教育与心理统计学 第二章 常用统计参数考研笔记-精品

合集下载

张敏强版《教育和心理统计学》1到3章读书笔记

张敏强版《教育和心理统计学》1到3章读书笔记

《绪论》1.什么是教育与心理统计学教育与心理统计学是应用统计学的一个分支,是数理统计学与教育学、心理学的一门交叉学科,它把统计学的理论方法应用于教育实际工作和各种心理实验、心理测验等科学研究中,通过对所得数据的分析和处理,达到更为准确地掌握情况、探索规律、制订方案、目的,为教育与心理的科学研究提供了一种科学的方法.2.教育与心理统计学的基本内容及本书体系。

1)描述统计学:这一部分主要是研究和简缩数据和描述这些数据.例如:计算平均数、中位数、众数等,以这些参数来反映观测数据的集中趋势。

计算标准差、方差等,以这些参数来反映观测数据的离散趋势.描述统计学主要是描述事务的典型性、波动范围以及相互关系,提示事物的内部规律.2)推断统计学:这部分内容主要是研究如何利用数据去作出决策的方法。

推断统计学则是一种依据部份数剧去推论全体的一种科学方法,它是进行教育与心理实验、对教育与心理研究或实验作出预测和规划的有力工具。

推断统计学的主要内容有:统计检验、统计分析和非参数统计法.3)多元统计分析:这部分内容主要是研究超过两个因素的教育与心理的研究和实验。

多元统计分析的主要任务就是寻找出主要的因素,相近或相关的因素合并或归类.多元统计分析的主要内容有:主成分分析、因素分析、聚类分析、多元方差分析、多元回归分析等。

3.教育与心理统计学的昨天、今天和明天1)与心理统计学的昨天:1904年美国人桑代克写的《心理与社会测量导论》2)教育与心理统计学的今天:叶佩华主编的《教育统计学》,张厚粲主编的《心理与教育统计》等.4.预备知识1)概念与术语<1>随机变量:教育与心理实验或观测,在相同的条件下,其结果可能不止一个,同实验或观测所得到的数据,事先无法确定,这类现象称为随机现象。

因为可以用数字来表现,则称这些数字为随机变量。

它的特点是:离散性、变异性和规律性。

依其性质可分为:称名变量、顺序变量、等距变量、比率变量四种称名变量:用于说明一事物与其它事物在属性上的不同或类别上的差异,但不说明事物与事物之间差异的大小.顺序变量:指可以按事物的某一属性,把它们按多少或大小顺序加以排列的变量。

《教育和心理统计学》1-3章读书笔记

《教育和心理统计学》1-3章读书笔记

《绪论》1.什么是教育与心理统计学教育与心理统计学是应用统计学的一个分支,是数理统计学与教育学、心理学的一门交叉学科,它把统计学的理论方法应用于教育实际工作和各种心理实验、心理测验等科学研究中,通过对所得数据的分析和处理,达到更为准确地掌握情况、探索规律、制订方案、目的,为教育与心理的科学研究提供了一种科学的方法。

2.教育与心理统计学的基本内容及本书体系。

1)描述统计学:这一部分主要是研究和简缩数据和描述这些数据。

例如:计算平均数、中位数、众数等,以这些参数来反映观测数据的集中趋势。

计算标准差、方差等,以这些参数来反映观测数据的离散趋势。

描述统计学主要是描述事务的典型性、波动范围以及相互关系,提示事物的内部规律。

2)推断统计学:这部分内容主要是研究如何利用数据去作出决策的方法。

推断统计学则是一种依据部份数剧去推论全体的一种科学方法,它是进行教育与心理实验、对教育与心理研究或实验作出预测和规划的有力工具。

推断统计学的主要内容有:统计检验、统计分析和非参数统计法。

3)多元统计分析:这部分内容主要是研究超过两个因素的教育与心理的研究和实验。

多元统计分析的主要任务就是寻找出主要的因素,相近或相关的因素合并或归类。

多元统计分析的主要内容有:主成分分析、因素分析、聚类分析、多元方差分析、多元回归分析等。

3.教育与心理统计学的昨天、今天和明天1)与心理统计学的昨天:1904年美国人桑代克写的《心理与社会测量导论》2)教育与心理统计学的今天:叶佩华主编的《教育统计学》,张厚粲主编的《心理与教育统计》等。

