和宽各应画多 少厘米?图上面积是多少平方厘米?
新人教版六年级数学下册 金碧小学:张家明
新课导入
前面我们学习了比例尺 的求法,有同学能简单 说一说吗?
图上距离∶实际距离=比例尺
( 图上距离 ) =比例尺 ( 实际距离 ) (图上距离)÷(比例尺 )=实际距离 (实际距离)×( 比例尺 )=图上距离
推进新课
下图是北京轨道交通路线示意图。地铁1号 线从苹果园站至四惠东站在图中的长度大约 是7.8cm。从苹果园站至四惠东站的实际长 度大约是多少千米?(比例尺1:400000)
在一幅地图上,测得甲、乙两地的图上距离是13厘米,已知甲 乙两地的实际距离是780千米。 (1)求这幅图的比例尺。 (2)在这幅地图上量得A、B两城的图上距离是5厘米,求A、 B两城的实际距离。
(1)比例尺: 13厘米︰780千米 =13厘米︰78000000厘米 =1 ︰6000000
(2)实际距离 解:设A、B两城的实际 距离是χ厘米。 5 ︰ χ=1 ︰6000000
这道题还有其他的方法吗?同学们思考后回答。 可以用算术方法:7.8÷ 1
400000
先把右图中的线段比例尺改写成数值比例尺, 再用直尺量出图中河西村与汽车站的距离是 多少米,并计算出两地的实际距离大约是多 少?
同学们说说图中的比例尺是多少,表示什么 意思,用直尺量出图中河西村与汽车站的距 离,然后计算出实际距离。

生活中的比ppt课件

生活中的比ppt课件
2023-2026
ONE
课件
REPORTING
KEEP VIEW
CATALOGUE
目 录
• 比的定义及作用 • 生活中的比 • 比的应用 • 比与生活的关系 • 比的历史与文化 • 比的未来展望
PART 01
比的定义及作用
定义
比是指两个数量之间的倍数关系,通常用冒号或斜线表示。例如,A与B 的比是3:2,表示A是B的1.5倍。
工作与休息比
工作与休息比是指工作和休息之间的比例关系,即工作与休息时间的分配比例 。适当的工作与休息比可以减轻工作压力,提高工作效率和生活质量。
PART 03
比的应用
比在生活中的重要性
01
02
03
描述和比较
使用比可以描述和比较不 同物体或事物的比例和大 小,如身高、体重、距离 等。
量化关系
比可以用来表示不同物体 或事物之间的量化关系, 如速度、利率、汇率等。
购物中的比
购物中的比的概念
购物中的比是指商品之间的相对价格,即商品之间的价格关系。购物中的比可以帮助消费 者做出更明智的购买决策,降低购物成本。
购物中的比的分类
购物中的比可以分为价格与质量比、价格与价值比和价格与需求比。价格与质量比是指商 品价格与质量的比例,价格与价值比是指商品价格与使用价值的比例,价格与需求比是指 商品价格与消费者需求的比例。
在统计学中,比是一种常见的统计指标,用于比较不同分类数据的频率分布。例如 ,男女比例、年龄比例等都是通过比来描述的。
在工程和设计中,比也是常用的概念。例如,在建筑设计中外形尺寸的比例关系、 在化学实验中不同物质的比例配比等都是利用比的概念来完成的。
PART 02
生活中的比

比和比例的应用(课件)-六年级下册数学人教版

比和比例的应用(课件)-六年级下册数学人教版

3. (阳江市江城区)被减数、减数与差的和是100,差与减数的比是 1∶4,差是( 10 ),减数是( 40 ),被减数是( 50 )。
4. (佛山市三水区)小明看一本故事书,已看的页数与未看页数的比是 3∶5,未看的有40页,这本书共有( 64 )页,已看( 24 )页。 5. (潮州市湘桥区)如图是一张地图上的比例尺,将它转换为数值比 例尺是( 1∶3000000 )。在这张地图上量得两地之间的距离为8.5 厘米,则两地之间的实际距离是( 255 )千米。
2. (深圳市福田区)《庄子·天下篇》中“一尺之棰,日取其半,万世 不竭”的意思是∶一尺长的木棒,第一天截取它长度的一半,以后每天 都截取它前一天的一半,那么将永远也截取不完。如果按照这种截取方 法,那么第3天截取的木棒长度与原来的木棒总长度的比是( D )。
A. 1∶2 C. 1∶6
B. 1∶3 D. 1∶8
x=35 答∶这些A4纸实际可用35天。
跟踪训练 1. 北京到济南高速公路距离大约为430 km,北京到天津大约为120 km。一辆汽车从北京出发开往济南,当行驶到天津时用了1.5小时。按 照这个速度,北京到济南全程需要多少小时?(用比例解) 解∶设北京到济南全程需要x小时。 120∶1.5=430∶x
解∶设小芳6分钟能做x道题。 x∶6=25∶2
2x=6×25 x=75
2. 一间房子要用方砖铺地,用面积是9平方分米的方砖,需用96块,如 果改用边长是4分米的方砖,需用多少块?(用比例解) 解∶设需要x块。 4×4x=9×96
x=54
3. (济南市市中区)公园里有一个花坛,面积是100平方米,其中的 30%种月季,剩下的面积按3∶4的比分别种玫瑰与牡丹,种玫瑰的面积 是多少平方米? 100×(1-30%)×3+34=30(平方米)

正比例和反比例ppt课件

正比例和反比例ppt课件
在直角坐标系中,反比例函数图 像是一个双曲线。
正反比例的性质对照
相同点
两者都涉及到两个量的变化关系,其中一个量变化时,另一个量也相应变化。
不同点
正比例中,比值是一定的;反比例中,比值是不定的。正比例关系是一条直线,而反比例 关系是一个双曲线。
应用场景
正比例关系在物理、化学、工程等领域都有广泛应用,如速度、密度等;反比例关系在电 力、运输、通讯等领域常见,如电流与电阻、运输成本与运输距离等。
02 正比例和反比例的应用
正比例的应用
01
02
03
计算增长率
在统计学中,正比例常用 于计算某一变量的增长率 ,如GDP增长率、人口增 长率等。
猜测模型
在猜测模型中,正比例关 系可用于猜测未来趋势, 例如猜测产品销售量与广 告投入的关系。
线性回归分析
在回归分析中,正比例关 系可用于描写两个变量之 间的线性关系,例如身高 与体重的关系。
在坐标系中,反比例关系表现为一条 双曲线。
当一个量y随着另一个量x的增大而减 小,或者随着x的减小而增大时,我们 说y与x成反比。
正反比例数学表达的异同点
相同点
正比例和反比例都涉及到两个量之间的变化关系,且都存在 一个常数k来描写这种关系。
不同点
正比例是y与x之间的直接关系,而反比例是xy之间的乘积关 系;正比例关系中y随x增大而增大,而反比例关系中y随x增 大而减小或随x减小而增大;正比例在坐标系中表现为直线, 而反比例表现为双曲线。
则它们成反比例。
反比例关系在现实生活中也广泛 存在,如一定质量的物体下,压 力与面积成反比;一定速度下,
距离与时间成反比等。
正反比例的异同点
相同点
正比例和反比例都是描写两个量之间关系的比例关系,都涉及到两个变量的变 化趋势。

人教版数学六年级上册 比的应用课件(共11张PPT)

人教版数学六年级上册    比的应用课件(共11张PPT)

人教版数学六年级上册比的应用课件(共11张PPT)(共11张PPT)4 比比的应用教学目标1、运用比的意义解决按照一定的比进行分配的实际问题;2、在探索学习的过程中使学生掌握按比例分配问题的特征,能运用按比例分配的知识解决生活中的实际问题。

教学重点:理解按比分的意义,学会运用不同的方法解决按比分配的问题。

教学难点:正确分析数量关系,灵活解决按比分配的实际问题。

问题解决1 用这个容积是500mL的稀释瓶,按1∶4的比配制一瓶清洁剂浓缩液的稀释液。

浓缩液和水的体积分别是多少mL表示浓缩液和水的比阅读与理解1 用这个容积是500mL的稀释瓶,按1∶4的比配制一瓶清洁剂浓缩液的稀释液。

500mL是配好后的稀释液的体积,1:4表示。

1份的浓缩液,4份的水500ml稀释液中,浓缩液和水的体积?要求的是分析与解答浓缩液占总体积的我把总体积平均分成5份。

每份:浓缩液:水:500÷5=100 ml100×1=100 ml100×4=400 ml1+41浓缩液:水:500×=100 ml1+41500×=400 ml1+44回顾与反思线段图能清楚地表示数量关系。