4.预备知识1)概念与术语<1>随机变量:教育与心理实验或观测,在相同的条件下,其结果可能不止一个,同实验或观测所得到的数据,事先无法确定,这类现象称为随机现象。

因为可以用数字来表现,则称这些数字为随机变量。

它的特点是:离散性、变异性和规律性。

依其性质可分为:称名变量、顺序变量、等距变量、比率变量四种称名变量:用于说明一事物与其它事物在属性上的不同或类别上的差异,但不说明事物与事物之间差异的大小。

张敏强《教育与心理统计学》(第3版)课后习题(常用统计参数)【圣才出品】

张敏强《教育与心理统计学》(第3版)课后习题(常用统计参数)【圣才出品】

第2章 常用统计参数1.某班学生的心理学平均成绩为75分,标准差为l0分,学生总数为43人。

根据这些信息,无法计算出的统计量有( )。

A .差异系数B .分数总和C .中数D .方差【答案】C【解析】中数计算方法:①首先确定中数在数据序列中的位置:dn M n =12n ,式中:dn M n 表示中数在数列中的位置;n 表示数列数据个数。

②然后再求数列中位于dn M n 位置上的那个数Mdn 。

题中没有具体数据序列,因此无法计算得到中数。

2.已知一组数据为2,5,13,10,8,21,则它们的中位数为( )。

A .8B .9C .10D .不存在【答案】B【解析】中位数又称中数,符号记为Mdn ,计算方法:①确定中数在数据序列中的位置:dn M n =12n +,式中,nMdn 表示中数在数列中的位置;n 表示数列数据个数。

②求数列中位于dn M n 位置上的那个数Mdn 。

由题可知,数据排序后为:2,5,8,10,13,21。

因为数据个数为偶数,则其中数为第(6+1)/2=3.5个数,即Mdn 应在8、10之间,因此答案为9。

3.某班30名学生的平均成绩是75分,其中10名女生的平均成绩是85分,那么该班男生的平均成绩是多少分?( ) A .65分B .70分C .75分D .68分【答案】B【解析】此题为加权平均数的变形,加权平均数的计算公式为:。

由公式可知,75=10852030X ⨯+⨯,X=70。

4.在教育与心理研究中,求平均增长率或对心理物理学中的等距与等比量表实验的数据处理,应当使用的统计量是( )。

A .算术平均数B .加权平均数C .几何平均数D.方差或标准差【答案】C【解析】几何平均数的应用:①心理物理学中等距与等比量表实验的数据处理;②教育与心理研究中平均增长率的计算。

5.如果把某班所有学生的分数都减少5分,则该班成绩的均值和方差会如何变化?()A.均值变小,方差不变B.均值不变,方差变小C.均值方差同时变小D.均值变小,方差变大【答案】A【解析】由方差的性质可知,每一个观测值都加或减一个相同常数c后,计算得到的方差等于原方差;由平均数的性质可知,每一个观测值都加上或减去一个相同常数c后,计算得到的平均数等于原平均数加上或减去这个常数c。

张厚粲现代心理与教育统计学第3版笔记和课后习题含考研真题

张厚粲现代心理与教育统计学第3版笔记和课后习题含考研真题

张厚粲《现代心理与教育统计学》(第3版)笔记和课后习题(含考研真题)第一部分复习笔记本章重点ü心理与教育统计的研究内容ü选择使用统计方法的基本步骤ü统计数据的基本类型ü心理与教育统计的基本概念一、统计方法在心理和教育科学研究中的作用(一)心理与教育统计的定义与性质1.心理与教育统计学是专门研究如何运用统计学原理和方法,搜集、整理、分析心理与教育科学研究中获得的随机性数据资料,并根据这些数据资料传递的信息,进行科学推论找出心理与教育活动规律的一门学科。