要看清楚1:4到底是哪两个量的比。

浓缩液:水=():()=():()答:浓缩液有100ml,水有400ml。

100 4001 4学以致用1. 六(1)班有44人,按4∶7的比安排打扫教室和包干区人数。

打扫教室和包干区的同学各有多少人?(1)4 + 7 = 1144÷11×4 = 16(人)44÷11×7 = 28(人)(人)(人)(2)4 + 7 = 11想一想:你怎样知道计算的结果就是正确的?小试身手2.一种混凝土中水泥、沙子、石子的比是2:3:5。

要搅拌20吨这样的混凝土,需要水泥、沙子、石子各多少吨?火眼金睛3.一个长方形的周长是36分米,长与宽的比是5∶4 ,这个长方形的长和宽分别是多少分米?A 5 + 4 = 9长:36÷9×5 = 20(分米)宽:36÷9×4 = 16(分米)(分米)(分米)5 + 4 = 9B 36÷2 = 18 (分米)54仔细比较,A,B两位同学,谁做得对?回顾反思1.静静的想一想,今天学习了什么?2.我还想到了什么问题?Notesppt中所使用的部分图片、音视频等资源来源于网络,若所用资源涉及版权问题,请与我们联系。

六年级数学下册习题课件-第4单元 3 比例的应用 第3课时 人教版(共18张PPT)

六年级数学下册习题课件-第4单元 3 比例的应用 第3课时 人教版(共18张PPT)

知识点2:反比例的应用
2.一间房子用方砖铺地,用面积是9平方分米的方砖,
正好用96块,如果改用面积是4平方分米的方砖,需
要多少块? 解:设需要x块。 4x=96×9
4x=864
答:需要216块。
x=216
3.写出下面相关联的量各成什么比例。
(知1)识25点∶71=:正x∶比3例5 的应(1用 )房间面积一定,每块地砖的大小和地砖的
答:8小时可以耕地5公顷。
答(2):一换堆上煤的,3每辆新卡铁车轨根8有次1长可60以根运。6完米。 的旧铁轨,共换下旧铁轨240根,则换上的
知识点1:正比例的应用
新铁轨有多少根?(用比例解) 答:8小时可以耕地5公顷。
(2)45和x的比等于25和8的比。 (2)一堆煤,3辆卡车8次可以运完。
解:设换上的新铁轨有x根。 (3) =y,且x和y都不为0,当k一定时,x和y( )。
答:需要安排4辆这样的卡车。 第3课时 用比例解决问题
x∶240=6∶9 答:8小时可以耕地5公顷。
25公顷,照这样计算,8小时可以耕地多少公顷? 铁路工人修铁路,用每根长9米的新铁轨替换原来每根长6米的旧铁轨,共换下旧铁轨240根,则换上的新铁轨有多少根?(用比例解)
9x=240×6 根据下面的条件列出比例,并解出来。 答:换上的新铁轨有160根。 (1)25∶7=x∶35
96∶x=16∶5
16x=96×5
x=
96×5 16
x=30
6.根据下面的条件列出比例,并解出来。
(2)45和x的比等于25和8的比。
45∶x=25∶8
25x=8×45
x=
8×45 25
x=14.4
7.用比例解决问题。 (1)某加工厂做一批零件,若每天加工200个,20天可

《用比例解决问题》课件PPT

《用比例解决问题》课件PPT
将比例与方程结合,让学生通过解方程来找到未 知的比例关系,进一步加深对比例的理解。
综合练习题
总结词
涉及多个知识点的题目,旨在提高学生的综合运用能力和 解题技巧。
比例与其他数学知识的结合
将比例与其他数学知识(如代数、几何等)结合,设计一 些综合性较强的题目,以提高学生的解题技巧和综合运用 能力。
实际应用中的比例问题
成本控制
企业通过分析生产成本的比例关系, 优化生产流程和原材料采购,降低 生产成本。
质量管理
企业使用比例来控制产品质量,例 如抽样检验中样本与总体之间的比 例,以确保产品质量符合标准。
商业决策中的比例问题
市场占有率分析
企业通过分析市场占有率的比例 关系,了解自身在市场竞争中的
地位和优劣势。
销售预测
投资者根据自身的风险承受能力和投 资目标,使用比例来配置不同类型的 资产,以实现资产的保值增值。
风险评估
投资者使用比例来评估投资风险,例 如股票和债券的市盈率、市净率等指 标,以确定投资的安全性和盈利性。
生产制造中的比例问题
生产计划制定
企业根据市场需求和产能,制定 合理的生产计划,以确保产品供
应和销售的平衡。
《用比例解决问题》课件
目录
• 比例的定义与性质 • 比例问题的解决方法 • 比例问题实例解析 • 比例问题在生活中的应用 • 练习与巩固
01 比例的定义与性质
比例的定义
01
02
03
比例的定义
比例是表示两个比值相等 关系的数学概念,通常表 示为a:b=c:d的形式。
比例的表示方法
在数学中,比例通常用冒 号或等号来表示,如 a/b=c/d或a:b=c:d。
设计一些涉及实际应用的题目,如按比例分配资源、按比 例计算成本等,让学生能够将所学知识应用于实际问题中。