2.具体讲,就是在心理与教育研究中,通过调查、实验、测量等手段有意地获取一些数据,并将得到的数据按统计学原理和步骤加以整理、计算、绘制图表、分析、判断、推理,最后得出结论的一种研究方法。

3.统计学大致分为理论统计学(theoretical statistics)和应用统计学(applied statistics)两部分。

前者侧重统计理论与方法的数理证明,后者侧重统计理论与方法在各个实践领域中的应用。

心理与教育统计学属于应用统计学范畴,是应用统计学的一个分支。

类似的还有生物统计、社会统计、医学统计、人口统计、经济统计等。

(二)心理与教育科学研究数据的特点1.心理与教育科学研究数据与结果多用数字形式呈现2.心理与教育科学研究数据具有随机性和变异性3.心理与教育科学研究数据具有规律性4.心理与教育科学研究的目标是通过部分数据来推测总体特征(三)学习心理与教育统计应注意的事项1.学习心理与教育统计学要注意的几个问题(1)学习心理与教育统计学时,必须要克服畏难情绪。

心理与教育统计学偏重于应用,只要有中学数学知识就具备了学好心理与教育统计学的前提。

(2)在学习时要注意重点掌握各种统计方法使用的条件。

(3)要做一定的练习。

2.应用心理与教育统计方法时要做到:(1)克服“统计无用”与“统计万能”的思想,注意科研道德。

(2)正确选用统计方法,防止误用和乱用统计。

张敏强《教育与心理统计学》笔记和课后习题(含考研真题)详解-常用的统计表与图【圣才出品】

张敏强《教育与心理统计学》笔记和课后习题(含考研真题)详解-常用的统计表与图【圣才出品】
1 / 22
圣才电子书 十万种考研考证电子书、题库视频学习平台

全距也称为极差,是指一批数据中最大值与最小值之间的差距。观察全部数据,找出其 中的最大值(Max)和最小值(Min),以符号 R 表示全距,则全距的计算公式为:
R Max Min
(2)定组数 定组数就是要确定把整批数据划分为多少个等距的区组。组数用符号 K 表示。 ①组数大小依据数据的多少而定 组数太多,往往会削弱对数据分组整理的功用;太少,又可能会湮没数据内含的重要信 息。一般来说,当一批数据的个数在 200 个以内时,组数可取 8~18 组。如果数据来自一个 正态的总体,则可利用下述经验公式来确定组数,即:
4 / 22
圣才电子书 十万种考研考证电子书、题库视频学习平台

构成一个累积百分数分布表。 (3)说明 累积相对次数分布和累积百分数分布均有“以下”分布和“以上”分布两种。在应用时,应
根据具体情况决定选用其中的一种。 (三)次数分布图的绘制 次数分布图通常有两种表达方式,包括次数直方图和次数多边图两种。 1.次数直方图 (1)含义 次数直方图是由若干宽度相等、高度不一的直方条紧密排列在同一基线上构成的图形。 (2)制作步骤 ①以细线条标出横轴和纵轴(取正半轴即可),使其垂直相交 a.为使图形美观,通常使横轴与纵轴的长度比为 5:3。 b.以纵轴为次数的量尺,按比例等间隔地标出刻度。 c.横轴代表测验分数的量尺,也按适当的比例等间隔地标出次数分布中各组的组中值。 d.一般说来,纵轴和横轴的尺度比例不一样。纵轴刻度往往从 0 开始,而横轴刻度则
2
K 1.87(N1)5
公式中的 N 为数据个数。 ②注意 事先计划的组数可能与实际分组时因考虑组距取整以及最低一组的起点位置不同而略 有差异,这种差异是正常的,最终结果应以实际划归的组数为准。 (3)定组距 组距用符号 i 表示,其一般原则是取奇数或 5 的倍数,如 1,3,5,7,9,10……等等。 具体的取值过程可通过全距 R 与组数 K 的比值来取整确定。 (4)写出组限 组限是每个组的起始点界限。例如,表 1-1 中列出的就是关于组限的几种不同表述方式。

《教育统计学》(王孝玲版)超详细知识点及重点笔记

《教育统计学》(王孝玲版)超详细知识点及重点笔记

华东师大心理统计学大纲教材:《教育统计学》(王孝玲编著,修订版)华东师范大学出版社 1993年6月第一版第一章绪论第一节什么是统计学和心理统计学一、什么是统计学 统计学是研究统计原理和方法的科学。

具体地说,它是研究如何搜集、整理、分析反映事物总体信息的数字资料,并以此为依据,对总体特征进行推断的原理和方法。

统计学分为两大类。

一类是数理统计学。

它主要是以概率论为基础,对统计数据数量关系的模式加以解释,对统计原理和方法给予数学的证明。

它是数学的一个分支。

另一类是应用统计学。

它是数理统计原理和方法在各个领域中的应用,如数理统计的原理和方法应用到工业领域,称为工业统计学;应用到医学领域,称为医学统计学;应用到心理学领域,称为心理统计学,等等。

应用统计学是与研究对象密切结合的各科专门统计学。

二、统计学和心理统计学的内容 统计学和心理统计学的研究内容,从不同角度来分,可以分为不同的类型。

从具体应用的角度来分,可以分成描述统计,推断统计和实验设计三部分。

1.描述统计 对已获得的数据进行整理、概括,显示其分布特征的统计方法,称为描述统计。

2.推断统计 根据样本所提供的信息,运用概率的理论进行分析、论证,在一定可靠程度上,对总体分布特征进行估计、推测,这种统计方法称为推断统计。

推断统计的内容包括总体参数估计和假设检验两部分。

3.实验设计 实验者为了揭示试验中自变量和因变量的关系,在实验之前所制定的实验计划,称为实验设计。

其中包括选择怎样的抽样方式;如何计算样本容量;确定怎样的实验对照形式;如何实现实验组和对照组的等组化;如何安排实验因素和如何控制无关因素;用什么统计方法处理及分析实验结果,等等。

以上三部分内容,不是截然分开,而是相互联系的。

第二节统计学中的几个基本概念 一、随机变量 具有以下三个特性的现象,成为随机变量。

第一,一次试验有多中可能结果,其所有可能结果是已知的;第二,试验之前不能预料哪一种结果会出现;第三,在相同的条件下可以重复试验。

心理学考研笔记心理统计篇

第一章绪论统计学内容(凑字数):(1)描述统计(整理数据):第二章图表第三章集中量数第四章差异量数第五章相关(2)推论统计(推断总体):第七章参数估计;第八第十第十一章假设检验。

(3)实验设计(取样,实验条件控制,结果分析):第九章方差第十二章回归第十三章因子分析第十四章样本选择数据类型:(1)观测方法:计数数据:能数出来的计量数据:用工具量的(2)测量水平:称名数据:类别顺序数据:类别、次序--------心理测验的原始数据是这个等距数据:类别、次序、相差程度-------心理测验数据都会转换成这个等比数据:类别、次序、相差程度、相差比例(3)是否连续:离散数据:非连续,有个数能数出来连续数据:中间可以无限细分出无数个值第二章图表统计表:(1)次数表:简单次数分布表:无论什么类型数据只要用来记录次数就可,数据少时使用分组次数分布表:同样只要记录次数就能用,数据多时使用相对次数分布表:用比率和百分数表示次数。

累加次数分布表:需知道某个数据以下和以上人数时使用。

双列次数分布表:两列变量的次数用同一个表来表示。

不等距次数分布:无法等距分组时使用。

(2)其他表:简单表:无分类分组表:一个分类复合表:多个分类统计图:(1)次数图:直方图(表分布):横坐标连续数据,纵坐标频次次数多边图:直方图条条去掉连成线就是这个。