《用比例解决问题》比和按比例分配PPT课件-(共36张PPT)

《用比例解决问题》比和按比例分配PPT课件-(共36张PPT)
500千克的海水中含盐25千克,120吨的海水含盐几吨?
华南服装厂3天加工西装180套,照这样 计算,要生产540套西装,需要多少天?
一辆汽车2小时行驶140千米,照这样的速度,甲地到乙地的公路长350千米。这辆汽车从甲地到乙地需要行驶多少小时?
速度
路程
时间

一定,


比例
等量关系是:
路程
时间
每小时打9000字
每小时打3600字
6小时
15小时
去时每小时行60千米,2小时到达株洲。
回来时每小时行75千米,1.6小时到达长沙。
大胆尝试
选择其中的三个数量编一道正比例或反比例应用题。
解:设可以站 行.
学生总数一定,每行的人数与行数成反比例。
24

20×18

15
答:可以站15行.

24
360
工程队修一条水渠。每天修30米,
4天修完。如果每天修40米,多少天
可以修完?
40χ = 30×4
40χ = 120
χ = 120÷40
χ = 3
答:3天可以修完。
用比例解决问题
判断下列每题中的两个量是不是 成比例,成什么比例?为什么?
1、购买课本的单价一定,总价和数量。
因为
所以
2、总路程一定,速度和时间。
判断下列每题中的两个量是不是 成比例,成什么比例?为什么?
总数一定时,生产的天数和每天 生产的件数成反比例。
因为
所以
做一做
2、同学们做广播体操,每行站20人,正好站18行,如果每行 站24人,可以站多少行?
1、食堂买3桶油用了780元,照这样计算,买8桶油要多少元?
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

14个玩具汽车可以换多少本小人书?
【探究导ห้องสมุดไป่ตู้】 1.我知道:通过认真审题,我能用“ 道问题是... ... ”画出关键句,还知
2.我的想法:(比一比谁的想法多,要求:能准确简练地表 达你的想法。)
方案A:(算术法)
方案B:(新方法)
3.我会验证:
4.小组交流:用自己的话说说解比例的方法。(群学)
解比例的方法:根据比例的 基本性质解比例,先把比例转化 成两内项相乘等于两外项相乘的 形式(即方程),再通过解方程 求出未知项的值。
义务教育教科书六年级下册
比例的应用
执教:崔欢
热身操
1.请你说说比例的基本性质及各部分的名称。 2.解方程: 3X=6 5X=90
知识锦囊
人类使用货币的历史产生于最早 出现物质交换的时代。在原始社会, 人们使用“以物易物”的方式,交换 自己所需要的物资,比如用一头羊换 一把石斧等。
尝试探究
探究内容:4个玩具汽车换10本小人书,
火眼金睛 解比例: 12:X=2:1.8
解:
1.8X=12×2
X= X=
12 2 1 .8
40 3
( )

1 1 我会判断: 2 : 3 与1:4能组成比例。(
【温馨提示】细节决定成败!
沙场点兵
18 X = 27 9
8:5=24:X
6 5 6 : = : X 7 6 5
生活频道 1.实验四年级美术组男生与女生的人数比是 6:7,男生有12人,女生有多少人? 2.广州塔高600米,是目前世界第一高的电 视塔。星星公司设计制作了这座电视塔的模型, 模型的高度与实际高度的比是1:300.模型的高 度是多少米?
【温馨提示】好习惯,益终身!要细心哦!
拓展延伸: 小华和爸爸今年的年龄比是1︰4, 明年小华10岁,爸爸应该是多少岁?
用数学的眼光,发现问题 用坚韧的精神,解决问题
相关文档
最新文档