比直方图轮廓好易看出规律。

累加次数分布图:横坐标(等距数据以上)分组区间;纵坐标(任何记录次数的数据)累加次数累加曲线:累加次数分布图曲线化。

可更好的看出数据的形态(正态,偏态)(2)其他图:条形图(表内容):对计数或离散数据进行描述圆形图(表内容):不连续的数据-----------可以按比例分的数据线形图(表变化):连续型数据进行描述散点图(表相关):横坐标可计数可离散,纵坐标必须连续数据茎叶图(表分布和保留具体数值):两位数的数据次数箱型图(表数据离散状况)第三章集中量数:一组数据的最佳代表值算数平均数:最好的集中量数,能用就用这个(1)何时不能使用:有极端数值时,有模糊数据时。

张敏强《教育与心理统计学》课后习题集详解(1-5章)【圣才出品】

第1章常用的统计表与图1.对组限的规范写法本书有何规定?答:组限是每个组的起始点界限。

可以用几种不同的表述方式,见下表。

表1 组限的五种表述方法(i=5)对于连续变量,尽管表中的五种表述方法形式不同,但它们所包含的意义与传统“教育与心理统计学”中的规定却是一致的。

为了避免这种人为造成的误解并统一与规范关于组限的表述方法,本书建议并一贯采用表中的第三种、第四种或第五种这三种表述方法。

对此,作几点说明如下:(1)表述组限与实际组限是两个不同的概念,但它们之间有规律性的联系。

(2)当各相邻组的组限已经相互承接而没有间断时,便认为已把表述的组限与实际的组限统一起来,且不管这里表述组限中的实下限与实上限是整数还是小数。

(3)按照本书上述规定的组限表述方法即可形成规范的组限表述方式,并与其他学科中的区间表达法统一起来。

2.列举次数直方图或多边图的一些应用。

答:次数直方图是由若干宽度相等、高度不一的直方条紧密排列在同一基线上构成的图形,而次数多边图是利用闭合的折线构成多边形以反映次数变化的情况的一种图示方法。

他们都适合连续性的数据。

应用举例:如学生考试成绩的分布,商场一年12个月的销售额情况,学生去学校所花费的时间,某班学生的身高情况,某班学生的体重情况,体育课上学生一分钟内跳绳的次数,居民月平均用水量的情况等。

3.试比较简单条形图与简单次数直方图在制作和应用方面的异同点。

答:简单条形图是以若干平行而等宽的长条来表示离散型数据的对比关系的图形;次数直方图是指由若干宽度相等、高度不一的直方条紧密排列在同一基线上构成的图形。

(1)相同点①简单条形图与简单次数直方图都是统计学中常用的分布图。

②简单条形图与简单次数直方图都含有长条。

(2)不同点①简单条形图的长条是紧密相连的,而简单次数直方图的长条是分开的。

②简单条形图适合用来描述离散型变量(如属性变量)的统计数据,而简单次数直方图则是用来刻划连续性变量的观测数据。

4.简述散点图、折线图、条形图和圆形图这四种统计分析图的应用特点。

张敏强《教育与心理统计学》笔记和课后习题(含考研真题)详解-常用统计参数【圣才出品】

第2章常用统计参数【学习目标】1.了解各种集中量数、差异量数和地位量数的概念、性质和作用,理解各种量数的适用条件及特点。

2.识记相关、散点图及相关系数的概念与彼此之间的关系。

3.掌握各种量数的计算方法,并能够熟练使用各种量数对测量数据的数据特征进行描述。

4.掌握各种常见相关分析方法的适用条件及计算方法。

2.1复习笔记一组变量的次数分布,一般至少有以下两个方面的基本特征:中心位置:用以度量一组数据的集中趋势,描述它们的中心位于何处,故对其数量化描述称为位置度量数或集中量数。

离散性:反映一组数据的分散程度,即次数分布的离散程度。

对其数量化描述称为次数分布变异特性的度量或差异量数。

中心位置相同的次数分布,其离散程度不一定相同。

对任何一个已知的次数分布,均可以计算出反映上述统计特征的量数。

在教育与心理统计中,总体统计特征的量数称为参数,用希腊字母表示,如μ,σ2,ρ等;样本统计特征的量数称为统计量,用英文字母表示,如X,S2,r等。

一、集中量数集中量数是指描述数据集中趋势的统计量,包括算术平均数、加权平均数、几何平均数、中数,等等,其作用都是用于度量次数分布的集中趋势。

(一)算术平均数算术平均数(简称平均数、均数)是用以度量连续变量次数分布集中趋势的最常用的集中量数。

1.总体平均数与样本平均数(1)总体平均数如果一个总体X 包含N 个元素,x i 是这个总体中的第i 个元素,则称x i 为第i 次观测值,那么对x 来讲,该总体的算术平均数被定义为:11=Nii x N μ=∑式中:μ——总体算术平均数;N——总体容量;i x ——第i 次观测值。

(2)样本平均数当无法对总体进行全面观测时,对于样本X ,其算术平均数被定义为:11n i i X x n =∑式中:X ——样本平均数;n ——样本容量。

2.加权平均数若已知各组平均数和各组人数,要求总的平均数时,则要用加权平均数的方法,其计算公式为:式中:——总平均数(或加权平均数);12,,,k n n n …——各组人数;12,k ,X X X …,——各组平均数;12t k n n n n =+++…——总人数。

教育与心理统计学第二章:统计图表


分类 满足 的要 求
1、周延性 2、互斥性
表1 某心理学院研究生的情况汇总表
类别 男 女 基础心理学 发展与教育心理学 应用心理学 合计
人数 63 119
62
50
70
182
不具有 互斥性
表2 某心理学院研究生的情况汇总表(双向)
专业方向 基础心理学 发展与教育心理学 应用心理学
男 30
10
性 别 女 32
①非常不尽职 ②不尽职 ③不置可否 ④尽职 ⑤非常尽职
总计
人数
9 30 10 25
6
80
现场演示,教给学生如何来画三线表
二、分组次数分布表(grouped frequency table)
当数据量比较大的时候,应该把所有的数据线划分为若干分 组区间,然后将数据按其数值大小划归到相应的组别内,分 别统计各个组别内包括的数据个数,再用列表形式呈现出来。
二、次数多边形图(frequency polygon)
是一种表示连续性随机变量次数分布的线形图。(注: 不能用于离散型数据)
(1)累加直方图 横坐标分组区间,纵坐标是累加次数。可以看出某
上限以下的次数或者某下限以上的次数。
(2)累加曲线图 先同上,标出各交点,再连接各交点。
第三节 次数分布图
一、直方图(histogram)(如,图2-3、图2-4) 组距确定矩形宽度,每组频数确定各矩形高度,各 矩形间不留空隙,矩形面积与其频数分布大小等价。
直方图的另外一种形式:组织图
组织图
20 15 10
5 0 60 63 66 69 72 75 78 81 84 87 90 96 99
第二章 统计图表
第一节 数据的初步整理 第二节 次数分布表 第三节 次数分布图 第四节 其他类型的统计图
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二章常用统计参数
第二章常用统计参数
用参数来描述一组变量的分布特征,便于我们对数据分布状况进行更好的代表性的描述,也有利于我们更好地了解数据的特
点。

常见的统计参数包括三类:集中量数、差异量数、地位量数(相对量数X相关量数。

描述统计的指标通常有五类。

第一类集中量数:用于表示数据的集中趋势,是评定一组数据是否有代表性的综合指标,比如平均数、中数、众数等。

概述[不背]
第二类差异量数:用于表示数据的离散趋势,是说明一组数据分散程度的指标,比如方差、标准差、差异系数等。

第三类地位量数:是反映个体观测数据在团体中所处位置的量数,比如百分位数、百分等级和标准分数等。

第四类相关量数:用于表示数据间的相互关系,是说明数据间关联程度的指标,比如积差相关、肯德尔和谐系数、①相关等。

第五类:是反映数据的分布形状,比如偏态量和峰度等(不作介绍I
第一节集中量数
(一)集中量数的定义(种类、作用)[湖南12名]
描述数据集中趋势的统计量数称为集中量数。

集中量数能反映大量数据向某一点集中的情况。

常用的集中量数包括算术平均数、加权平均
数、几何平均数、中数、众数等等,它们的作用都是用于度量次数分布的集中趋势。

(二)算术平均数(平均数、均数)(一级)简述算术平均数的定义和优缺点。

(1)平均数的含义
算术平均数可简称为平均数或均数,符号可记为M。

算术平均数即数据总和除以数据个数,即所有观察值的总和与总频数之比。

只有在为了与其他几种集中.数洞区别时,如几何平均数、调和平均数、加权平均数,才全称为算术平均数。

如果平均数是由变量计算的,就用相应的变量表示,如又匕算术平均数是用以度量连续变量次数分布集中趋势及位置的最常用的集中量数,在一组数据中如果没有极端值, 平均数就是集中趋势中最有代表性的数字指标,是真值的最佳估计值。

(2)平均数的优缺点简述算术平均数的使用特点[含优缺点]
算术平均数优点
①反应灵敏。

观测数据中任1可一个数值或大或小的变化,甚至细微的变化,在计算平均数时,都能反映出来。

②计算严密。

计算平均数有确定的公式,不管何人在何种场合,只要是同一组观测数据,计算的平均数都相同。

③计算简单。

计算过程只是应用简单的四则运算。

④简明易解。

平均数概念简单明了,较少数学抽象容易理解。

⑤适用于进一步用代数方法演算。

在求解其他统计特征值,如离均差、方差、标准差的计算时,都要应用平均数。

还要作进一步代数运算
时,用算术平均数表示其集中趋势最佳
⑥较少受抽样变动的影响。

观测样本的大小或个体的变化,对计算平均数影响很小。

算术平均数缺点用算术平均数度量集中趋势存在哪些缺点?试举例说明。

①易受极端数据的影响;由于平均数反应灵敏,因此当数据分布呈现偏态时,受极值影响,平均数就不能恰当地描述分布的真实情况。


常可以使用修剪平均数来解决。

②若出现模糊不清的数据时,无法计算平均数,因为平均数的计算需要每个数据的加入。

在这种情况下,一般采用中数作为
描述其集中趋势。

如:有两组物理成绩:
第一组:25,37,32,60,100,99,96
第二组第3,72,60,68,63,62,61
尽管两组成绩的平均分相等都约为64,但由于极端数据的存在,64不能很好地代表第一组数据的平均水平,却较好地代表了第二组数据。

从算术平均数的这些特点可以看出,如果一组数据是比较准确,可靠又同质,而且需要每一个数据都加入计算,
(3)平均数的特点
①一组变量值的和等于变量的个数与其平均数的乘积。

②一组变量值的离均差之和等于零。

③在一组变量值中,每个变量值加上或减去、乘以或除以不等于0的常数C,所得的平均数等于原平均数减去或加上,乘以或除以常数C。

(4)平均数的意义
①平均数是应用最普遍的一种集中量数;
②是真值渐进、最佳的估计值;
③当观测次数无限增加时,算术平均数趋近于真值。

(5)计算和应用平均数的原则
①同质性原则:如果一组数据1:匕较准确,可靠又同质(使用同一个观测手段,采用相同的观测标准,能反映某一问题的同一方面特质的数
据),而且每一个数据都加入计算,就可用算术平均数表示其集中趋势。

如果一组数据中出现了极端的数据,或有一些数据不清楚,数据不
同质时,就不宜使用算术平均数。

②平均数与个体值相结合的原则。

在运用算术平均数时,还要注意平均数与个体数值相结合,不可过分看重平均数,要结合个体数值加以
考量。

③平均数与标准差、方差相结合的原则。

标准差和方差越大,平均数的代表性就越小;反之,平均数的代表性就越大。

只有二者结合起来,
才能全面准确地反映全部数据的总体特征。

(三)几何平均数(对数平均数)(一级)
几何平均数的定义:几何平均数记作而,或Mg、GM,计算公式如右,其中n为数据个数,Xi为原始数据(变量\
在教育与心理统计实践中,当需要处理的数据有以下两种情形时,一般都用几何平均数来表示数据的集中趋势。

几何平均数的应用:
之比接近常数,即数据按一定的比例关系变化。

在教育与心理研究中,求平均增长
①一组数据中任何两个相邻
率或对心理物理学中的等距与等比量表实验进行数据处理,均应使用几何平均数。

②当一组数据中存在极端数据,分布呈偏态时,算术平均数不能很好地反映数据的典型情况,此时应使用几何平均数或其他集中量数(如
中数、众数)来反映数据的典型情况。

(四)加权平均数(补充)(二级)
加权平均数是观测数据(X/)与其相应权数(W)乘积的和除以总权数(W1+W2+…Wn)所得的商,用符号Mw表示。

权数是指各变量
在构成总体中的相对重要性,权数的大小,由观测者依据一定的理论或实践经验而定。

即有些测量中所得数据,其单位权重并不相等,这
时若要计算平均数,就不能用算术平均数,而应该使用加权平均数。

(五)调和平均数
调和平均数用M H表示,因在计算中先侪各个数据取倒数平均,然后再取倒数,故又称倒数平均数。

(六)中数与众数
(1)中数简述中数的定义和优缺点
中数概念:中数又称中位数、中点数、中值,符号记为Md”或Md。

是指位于按一定顺序排列的一组数据数列中间位置的那个数,有一半数据比它大,有一半数据比它小。

它可能是数列中的某一个原始数据,也可以不是原始数据而是通过计算得到的一个数。

总之,如果将一组数据按大小顺序排列,则中数一定是将数据个数平均分为大小相等两部分的那个数。

中数是一种位置代表值,能够描述一组数据的典型情况。

优点:①计算简单。

②容易理解。

③概念简单明白。

④不受极端数据影响的特点。

基于中数的这些特点,当一组观测数据中有极端数据,或有个别数据不清楚时,采用中数作为集中量数是比较好的选择。

另外,也常用中数来快速估计一般数据的代表值。

缺点:①中数的计算不要求每个数据都参与,其大小受限制于全体数据。

②反应不够灵敏,极端值的变化对中数没有影响。

③受抽样变动影响较大。

由于中数是根据数据的相对位置来确定的,在计算时不是每个数据都加入计算,从而有较大的抽样误差,不如平均数稳定,且会流失较多的被试信息。

④计算时需要对数据先进行大小排列,过程比较麻烦。

⑤中数乘以总数不等于数据总和(中数等于平均数的除外),不能进一步作代数运算。

⑥中数难以作进一步的代数运算,故在多数情况下,中数不如平均数应用广泛。

中数的缺点使其不能成为理想的集中量数而被普遍采用。

应用:观测值中有极端值、缺失值,快速估计数据的集中趋势。

(2)众数Mode简述众数的定义和优缺点[湖南师大11]
众数概念:众数又称范数、密集数、通常数,常用符号M。

表示。

是指次数分布中出现次数最多的那个数的数值。

在统计实践中,当一年
数据出现不同座的情况,或分布中出现极端数据时,也用众数作为集中量数的粗略估计。

可用皮尔逊的经验法计算众数,即:M。

=3Md n-2X,
M*为中数,又为平均数。

优点:计算简单,容易理解,不受极端值影响。

缺点:①没有利用全部数据,受数据分组的影响,受抽样影响大,受样本变动的影响,不稳定。

②计算时不需要每一个数据都加入,反应不够灵敏,较少受极端值的影响。

③不能进一步代数运算。

④公式法计算的众数只是一个估计值,总个数乘以众数,也与数据的总和不相等。

应用J观测值中有极端值一缺失值,快速估计数据的集中趋势,数据不同质(命名型数据)L数据偏态(平均数二众数)上出现双峰分布。

众数的应用范围:
①需要快速而粗略地寻求一组数据的代表值时;
②当一组数据不同质时;
③当数据分布中有极端值时;
④当粗略估计次数分布的形态时,有时用平均数和众数之差来表示次数分布是否偏态;
⑤次数分布中出现双峰分布时,也采用众数来表示数据分布形态。

(七)平均数、中数与众数三者之间的关系
①在一个正态分布中,三者相等。

因此在数轴上三个集中量完全重合,在描述这种次数分布时,只需报告平均数即可。

相关文档
最新文档